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O P I N I O N

Addressing the problems with 
life-science databases for traditional 
uses and systems biology
Stephan Philippi and Jacob Köhler

Abstract | A prerequisite to systems biology is the integration of heterogeneous 
experimental data, which are stored in numerous life-science databases. However, 
a wide range of obstacles that relate to access, handling and integration impede 
the efficient use of the contents of these databases. Addressing these issues will 
not only be essential for progress in systems biology, it will also be crucial for 
sustaining the more traditional uses of life-science databases.

Several decades ago, scientists started to 
set up biological data collections for the 
centralized management of and easy access 
to experimental results, and to ensure long-
term data availability (FIG. 1a). Many early 
data collections were initially administered 
using word processing or spreadsheet 
applications. Owing to the limited amount 
of data that could be stored in this way, and 
the reductionist viewpoint that character-
ized most biological research at that time, 
this approach to data collection seemed 
reasonable, and was sufficient for occasional 
exchanges with colleagues.

However, with the exponential growth 
of experimental data that is taking place 
owing to rapid biotechnological advances 
and high-throughput technologies, as well 
as the advent of the World Wide Web as a 
new means for data exchange, the world 
dramatically changed. The huge amounts of 
data that are now produced on a daily basis 
require more sophisticated management 
solutions, and the availability of the internet 
as a modern infrastructure for scientific 
exchange has created new demands with 

respect to data accessibility. Furthermore, 
the relatively new field of systems biology 
has further increased the requirements that 
are demanded of life-science databases. 
The general vision of systems biology is to 
move out of the era of reductionist studies 
of isolated parts of interest — for example, 
individual proteins and genes — and to 
develop a molecular understanding of more 
complex structures and their dynamics, such 
as regulatory networks, cells, organs and, 
ultimately, whole organisms1.

The most important tool for reaching 
an understanding of biology at the level of 
systems is the analysis of biological models 
(FIG. 1b). The basic building blocks for these 
models are existing experimental data, which 
are stored in literally thousands of data-
bases2–4. As a result, database integration is a 
fundamental prerequisite for any study in sys-
tems biology5,6. Because database integration 
has long been recognized as a key technology 
in the life sciences, research in this area also 
has a long tradition. However, although many 
approaches exist, database integration in the 
life sciences is still far from being trivial.

A common misconception is that the main 
problems of database integration are related 
to the technology that is used for these pur-
poses. Here we argue that although the mas-
tering of such technology can be challenging, 
the main problems are actually related to the 
databases themselves. There are many issues 
with life-science databases that prevent the 
effective use of integration technology. These 
problems not only have adverse effects on 
the quintessential task of ensuring data avail-
ability to the general research community, but 
present an even greater obstacle to systems 
biology. Here we provide a systematic analysis 
of the common problems that relate to life-
science databases — which are technical, 
social and political — and suggest solutions 
for how they could be overcome.

Technical problems
As a prerequisite for the discussion of tech-
nical problems with life-science databases 
it is important to understand the general 
principles of database integration. Life-
science databases have experienced an expo-
nential growth in numbers in recent years 
and contain information of many types7. To 
bridge the gap between these often uncon-
nected islands of biological knowledge, and 
between the different types of experimental 
data that they contain, various approaches 
to data integration have been pursued 
over the past decade. These range from 
basic hypertext linking to more advanced 
approaches that involve the use of federated 
databases and data warehouses (BOX 1). It is 
on the advanced approaches that we focus 
here, as they provide the best illustration of 
the diverse problems with life-science data-
bases that affect data integration, particularly 
with respect to the goals of systems biology.

Although there are many variants of the 
more advanced applications, the problems 
with life-science databases that affect inte-
gration using federated database technology 
or data warehouses are almost identical. 
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a  Classical role of databases b  New role of databasesHere we use the popular data warehouse 
approach as an example. The typical steps in 
database integration that are followed in this 
approach are illustrated in FIG. 2. First, the 
databases to be integrated must be identified, 
and data must be extracted from the identi-
fied sources. The extracted data are usually 
then preprocessed; for example, this can 
involve the conversion of data sources into 
more accessible formats such as XML. Source 
database structures are then mapped to a 
so-called integrated schema, which defines 
an integrated structure over all the data 
sources to be integrated (BOX 1). Finally, the 
data are imported into the data warehouse, 
where integrated access is made possible, 
for example, through a ‘browsable’ search 
interface.

