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At the time of writing this article, the genomes of more
than 800 organisms have been sequenced, and well over
3.5 million genetic sequences have been deposited in
international repositories. However, the biological func-
tions of most of these genes remain unknown, or have
been predicted only through homology to genes with
functions that are better known. One way to determine
the functions of these genes is through repeated mea-
surements of their RNA transcripts; for example, know-
ing that a particular gene is expressed only in cardiac
muscle and only under particular conditions implicitly
gives us functional knowledge about that gene.
Functional genomics is the study of gene function
through parallel expression measurements of a genome.
The most common tools used to carry out these mea-
surements include complementary DNA microarrays1,
oligonucleotide microarrays2 or serial analysis of gene
expression (SAGE)3. This article will focus on micro-
arrays, which are artificially constructed grids of DNA,
such that each element of the grid probes for a specific
RNA sequence — that is, each holds a DNA sequence
that is a reverse complement to the target RNA sequence.

Although there are many protocols and types of
system available, the basic technique involves extraction
of RNA from biological samples in either normal or
interventional states. The RNA (or, in some protocols,
isolated messenger RNA) is then copied, while incorpo-
rating either fluorescent nucleotides or a tag that is later
stained with fluorescence. The labelled RNA is then

hybridized to a microarray for a period of time, after
which the excess is washed off and the microarray is
scanned under laser light. This process is schematized in
FIG. 1. With oligonucleotide microarrays, for which all
probes have been designed to be theoretically similar
with regard to hybridization temperature and binding
affinity, each microarray measures a single sample and
provides an absolute measurement level for each RNA
molecule, although this absolute measurement might
not correlate exactly with concentration in terms of
micrograms per unit volume. With cDNA microarrays,
for which each probe has its own hybridization charac-
teristic, each microarray measures two samples, and
provides a relative measurement level for each RNA
molecule. Regardless of the technique, the end result is
4,000–50,000 measurements of gene expression per bio-
logical sample.As a complete experiment might involve
anywhere up to hundreds of microarrays, the resultant
RNA-expression data sets can vary greatly in size.

As the cost of microarrays continues to drop, it is
clear that microarrays are becoming more integral to
the drug discovery process. In addition to the obvious
use of functional genomics in basic research and target
discovery, such as finding genes expressed in signifi-
cantly different patterns across samples, there are many
other specific uses in this domain. These include: bio-
marker determination, to find genes that correlate with
and presage disease progression, but are easier to mea-
sure and follow in clinical trials; pharmacology, to
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SPLINES

Instead of fitting a complex
polynomial curve to data, splines
allow the fitting of data by
putting together smaller, less
complex curves.

NORTHERN BLOT

Different RNA molecules are
separated by mass on a gel, then
radioactively labelled
complementary DNA or RNA
molecules are used to quantify
specific RNA amounts.

REVERSE TRANSCRIPTION

The synthesis of a strand of
DNA from RNA, which is used
to make a complementary DNA
copy of sample RNA.
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single microarray technology, normalization might sim-
ply be a matter of adjusting the overall brightness of each
scanned microarray image, assuming that the quantity of
RNA is equal4. Other normalization methods include:
using expression levels of ‘housekeeping’ genes5; using
assumptions that most genes do not change across exper-
iments6; using SPLINES7; or other nonlinear techniques8,9.

Typically, however, functional-genomics experiments
are more complicated. Recently, increasing efforts have
been invested in characterizing the ‘noise’ in micro-
array technology. Studies addressing the reproducibility
of microarray data analysed replicated data10, com-
pared microarray measurements with NORTHERN

BLOTS11,12 and SAGE13, and evaluated strategies for
REVERSE TRANSCRIPTION14 and in vitro transcription amplifi-
cation15.As a result, it has become increasingly clear that
there are several  substantial sources of noise in micro-
array data. Intra- and inter-microarray variations can
markedly skew the interpretation of such expression data.

First, improving the reliability of expression mea-
surements starts with proper experimental design. For
example, microarrays can measure across the genome,
including genes with expression that is controlled by
hormones, such as growth hormone or cortisol. So, if
organ samples are acquired at various times during the
day, genes that appear to be differentially expressed
might only be reflecting normal circadian physiology.
Pooling samples before hybridization might control for
this biological ‘noise.’

