
Using R for Linear Regression 
 
In the following handout words and symbols in bold are R functions and words and 
symbols in italics are entries supplied by the user; underlined words and symbols are 
optional entries (all current as of version R-2.4.1).  Sample texts from an R session are 
highlighted with gray shading.  
 
Suppose we prepare a calibration curve using four external standards and a reference, 
obtaining the data shown here: 
 
   > conc 
   [1] 0  10  20  30  40  50 
 
   > signal 
   [1]  4  22  44  60  82 
 
The expected model for the data is 
 

signal = βo + β1×conc 
 
where βo is the theoretical y-intercept and β1 is the theoretical slope.  The goal of a linear 
regression is to find the best estimates for βo and β1 by minimizing the residual error 
between the experimental and predicted signal.  The final model is 
 

signal =  bo + b1×conc + e 
 

where bo and b1 are the estimates for βo and β1 and e is the residual error. 
 
Defining Models in R 
 
To complete a linear regression using R it is first necessary to understand the syntax for 
defining models.  Let’s assume that the dependent variable being modeled is Y and that 
A, B and C are independent variables that might affect Y.  The general format for a 
linear1 model is 
 

response ~ op1  term1 op2  term 2  op3  term3…
 

                                                 
1  When discussing models, the term ‘linear’ does not mean a straight-line.  Instead, a linear model contains 

additive terms, each containing a single multiplicative parameter; thus, the equations 
 

y = β0 + β1x    y = β0 + β1x1 + β2x2   y = β0 + β11x2   y = β0 + β1x1 + β2log(x2) 
 

 are linear models.  The equation y = αxβ, however, is not a linear model. 
 



where term is an object or a sequence of objects and op is an operator, such as a + or a −, 
that indicates how the term that follows is to be included in the model.  The table below 
provides some useful examples.  Note that the mathematical symbols used to define 
models do not have their normal meanings! 
 

Syntax Model Comments 
Y ~ A Y = βo + β1A Straight-line with an implicit y-

intercept 
Y ~ -1 + A Y = β1A Straight-line with no y-intercept; 

that is, a fit forced through (0,0) 
Y ~ A + I(A^2) Y = βo+ β1A + β2A2 Polynomial model; note that the 

identity function I( ) allows terms 
in the model to include normal 
mathematical symbols.  

Y ~ A + B Y = βo+ β1A + β2B A first-order model in A and B 
without interaction terms. 

Y ~ A:B Y = βo + β1AB A model containing only first-order 
interactions between A and B. 

Y ~ A*B Y = βo+ β1A + β2B + β3AB A full first-order model with a term; 
an equivalent code is Y ~ A + B + 
A:B. 

Y ~ (A + B + C)^2 Y = βo+ β1A + β2B + β3C + 
β4AB + β5AC + β6AC 

A model including all first-order 
effects and interactions up to the nth 
order, where n is given by ( )^n.  
An equivalent code in this case is 
Y ~ A*B*C – A:B:C. 

 
Completing a Regression Analysis 
 
The basic syntax for a regression analysis in R is 
 

lm(Y ~ model) 
 
where Y is the object containing the dependent variable to be predicted and model is the 
formula for the chosen mathematical model.  The command lm( ) provides the model’s 
coefficients but no further statistical information; thus 
 
   > lm(signal ~ conc) 
 
   Call: 
   lm(formula = signal ~ conc) 
 
   Coefficients: 
   (Intercept)         conc   
      3.60            1.94 
 



To obtain more useful information, and to obtain access to many more useful functions 
for manipulating the data, it is best to create an object that contains the command for the 
model 
 
   > lm.r = lm(signal ~ conc) 
 
This object can then be used as an argument for other commands.  To obtain a more 
complete statistical summary of the model, for example, we use the summary( ) 
command. 
 
  > summary(lm.r) 
 
   Call: 
   lm(formula = signal ~ conc) 
 
   Residuals: 
      1        2     3      4      5  
     0.4  -1.0   1.6  -1.8    0.8  
 
   Coefficients: 
                  Estimate Std.  Error    t value    Pr(>|t|)     
     (Intercept)  3.60000    1.23288    2.92     0.0615 .   
     conc          1.94000     0.05033   38.54  3.84e-05 *** 
   --- 
   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
   Residual standard error: 1.592 on 3 degrees of freedom 
   Multiple R-Squared: 0.998,      Adjusted R-squared: 0.9973  
   F-statistic:  1486 on 1 and 3 DF,  p-value: 3.842e-05 
 
The section of output labeled ‘Residuals’ gives the difference between the experimental 
and predicted signals.  Estimates for the model’s coefficients are provided along with the 
their standard deviations (‘Std Error’), and a t-value and probability for a null hypothesis 
that the coefficients have values of zero.  In this case, for example, we see that there is no 
evidence that the intercept  (βo) is different from zero and strong evidence that the slope 
(β1) is significantly different than zero.  At the bottom of the table we find the standard 
deviation about the regression (sr or residual standard error), the correlation coefficient 
and an F-test result on the null hypothesis that the MSreg/MSres is 1. 
 