Here we provide a detailed discussion of 
the problems with life-science databases that 
can occur at each stage of the data-integration 
process outlined above.

Web access problems. The first step in 
building models for systems biology is 
the identification of suitable data sources. 
Therefore, a description of at least the 
database contents and the way in which 
the data are produced and/or derived 
from other data sources is mandatory. 
Unfortunately, not every life-science data-
base provides such meta-information. For 
example, it is often assumed that online 
visitors to a database already know what 
type of data are stored there. Given the 
number of life-science databases, however, 
this is unrealistic. As a prerequisite for 
identifying and using data, each database 
should be described with appropriate 
meta-information, such as the type of data 
that are stored, the way these data have 
been produced, the guidelines for data 
curation, the structures used to store 
the data, and information about release 
management and database versions.

To examine available data in more detail, 
browsing the contents of a database with a 
searchable interface that is accessible using a 
web browser is usually the preferred method 
of access. However, if a search interface 
has been successfully located, which can 
sometimes be difficult, it is not guaranteed 
that the data can be appropriately searched. 
Common problems are that interfaces do not 
allow all fields in a database to be searched, 
search modes such as ‘and’, ‘or’ and ‘not’ are 
either not supported at all or only in a rudi-
mentary way, and query results cannot be 
downloaded for further processing. For large 
data collections, just one of these obstacles 
can render a search interface useless.

In systems biology, the examination of 
isolated data entries usually provides little 
insight, as it is the identification and discovery 
of relationships between entries that is most 
important. Web-based browsing interfaces 
would therefore ideally offer as many links 
as possible between individual entries in 
different databases. However, not all database 
providers support such direct links from 
external sources. Biologists are consequently 
forced to make use of search interfaces, which 
renders discovery by browsing across different 
databases an awkward approach at best.

Problems with data extraction and lack of 
software interfaces. If a biologist is interested 
not only in a few entries of a database but 
in a potentially larger number, which are to 
be further processed, web-based searching 
and browsing is clearly no longer a viable 
option. To support large-scale data process-
ing, the collection of relevant data has to be 
automated. Therefore, each database would 
ideally be equipped with programming 
interfaces that enable software developers 
to query and search databases from within 
their own programs.

Although modern database management 
systems support mature standard interfaces 
for this purpose, such as ODBC (Open 
Database Connectivity) and JDBC (Java 
Database Connectivity), public access to 
these interfaces is only rarely granted by 
database providers. The reasons for this 
access restriction range from security 

concerns to political issues, as discussed 
below. There are, however, a few databases 
that allow access to life-science data with 
‘canned queries’ through the use of web 
services8 as a more recent technical standard. 
With the help of web services, predefined 
queries can be used to automatically access 
a remote database. Prominent examples in 
this context are the DDBJ (DNA Data Bank 
of Japan)9, KEGG (Kyoto Encyclopedia 
of Genes and Genomes)10 and the EBI 
(European Bioinformatics Institute)11.

As web-based access is not suitable for 
bulk queries and programming interfaces are 
only rarely available, the complete download 
of life-science data collections provides a 
last resort for large-scale data processing. If 
a database is not available for download its 
contents have to be extracted from the web 
interface. For these purposes, specifically 
tailored data-extraction software is needed 
for each data source. However, there are 
technical drawbacks to this approach. First, 
every change in the web layout of a source 
database usually necessitates corresponding 
changes to the data-extraction software. In 
addition, data extraction from large data-
bases takes considerable time, in some cases 
in the range of several days.

Many of the technical problems discussed 
above have their roots in the fact that 
database management systems, such as 
PostgreSQL and mySQL, are infrequently 
used to store data; word processors and 
spreadsheet applications are used instead. 