In addition, scanned hybridization images need to be
inspected for artefacts, such as scratches and bubbles16,17.
Measuring replicate microarrays for each biological
sample allows the modelling of this technical noise.

determine differences in gene expression in tissues
exposed to various doses of compounds; toxico-
genomics, to find gene-expression patterns in a model
tissue or organism exposed to a compound and their
use as early predictors of adverse events in humans;
target selectivity, to define a compound by the gene-
expression pattern it provokes in a target tissue and then
compare it with other compounds using these patterns;
prognostic tests, to find a set of genes that accurately
distinguishes one disease from another; and disease-
subclass determination, to find multiple subcategories
of tumours in a single clinical diagnosis.

Many free (BOX 1) and commercial software packages
are now available to analyse microarray data sets,
although it is still difficult to find a single off-the-shelf
software package that answers all functional-genomics
questions. As the field is still young, when developing a
bioinformatics analysis pipeline, it is more important
to have a good understanding of both the biology
involved and the analytical techniques rather than
having the right software. This article reviews the dif-
ferent ways to analyse microarray data, and will con-
centrate on choosing the appropriate method for the
given hypothesis.

Normalization and noise
Before multiple microarray measurements can be inte-
grated into a single analysis, the reported measurements
need to be normalized, or modified (possibly corrected)
to make them comparable.When microarrays are used to
collect gene-expression data in an experiment in which
the measurements are made at the same time, with
homogeneous populations of similar cells and using a

Tissue or tissue
under influence

Tagged or
incorporating
fluor

RNA cDNA or cRNA copy

cDNA spotted on glass slide
or oligonucleotides built on slide

Fluorescent intensities
scanned into computer

Figure 1 | Schematized experimental process using a microarray. Although the specific protocols differ, the microarray
approach first involves isolating RNA or messenger RNA from appropriate biological samples, making the RNA (or a copy of it)
fluorescent, hybridizing it to the microarray, washing off the excess and scanning the microarray under laser light. cDNA,
complementary DNA; cRNA, complementary RNA.
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arrays20, show poor correlation between measure-
ments21. This can be explained by the differences in
low-level hybridization and analysis between the two
techniques. To be precise, Affymetrix microarrays con-
tain between 11 and 20 pairs of oligonucleotide probes
for a target RNA, for which one of the pair is the
reverse complement to an ideally unique 25-mer in the
RNA and the other contains a mutated middle base
pair and serves as a measure of stray signal. Using the
differences between these intensities, the Affymetrix
quantitative software judges the reliability of each
probe pair and calculates a qualitative and quantitative
measurement (see Affymetrix web site). Other quanti-
tative methods are available in addition to the
Affymetrix software7.

Compared with this, cDNA microarrays contain a
single probe for each target RNA, and the two biological
samples are different colours, so that after hybridization,
the two colours are scanned separately and relative
expression is determined by comparing intensities.
There is striking non-correlation between Affymetrix
quantitative measurements and ratios of intensities
from a cDNA microarray, because these two technolo-
gies clearly measure expression differently.

Supervised or unsupervised
Current methodologies to analyse RNA-expression
data sets can be divided into two categories: super-
vised approaches, or analysis to determine genes that
fit a predetermined pattern; and unsupervised app-
roaches, or analysis to characterize the components of
a data set without the a priori input or knowledge of a
training signal.

Supervised methods. Supervised methods are gener-
ally used for two purposes: finding genes with expres-
sion levels that are significantly different between groups

Most reported expression data have been obtained
on relatively homogeneous cell populations. However,
when RNA is extracted from whole organs or from
tumour biopsies, the sources of variation increase.
There is substantial heterogeneity of expression in cell
subpopulations in most organs and in many tumours.
Failure to account for such variation could lead to over-
interpretation or spurious functional gene association.
Microdissection of cell subpopulations (for example,
with laser capture18) is possible only in a minority of
the systems of interest. If microarray-based gene-
expression measurements are to be reliable and eco-
nomical, both at the level of basic biology and clinical
assays, then all of these further sources of noise/variation
must be incorporated directly into the analytical tools
that interpret these data.