Other useful commands are shown below: 
 
   > coef(lm.r)                              # gives the model’s coefficients 
 
   (Intercept)           conc  
     3.69           1.94 
 



   > resid(lm.r)                                # gives the residual errors in Y 
 
           1       2    3      4     5  
      0.4  -1.0  1.6  -1.8   0.8 
 
> fitted(lm.r)                                        # gives the predicted values for Y 
 
          1     2       3     4      5  
      3.6  23.0  42.4  61.8  81.2 
 
Evaluating the Results of a Linear Regression 
 
Before accepting the result of a linear regression it is important to evaluate it suitability at 
explaining the data.  One of the many ways to do this is to visually examine the residuals.  
If the model is appropriate, then the residual errors should be random and normally 
distributed.  In addition, removing one case should not significantly impact the model’s 
suitability.  R provides four graphical approaches for evaluating a model using the plot( ) 
command. 
 
   > layout(matrix(1:4,2,2)) 
   > plot(lm.r) 
 

 
 



The plot in the upper left shows the residual errors plotted versus their fitted values.  The 
residuals should be randomly distributed around the horizontal line representing a 
residual error of zero; that is, there should not be a distinct trend in the distribution of 
points.  The plot in the lower left is a standard Q-Q plot, which should suggest that the 
residual errors are normally distributed.  The scale-location plot in the upper right shows 
the square root of the standardized residuals (sort of a square root of relative error) as a 
function of the fitted values.  Again, there should be no obvious trend in this plot.  
Finally, the plot in the lower right shows each points leverage, which is a measure of its 
importance in determining the regression result.  Superimposed on the plot are contour 
lines for the Cook’s distance, which is another measure of the importance of each 
observation to the regression.  Smaller distances means that removing the observation has 
little affect on the regression results.  Distances larger than 1 are suspicious and suggest 
the presence of a possible outlier or a poor model. 
 
Sometimes a model has known values for one or more of its parameters.  For example, 
suppose we know that the true model relating the signal and concentration is 
 

signal = 3.00×conc 
 
Our regression model is 
 

signal = 3.60 + 1.94×conc 
 
We can use a standard t-test to evaluate the slope and intercept.  The confidence interval 
for each is 
 

βo = bo ± tsbo      β1 = b1 ± tsb1
 
where sbo and sb1 are the standard errors for the intercept and slope, respectively.  To 
determine if there is a significant difference between the expected (β) and calculated (b) 
values we calculate t and compare it to its standard value for the correct number of 
degrees of freedom, which in this case is 3 (see earlier summary). 
 
   > tb1 = abs((3.00 – 1.94)/0.05033); tb1               # calculate absolute value of t 
    
    [1] 21.06100 
 
   > pt(tb1, 3, lower.tail = FALSE)                     # calculate probability for t 
 
   [1] 0.0001170821                                # double this value for a two- 
                                                # tailed evaluation; difference  
                                               # is significant at p = 0.05 
 
   > tb0=abs((0-3.60)/1.23288);tb0                     # calculate absolute value of t 
 
   [1] 2.919992 



 
   > pt(tb0, 3, lower.tail = FALSE)                    # calculate probability for t 
 
   [1] 0.03074826                                  # double this value for a two- 
                                               # tailed evaluation; difference  
                                               # is not significant at p = 0.05 
 
Here we calculate the absolute value of t using the calculated values and standard errors 
from our earlier summary of results.  The command  
 

pt(value, degrees of freedom, lower.tail = FALSE) 
 
returns the one-tailed probability that there is no difference between the expected and 
calculated values.  In this example, we see that there is evidence that the calculated slope 
of 1.94 is significantly different than the expected value of 3.00.  The expected intercept 
of 0, however, is not significantly different than the calculated value of 3.60.  Note that 
the larger standard deviation for the intercept makes it more difficult to show that there is 
a significant difference between the experimental and theoretical values. 
 