Figure 1 | Classical and systems biology roles of life-science databases. The classical role of 
life-science databases is to provide easy access to and long-term storage of experimental results, with 
centralized data management. By contrast, more recent systems biological approaches exploit the 
information in databases to generate hypotheses for in silico discovery, which, after experimental 
verification, can be used to populate other databases.
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For example, the use of database manage-
ment systems greatly simplifies the provision 
of powerful web search interfaces and 
programming interfaces (such as JDBC and 
ODBC) for effective data access. Therefore, 
the use of such systems should be a standard 
for data providers.

Problems with data preprocessing. If a 
provider supports the download of a 
database, which is the case for only about 
50% of databases (Information Systems and 
Databases Group, Univ. Koblenz, unpub-
lished observations), flat files are still used as 
a de facto standard for data exchange in the 
life sciences. Because there is no standardized 
format for flat files, there are in effect many 
formats for the thousands of biological data 
collections. To process a flat file, appropriate 
parsing software is needed. For some of the 
more prominent databases such parsers are 
developed by open source projects such as 
BioJava, BioPerl12 and BioRuby (reviewed 
in REF. 13). However, despite these efforts, 
not every parser supports all of the fields in 

a specific flat-file format and there is often a 
long delay between the modification of a flat-
file format and the availability of an updated 
parser. Furthermore, there are many data-
bases for which no free parser is available. As 
a consequence, the development of parsers is 
an integral part of almost any project for the 
integration of life-science data. Because flat-
file formats are mostly non-trivial in their 
structure, not always well documented and 
change their structures over time, the devel-
opment and maintenance of parsers requires 
considerable effort.

The distribution of life-science data as 
self-describing XML files would solve most 
of these problems, as generic XML parsers 
are available for almost every platform 
and programming language. However, 
because XML is a relatively new technology, 
currently only about 5% of the publicly 
available life-science databases, such as 
some EMBL (European Molecular Biology 
Laboratory) databases14, KEGG10 and 
UniProt (the Universal Protein Resource)15, 
are provided in an XML format. As the 

importance of XML has been recognized 
for systems biology, several initiatives 
(such as BioPAX16, CellML17, MAGE18, 
PSI-MI (Proteomics Standards Initiative 
— molecular interaction)19 and SBML 
(systems biology markup language20) are 
working towards the standardization of 
XML-based data-exchange formats.

Inappropriate conceptualizations. Even if 
databases can be accessed through program-
ming interfaces or parsers, their integration 
is still far from being trivial, as the conceptual 
structure of each source database has to be 
mapped to a unifying target schema. However, 
source databases often use inappropriate 
conceptualizations — that is, the underlying 
data structures do not allow for the correct 
representation of all relevant information.

The same type of data is occasionally 
represented in different ways, sometimes 
even within a single database. In one promi-
nent case, data on enzymatic reactions were 
not stored appropriately, as the database 
lacked the ability to represent more than one 
educt and product per enzymatic reaction 
(FIG. 3). Consequently, a more appropriate 
representation was introduced, but because 
only newly inserted entries are represented 
in the more sophisticated way, data integra-
tion using this resource is a considerable 
challenge. Similar problems in pathway 
databases are reported in REF. 21.

Ontologies and controlled vocabularies 
are frequently used in the life sciences as 
semantic references, which define com-
monly agreed definitions of real-world 
entities (concepts) and the relationships 
between them. At the level of data entries 
such semantic references are ideally used 
for encoding fields in life-science databases 
— such as the NCBI (National Center for 
Biotechnology Information) Taxonomy IDs 
for species names and EC (enzyme class) 
numbers of the enzyme nomenclature for 
enzymatic functions — instead of manually 
created, and therefore potentially wrongly 
typed, free text descriptions. At the schema 
level, ontologies and controlled vocabularies 
can be used for semantic data integra-
tion22–25. For example, if two sources store 
data about proteins and one database struc-
ture is named ‘protein_entries’ and the other 
‘p_data’, a reference from both to the seman-
tically defined ontological concept ‘protein’ 
can be exploited to link entries between the 
two sources, even if there are syntactical 
differences at the schema level.

Although the use of ontologies and 
controlled vocabularies such as the Gene 
Ontology24, the EC numbers26 and the NCBI 

Box 1 | Integration methods for life-science databases

Database integration has long been recognized as one of the most important fields in 
bioinformatics, and several technologies and approaches are used for this purpose.