A further issue that needs to be addressed is the
difference between the two most commonly used
microarray technologies: spotted cDNA microarrays,
which report differences in gene expression between
two samples, and oligonucleotide microarrays, which
report absolute expression levels. Normalization tech-
niques for one microarray technology might not apply
to another, owing to differences in assumptions and the
distributions of the output measurements. For example,
if we assume that in any given experiment, most genes in
a cell do not change in expression and an equal number
of genes are up- and downregulated (not always a valid
assumption), then differential-expression measurements
from spotted arrays might be found to be normally dis-
tributed, whereas measurements from oligonucleotide
microarrays will not have the same distribution.

Expression measurements made across microarray
technologies are not directly comparable. For example,
the published microarray measurements from the
National Cancer Institute (NCI) 60-cancer-cell-line
panel, from spotted arrays19 and from oligonucleotide

Box 1 | Some freely available software for microarray analysis

Although many bioinformatics companies sell software that assists in microarray analysis, there are several freely
available software packages that can be used to perform the six analytical techniques described in this article. Only a few
are listed here.

Cluster and TreeView. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://rana.lbl.gov/EisenSoftware.htm
• Although it is the standard for hierarchical clustering and viewing dendrograms, this software also creates self-

organizing maps and performs principal-components analysis.

GeneCluster 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www-genome.wi.mit.edu/cancer/software/genecluster2/gc2.html
• Initially used for constructing self-organizing maps, the latest version now also finds nearest neighbours and performs

other supervised methods. Written in Java, this program can essentially run under any computer operating system

MultiExpression Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.tigr.org/software/
• Software that creates self-organizing maps and performs hierarchical clustering, as well as finding principal

components. This package also includes a component for support vector machines, but at present offers little for
documentation. The software is written in Java, and a license for the source code of the software is also available.

MAExplorer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://maexplorer.sourceforge.net/
•  This tool performs many aspects of microarray processing, including the raw image analysis. It contains a few 

analytical techniques, including hierarchical clustering. The software is written in Java, and the source code is freely
available for modification.

RELNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.chip.org/relnet
•Software to create relevance networks. The software is written in Java, and a license for the source code is also available.
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or determining graphs representing gene–gene or
gene–phenotype interactions using Boolean net-
works41–43, BAYESIAN NETWORKS44 and relevance net-
works20,45,46. This article will focus on the four most com-
mon unsupervised techniques of principal-components
analysis, hierarchical clustering, self-organizing maps and
relevance networks.

Like, but how different?
It is crucial to make a distinction between dissimilarity
measures (also known as ‘metrics’) and clustering
methods. A dissimilarity measure indicates the degree of
similarity between two genes. A clustering method
builds on these dissimilarity measures to create groups
of features with similar patterns.

A commonly used dissimilarity measure is Euclidean
distance, for which each gene is treated as a point in
multidimensional space, each axis is a separate biologi-
cal sample and the coordinate on each axis is the amount
of gene expression in that sample35,38.A schematic of this
method is shown in FIG. 2a. One disadvantage of
Euclidean distance is that if measurements are not nor-
malized, correlation of measurements can be missed,
the focus being instead on the overall amount of expres-
sion. A second disadvantage is that genes that are nega-
tively associated with each other will be missed. Negative
associations include gene interactions, such as those of
tumour-suppressor genes. As an example, the tumour-
repressor protein p53 acts as a transrepressor of several
other genes. This means that the higher the level of p53,
the less expression of other genes is expected. The con-
cept of negative interaction is clearly different than the
concept of no interaction.

Another dissimilarity measure that is commonly
used is the PEARSON CORRELATION COEFFICIENT, which is
measured between two genes that are treated as vec-
tors of measurements40 (FIG. 2b). The disadvantages in
using this measure with gene-expression measure-
ments are: first, it assumes that the measurements are
normally distributed, which might not be the case for
oligonucleotide-microarray measurements; and second,
it assumes that genes interact in the assumed linear
model, when in biology, a particular gene might best
regulate other genes when in the middle of its own
range of expression. Operationally, this measure is sensi-
tive to outliers, and although techniques such as the RANK

CORRELATION COEFFICIENT deal with these by replacing the
measurements with ranks, it is not clear whether elimi-
nating the outliers is ideal — many past discoveries have
been found by focusing on the outliers in biology.