Using the Results of a Regression to Make Predictions 
 
The purpose of a regression analysis, of course, is to develop a model that can be used to 
predict the results of future experiments.  In our example, for instance, the calibration 
equation 
 

signal = 3.60 + 1.94×conc 
 
Because there is uncertainty in both the calculated slope and intercept, there will be 
uncertainty in the calculated signals. 
 
Suppose we wish to predict the signal for concentrations of 0.05, 0.15, 0.25, 0.35 and 
0.45 along with the confidence interval for each  We can use the predict( ) command to 
do this; the syntax is 
 

predict(model, data.frame(pred = new pred), level = 0.95, interval = “confidence”) 
 
where pred is the object containing the original independent variables and new pred is the 
object containing the new values for which predictions are desired, and level is the 
desired confidence level. 
 
   > newconc=c(5,15,25,35,45);newconc 
 
    [1] 5  15  25  35  45 
 
   > predict(lm.result,data.frame(conc = newconc), level = 0.9, interval = "confidence") 
 



         fit         lwr          upr 
   1 13.3   10.85809   15.74191 
   2 32.7   30.92325   34.47675 
   3 52.1   50.32325   53.87675 
   4 71.5   69.05809   73.94191 
   5 90.9   87.49778   94.30222 
 
where ‘lwr’ is the lower limit of the confidence interval and ‘upr’ is the upper limit of the 
confidence interval.  R does not contain a feature for finding the confidence intervals for 
predicted values of the independent variable for specified values of dependent variables, 
a common desire in chemistry.  Too bad. 
 
Adding Regression Lines to Plots 
 
For straight-lines this is easy to accomplish. 
 
   > plot(conc, signal) 
   > abline(lm.r) 
 
gives the following plot. 
 
 

 
 
 
For data that does not follow a straight-line we must be more creative. 



 
   > height = c(100, 200, 300, 450, 600, 800, 1000) 
   > distance = c(253, 337, 395, 451, 495, 534, 574)              # data from Galileo 
 
   > lm.r = lm(distance ~ height + I(height^2)); lm.r              # a quadratic model 
 
   Call: 
   lm(formula = distance ~ height + I(height^2)) 
 
   Coefficients: 
   (Intercept)          height    I(height^2)   
    200.211950     0.706182    -0.000341   
 
   > newh = seq(100, 1000, 10); newh                         # create heights for  
                                                       # predictions 
 
    [1]  100  110  120  130  140  150  160  170  180  190  200 
   [12]  210  220  230  240  250  260  270  280  290  300  310 
   [23]  320  330  340  350  360  370  380  390  400  410  420 
   [34]  430  440  450  460  470  480  490  500  510  520  530 
   [45]  540  550  560  570  580  590  600  610  620  630  640 
   [56]  650  660  670  680  690  700  710  720  730  740  750 
   [67]  760  770  780  790  800  810  820  830  840  850  860 
   [78]  870  880  890  900  910  920  930  940  950  960  970 
   [89]  980  990 1000 
 
   > fit = 200.211950 + 0.706182*newh - 0.000341*newh^2;fit    # calculate distance     
                                                       # for new heights  
                                                       # using model 
 
    [1] 267.4201 273.7659 280.0434 286.2527 292.3938 298.4667 304.4715 310.4080 
    [9] 316.2763 322.0764 327.8084 333.4721 339.0676 344.5949 350.0540 355.4450 
   [17] 360.7677 366.0222 371.2085 376.3266 381.3766 386.3583 391.2718 396.1171 
   [25] 400.8942 405.6032 410.2439 414.8164 419.3207 423.7568 428.1248 432.4245 
   [33] 436.6560 440.8193 444.9144 448.9414 452.9001 456.7906 460.6129 464.3670 
   [41] 468.0530 471.6707 475.2202 478.7015 482.1146 485.4595 488.7363 491.9448 
   [49] 495.0851 498.1572 501.1612 504.0969 506.9644 509.7637 512.4948 515.1578 
   [57] 517.7525 520.2790 522.7373 525.1274 527.4493 529.7031 531.8886 534.0059 
   [65] 536.0550 538.0359 539.9487 541.7932 543.5695 545.2776 546.9176 548.4893 
   [73] 549.9928 551.4281 552.7952 554.0941 555.3249 556.4874 557.5817 558.6078 
   [81] 559.5657 560.4555 561.2770 562.0303 562.7154 563.3323 563.8811 564.3616 
   [89] 564.7739 565.1180 565.3940 
 
   > plot(height, distance)                                   # original data 
   > lines(newh, fit, lty=1)                                 # display best fit  
 



The resulting plot is shown here. 
 
 

 
 