Hypertext links
The most basic way of ‘integrating’ life-science data from different sources is to provide simple 
hypertext links between related entries in different databases. By doing this, the user is supported 
in browsing and exploring the contents of different data sources. However, although web links are 
important, in comparison to the total number of existing databases, such links are usually 
provided to only relatively few other databases. Furthermore, web links do not provide much 
support beyond explorative browsing. For example, they do not allow bulk queries over several 
data sources.

Full-text indexing
A popular approach that overcomes this problem is based on full-text indexing, which, from a 
technological point of view, uses similar technology to current search engines. Systems such as the 
SRS (Sequence Retrieval System)58 locally mirror the contents of databases as flat files and create a 
full-text index over all locally mirrored data sources. This way a user can address multiple databases 
with a single query. The drawbacks are that there is no integration beyond the shared full-text index 
and also semantic queries that make use of ontologies are usually not supported.

Federated databases and data warehouses
More recent developments in data integration for the life sciences are based on federated databases 
and data warehouses. Federated database systems, such as DiscoveryLink59, make use of an 
application-specific integrated schema, which specifies an integrated conceptualization over the 
databases to be integrated; that is, it describes how data are structured in the integrated database. 
The remote data sources that are to be integrated are mapped to such an integrated schema by 
means of rules that define in which way entries of a data source are to be inserted into the schema. A 
user can then pose queries against the integrated schema, which exploits the mapping definitions in 
order to integrate the requested data on demand. Although the advantage of this approach is that 
the returned data entries are always the most recent ones, the disadvantage is that the response 
times for complex queries can be long, in some cases in the range of several days.

Data warehouse approaches, such as ONDEX60 and others, also make use of an integrated schema, 
but locally mirror the data sources to be integrated. Although this approach considerably improves 
the efficiency of query processing, the drawback is that the returned data might be out of date if 
there have been remote updates that have not yet been locally mirrored.

For a more detailed discussion on the current ‘state of the art’ in data integration for the life 
sciences see REFS 61,62.
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taxonomy27 is generally a valuable concept28, 
semantic references are not always built in a 
meaningful way. For example, functions and 
processes should not be assigned to genes 
in ontologies, but rather to gene products 
— owing to splicing events, not all the 
products of a given gene have the same func-
tion, nor are they expressed in the same cell 
types. More importantly, it is inappropriate 
to assign functions to individual genes, as a 
function is not inherent to a gene, but to the 
interactions between gene products and to 
the coordinated expression of genes in time 
and space (see for example REF. 29). Clearly, 
in many cases more complex data structures 
are needed to better reflect biological reality 
(for example, see FIG. 3c).

Another important problem is the rep-
resentation of facts in semantic references 
themselves. The information provided by 
some of these references is, unfortunately, not 
fine-grained enough to appropriately capture 
the complexity of biological knowledge. 
In one prominent example, different types 
of relationship — such as ‘is a’ and ‘is part of ’ 
— are not distinguished and only a single 
type of relationship is used. Consequently, 
the use of sophisticated data-integration 
methods, which rely on fine-grained 
information about the types of relationship 
between concepts in a semantic reference, 
is impossible. A more detailed account of 
conceptual problems in ontologies is given 
in REFS 30,31.

Inappropriate conceptualizations as 
described above often lead to considerable 
problems, as the early loss of information 
in source databases and ontologies can only 
rarely be compensated for at a later stage. 
Pragmatic guidelines to avoid some of the 
above problems are given in REFS 32–36.

Problems with the contents of databases. 
Although it is a widespread belief that we 
live in the ‘post-genomic era’, most of the 
data produced still come from new sequenc-
ing projects. For systems biology, many 
types of information are often missing, 
including functional annotations of genes 
and proteins, genotype–phenotype rela-
tionships, kinetic values for enzymes and 
detailed pathway information. Even when 
information that is based on sequence simi-
larity is taken into consideration, only about 
50% of all reaction steps in metabolic path-
ways can be linked to the genes and proteins 
that catalyse them37. In consequence, the 
parameterization of systems biological 
models is partly based on guesswork, which 
undermines reliability, credibility and 
predictive potential. More projects should 

therefore be financed to provide the miss-
ing data. Furthermore, funding agencies 
should demand the submission of results 
from experiments that they have financed to 
public databases as a standard, which is not 
yet the case for projects in every domain.