A third dissimilarity measure is mutual information
(FIG. 2c), which allows for any possible model of interac-
tion between genes and uses each expression-level mea-
surement equally regardless of the actual value, and is
therefore not biased by outliers46. However, calculating
the mutual information requires using discrete expres-
sion measurements (for example, representing the gene
as ‘high’ and ‘low’, or ‘high’, ‘medium’ and ‘low’, and so
on), and the mutual information depends on the num-
ber of ‘bins’ used. Ideally, this would be performed in a
gene-specific manner, but sufficient information about

of samples, and finding genes that accurately predict a
characteristic of the sample. Most functional-genomics
experiments still typically use only a handful of micro-
arrays (or equivalent technology), with samples mea-
sured under two or three conditions, and the application
has the goal of finding those genes that are significantly
differentially expressed. Significance has been evaluated
in many different ways, including parametric22 and non-
parametric tests23,24, analysis of variance25 and many
others. Although it would be an understatement to call
the analyses of these smaller sets of microarray data
trivial, there are several published techniques that have
been used to find genes that have the most different
expression levels between a few samples. When deter-
mining whether a particular gene is differentially
expressed between two samples, there are four character-
istics that need to be considered: absolute expression
level, or whether the gene is expressed at a high or low
level; subtractive degree of change between groups, or
the difference in expression levels across samples (calcu-
lated using subtraction); fold change between groups, or
the ratio of expression levels across samples (calculated
by division); and reproducibility of the measurement, or
whether samples with similar characteristics have similar
amounts of the gene transcript.

These four characteristics are related; for example,
genes measured at low amounts of expression often have
measurements that are less reliable, which leads to poor
reproducibility across samples and high-fold changes that
do not adequately describe the actual degree of change.
All of the available techniques for comparing two sets of
microarray measurements essentially evaluate these four
characteristics for each gene in various ways to rank genes
that are most significantly different.

For larger data sets, comparing microarrays one pair
at a time misses trends that might exist between mea-
surements. There are several published supervised
methods that find genes or sets of genes that accurately
predict sample characteristics, such as distinguishing
one type of cancer from another, or a metastatic
tumour from a non-metastatic one. These methods
might find individual genes, such as the nearest-
neighbour approach26, and/or multiple genes, such as
decision trees27, neural networks28 and support vector
machines29–31. This article will focus on the two more
popular supervised techniques: nearest-neighbour
analysis and support vector machines.

Unsupervised methods. Users of unsupervised methods
try to find internal structure or relationships in a data
set instead of trying to determine how best to predict a
‘correct answer’.Within unsupervised learning, there are
three classes of technique: feature determination, or
determining genes with interesting properties without
specifically looking for a particular a priori pattern, such
as principal-components analysis32–36; cluster determina-
tion, or determining groups of genes or samples with
similar patterns of gene expression, such as nearest-
neighbour clustering26,37, self-organizing maps38,39,
k-means clustering and one- and two-dimensional
hierarchical clustering19,40; and network determination,

BAYESIAN NETWORK

A graphical representation 
in which variables (that is,
genes) are represented as nodes.
Arrows between nodes represent
conditional dependence, which
is interpretable as causal
associations.

PEARSON CORRELATION

COEFFICIENT

A measurement of the degree 
of fit of a linear-regression line
to data points, calculated as the
average distance of points from
the regression line normalized 
to the standard deviations of
the individual coordinates.

RANK CORRELATION

COEFFICIENT

Points are restated in terms of
their ordinal rank (for example,
first, second, third) before
calculation of the correlation
coefficient.
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It is important to note the few disadvantages in their
use. First, hierarchical clustering ignores negative associ-
ations, even when the underlying dissimilarity measure
supports them. Negative correlations might be crucial in
a particular experiment, as described above, and might
be missed. Furthermore, hierarchical clustering does not
result in clusters that are globally optimal, in that early
incorrect choices in linking genes with a branch are not
later reversible as the rest of the tree is constructed. So,
this method falls into a category known as ‘greedy
algorithms,’ which provide good answers, but for which
finding the most globally optimal set of clusters is com-
putationally intractable. Despite these disadvantages,
hierarchical clustering is a popular technique in survey-
ing microarray expression patterns in an experiment.