Another problem is that biological data 
are usually ‘entry-centric’ for historical rea-
sons — that is, information about biological 
links between data entries is often unavail-
able38. Data stored in this way need to be 
more complete for systems biological analy-
ses, where relationships between biological 
entities are important. Furthermore, it is 
often impossible to clearly identify entries in 
databases. Many databases do not provide 
accession numbers, and even if accession 
numbers are available, they might not be 
stable across different versions of the same 
database. As a consequence it is often impos-
sible to accurately reproduce search results.

Even if data are available, there is no guar-
antee that they are valid. A common source 
of problems is error propagation in sequence 
annotations through the use of automated 
annotation mechanisms39. These problems 
can be avoided by using evidence codes to keep 
track of how annotations were created, and by 
making sure that annotations are automati-
cally inferred only from manual annotations 
and not from other automatically inferred 
ones40,41. Another problem is that EST data 
are usually stored without related trace files 
from the sequencing experiment and therefore 
valuable information is lost. Primary nucle-
otide sequence databases only apply basic 
quality checks, partly because more extensive 
ones would be unmanageable, and partly to 
enable users of the submitted data to decide 
which data are sufficiently reliable. However, 
users of these data have no means of assessing 
their correctness and quality, despite the fact 

Figure 2 | The database integration process: a database warehouse as an example. The first 
step for any approach to database integration is the identification of suitable data sources for a given 
application. For example, in the case that a database is needed to integrate all known data about 
mammalian transcription factors, some of the data sources to be integrated would be from the 
TransFac63 and TRRD64 databases. The next step is the extraction of the data that are to be integrated; 
depending on the accessibility of each data source, the specific actions to be carried out differ. Data 
can be extracted from web pages, which takes considerable effort, or can be downloaded as tradi-
tional or XML-formatted flat files. Direct access to a database by means of standardized programming 
interfaces is rarely possible. During the subsequent preprocessing stage, data are often converted 
into more accessible formats — for example, from a traditional flat-file format into an XML represen-
tation. Individual data sources are then mapped to a so-called integrated schema, which defines a 
structure in which the data to be integrated are stored. Ideally, such mapping makes use of suitable 
ontologies, which are commonly agreed definitions of real-world concepts that can be used as refer-
ences for semantic data integration. After mapping to the integrated schema, the data sources can 
be imported into the warehouse. Depending on the needs of the particular application, this stage 
also often includes data cleansing, merging of entries from different sources and deletion of dupli-
cates. When the data sources are finally integrated, access to the resulting data warehouse can be 
provided through different types of interface.
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that even basic uses, such as the prediction of 
ORFs, would benefit from the availability of 
sequence trace files. The recent development 
of the Trace Archive at the Sanger Institute 
(see link to the Ensembl Trace Server) is a 
significant step in the right direction.

Several recent surveys also reveal 
problems with the statistical methods that 
are used in publications42, incorrect data 
that are due to flaws in platform technolo-
gies43 and a lack of independent replication 
and validation of experimental results44,45. 
Furthermore, human error is a frequent 
source of mistakes in life-science databases. 
Although manual curation is important 
for quality assurance in most areas, there 
is also a high potential for the introduction 
of errors. Some examples include: specific 
release versions of databases from which 
whole sections with hundreds of entries 
are missing; the absence of entries to which 
references within the same database exist; 
multiple variants of spellings for the same 
species in a single database; duplicate lines 
in flat files; the occurrence of numbers in 
sequence information; and typing errors in 
every imaginable field of databases. Further 
problems with biological data have been 
reported, for example in REFS 21,46–48.

To minimize the risk of human error at 
the data level, appropriate curation pro-
tocols and supporting software, as well as 
suitable ontologies and controlled vocabu-
laries, have to be developed and used 
wherever possible. As errors in databases 
are common, data providers should also 

implement appropriate means for 
reporting, tracking and correcting errors.

Social issues
Communication problems. The problems dis-
cussed above make it clear that there should 
be a close two-way communication between 
database providers and database users in order 
to collectively address these issues. Although 
this would seem to be an obvious course of 
action, there are, in fact, serious problems. 
Although many database providers are open 
and freely offer information about their 
underlying conceptual schema, data-curation 
processes and changes of schema and data-
base contents, this is not yet standard practice. 
Furthermore, although many database pro-
viders are responsive with respect to reported 
errors and suggestions for improvements, this 
unfortunately does not hold in every case. In 
fact, hardly any provider of a life-science data 
collection offers clearly visible means for error 
reporting and tracking.

Educational problems. Many problems with 
life-science databases have their origins in 
the fact that biologists often lack even a basic 
understanding of data management, and 
bioinformaticians are often not aware of bio-
logical needs. Because the communication 
difficulties that arise from these problems 
clearly have educational roots, the interfaces 
in the curricula for both bioinformaticians 
and biologists should be better defined so 
that future students are better equipped for 
the challenges ahead.

Political obstacles
Licensing and access problems. Some prob-
lems with life-science databases clearly do 
not have technical or social roots, but have 
‘political’ causes. Perhaps the most impor-
tant problem in this context is the question 
of free or commercially limited access to 
life-science data, which is a highly contro-
versial area (see for example REFS 49,50). It 
might seem obvious that free access for all to 
life-science data would be beneficial, but the 
reality is different. Because data curation is 
labour intensive and requires highly quali-
fied personnel, financing questions naturally 
arise51,52. As most funding agencies do not 
provide long-term support for data curation, 
alternative funding models have to be used.

The consequences of this depend on 
the funding models of the databases. Some 
important databases and ontologies are not 
publicly available at all — that is, even aca-
demic institutions have to acquire licences for 
their use. Other databases are freely acces-
sible through a web interface, but cannot 
be downloaded. Although some providers 
offer the download of their data with a com-
mercial licence, which academic institutions 
can purchase, others do not. Automated 
parsing of data from web interfaces does 
not necessarily help this situation, as there 
are reported cases where database providers 
block requests from whole domains where it 
is suspected that someone attempts to ‘steal’ 
their data using such an approach.

Even if data are freely available, it still 
does not mean that all non-technical 

Figure 3 | Alternative representations of metabolic pathways: 
alcohol dehydrogenase as an example. In the simplest representation (a), 
two metabolites are linked by an arc that represents the enzyme class 
EC 1.1.1.1 of the enzyme nomenclature26. This representation disre-
gards the stoichiometry of the reaction and is also incomplete, as it 
does not allow the actual genes and enzymes that catalyse a specific 
biochemical reaction to be represented. Although the representation 
shown in panel b overcomes this issue it introduces new problems: in 
contrast to what is suggested by the representation, not all alcohol 

dehydrogenases (ADHs) catalyse the specific reaction that is shown. 
Furthermore, this representation does not capture situations where 
only certain splicing variants of the enzyme have a given catalytic func-
tion. The representation in panel c removes this ambiguity by directly 
linking enzymes to the reactions that they catalyse. By associating the 
enzymes with genes and enzyme classes, no information is lost in com-
parison to the previous two representations. Most pathway databases 
use representations a and/or b, whereas only c overcomes most of the 
conceptual problems.
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problems that are related to data integration 
are solved. Obeying the conditions of ‘free’ 
licences imposes considerable obstacles. For 
example, many databases demand that the 
origin of the data is transparent to the user 
and often provide detailed instructions on 
how this should be achieved. Developing 
a data-integration system that fulfils all 
the requirements of the different database 
providers is not only technically challenging, 
but inevitably results in software that is 
not user friendly. Therefore, even popular 
database-integration systems often ignore 
these requirements in practice.

Another licensing problem is that the 
redistribution of data, and therefore of 
the biological models that are developed 
through data integration, is often not 
allowed. One of the major pathway data-
bases even demands co-authorship in any 
publication that makes use of the database 
in any way. If the developers of the BLAST 
algorithm had insisted on such a licensing 
condition, they probably would have a pub-
lication list consisting of millions of papers!

It is clear from the above that a universal 
legal framework as a prerequisite for 
database interoperability is needed. A sug-

gestion for how such a framework might 
operate is detailed in REF. 53.

Funding issues. As life-science databases 
are fundamental to a whole discipline, 
their importance cannot be overestimated. 
However, because long-term curation 
projects are only rarely supported, only a few 
providers of publicly available databases do 
not have funding problems. Support for the 
long-term curation of life-science databases 
is therefore urgently needed.

Requirements for publications. To support 
a broad implementation of standards for 
life-science databases, publishers and peer 
reviewers of database-related articles should 
ensure the fulfilment of the points that we 
have suggested for database providers (BOX 2). 
The fulfilment of preconditions before the 
publication of scientific articles is not a 
new idea. For example, articles about newly 
sequenced genes and micro array experi-
ments are only published if the findings have 
already been submitted to a public database 
in order to guarantee that certain standards 
with respect to quality and availability are 
met, such as the minimum information 
about a microarray experiment (MIAME)54 
(see also REF. 55 for further discussion).

Conclusions
The problems that we have outlined clearly 
affect the traditional roles of life-science 
databases. For example, a badly designed 
web interface can have an effect on the avail-
ability of data that can have as much impact 
as a lack of funding to further maintain a 
database. The additive effects of the prob-
lems that we have discussed are even greater 
when different databases are integrated, as is 
required for progress in systems biology.

Some providers have already identified 
the difficulties with their databases and have 
started the transition from ad hoc data col-
lection to the adoption of higher standards. 
The Protein Data Bank56 is a good example; 
the recent overhaul of this database solves 

Box 2 | Suggested solutions to problems with life-science databases

Actions for funding agencies
• Support more projects to deliver data for systems biology approaches.

• Support projects for the long-term curation of life-science databases.

• Demand the submission of experimental results to public databases.

Actions for educational organizations
• Educate biologists and bioinformaticians to use better defined interfaces between the 

respective curricula.

Actions for database users
• Report errors in databases.

• Submit new findings to public databases.

Actions for database providers
• Make use of database management systems.

• Use appropriate conceptualizations.

• Make use of appropriate means for data curation.

• Provide proper documentation about: the kind of data that are stored; the way data are produced; 
the guidelines for data curation; the data structures that are used to store the data; and 
information about release management and versioning.

• Offer proper access to data through: a powerful web interface; programming interfaces; and/or 
download facilities.

• Use XML for the exchange of biological flat files.

• Store data from other groups who work in the same area.

• Correct reported errors.

• Use stable accession numbers for identifying individual database entries across database versions.

• Remove inappropriate clauses from licences.

Actions for publishers of scientific articles
• Publish articles about life-science databases only if their providers fulfil the requirements 

listed above.

Glossary

Controlled vocabulary

A standardized set of terms that can be used 
in a given application domain. A prominent 
example is the enzyme class nomenclature, 
which describes classes of biochemical 
reaction.

Database management system

A system that provides a means of 
storing, modifying and extracting 
data from a database.

Evidence code
A controlled vocabulary that is used to track the types 
of evidence that support a gene annotation.

Flat file
Human readable, non-standardized files that can be 
used to exchange the contents of life-science databases.

Ontology
A commonly agreed definition of real-world concepts, such 
as ‘protein’ and ‘enzyme’, and their particular relationships, 
for example, an enzyme ‘is a’ protein.

Parser
Software that reads a given input, such 
as a flat file, for further processing.

Web service
A standardized way to allow for interoperable 
machine-to-machine interaction over a network.

XML
The extensible markup language (XML) is a standard 
for the creation of application-specific, self-descriptive 
markup languages, which, for example, can be used 
for the definition of data-exchange formats.
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many of the issues that have been criticized 
in the past (for example, see REF. 57). 
However, many providers are unaware of 
all the difficulties with their databases. We 
hope that the actions that we have suggested 
(which are summarized in BOX 2) provide 
a starting point for further discussions and 
evolve into standards, which will in the long 
run contribute to an increased quality and 
usability of life-science databases, for both 
traditional and systems biological uses.
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