Self-organizing maps. Self-organizing maps are simi-
lar to hierarchical clustering, in that they also provide
a survey of expression patterns within a data set, but
the approach is quite different38,39. As shown in FIG. 3b,
genes are first represented as points in multidimen-
sional space. In other words, each biological sample is
considered a separate dimension or axis of this space,
and after the axes are defined, genes are plotted using
expression levels as coordinates. This is easiest to visu-
alize with three or less microarrays, but extends to a
larger number of experiments/dimensions. Nearness
can be defined using any of the dissimilarity measures
described above, although Euclidean distance is most
commonly used.

The process starts with the answer, in that the
number of clusters is actually set as an input parame-
ter. A map is set with the centres of each cluster-to-be
(known as centroids) arranged in an initial arbitrary
configuration, such as a grid. As the method iterates,
the centroids move towards randomly chosen genes at
a decreasing rate. The method continues until there is
no further significant movement of these centroids.

The advantages of self-organizing maps include easy
two-dimensional visualization of expression patterns
and reduced computational requirements compared
with methods that require comprehensive pairwise

the range of expression of each gene in all tissues has not
yet been collected. Furthermore, gene–gene associations
with high mutual information might not even be func-
tions in the mathematical sense, and might be difficult
to explain biologically.

Analytical methods 
Once a dissimilarity measure has been chosen, the appro-
priate analytical technique can be applied. This section
describes the four commonly used unsupervised tech-
niques — hierarchical clustering, self-organizing maps,
relevance networks and principal-components analysis
— and two commonly used supervised techniques —
nearest neighbours and support vector machines.

Hierarchical clustering. Hierarchical clustering is a com-
monly used unsupervised technique that builds clusters
of genes with similar patterns of expression. This is
done by iteratively grouping together genes that are
highly correlated in terms of their expression measure-
ments, then continuing the process on the groups them-
selves. DENDROGRAMS (FIG. 3a) are used to visualize the
resultant hierarchical clustering. A dendrogram repre-
sents all genes as leaves of a large, branching tree. Each
branch of the tree links two genes, two branches or one
of each. Although construction of the tree is initiated by
connecting genes that are most similar to each other,
genes added later are connected to the branches that
they most resemble. Although each branch links two
elements, the overall shape of the tree can sometimes be
asymmetric. In visually interpreting dendrograms, it is
important to pay attention to the length of the
branches. Branches connecting genes or other branches
that are similar are drawn with shorter branch lengths.
Longer branches represent increasing dissimilarity.

Hierarchical clustering is particularly advantageous
in visualizing overall similarities in expression patterns
observed in an experiment, and because of this, the
technique has been used in many publications40,47. The
number and size of expression patterns within a data set
can be estimated quickly, although the division of the
tree into actual clusters is often performed visually.

DENDROGRAM

A visual representation of
hierarchical clusters.
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Figure 2 | Dissimilarity measures. Almost all clustering techniques require some method of comparing one gene with another
and determining similarity. a | Euclidean distance can be used as a measurement of the degree of similarity between two genes,
and is calculated using the Pythagorean theorem. b | The Pearson correlation coefficient is calculated from the distances of each
point from the linear-regression line (known as residuals). c | Mutual information is a model-free measurement of the degree of
information content in one gene known from another gene, and is highest when genes are randomly distributed separately, but
show a non-random joint distribution.
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Figure 3 | Clustering and network-determination methods used in microarray analysis. The choice of the proper method and
the results obtained clearly depend on the starting hypothesis. This figure shows the results of six analytical methods applied to the
same hypothetical data set a | Hierarchical clustering sorts all genes (or samples), such that similar genes appear near each other.
The length of the branch is inversely proportional to the degree of similarity. Shades of red indicate increased relative expression;
shades of green indicate decreased relative expression. b | Self-organizing maps find variable-sized clusters of genes that are similar
to each other, given the input number of clusters to find. c | Relevance networks find and display pairs of genes with strong positive
and negative correlations, then construct networks from these gene pairs; typically, the strength of correlation is proportional to the
thickness of the lines between genes, and red indicates a negative correlation. d | Principal-components analysis is typically used as 
a visualization technique, showing the clustering or scatter of genes (or samples) when viewed along two or three principal
components. In the figure, a principal component can be thought of as a ‘meta-biological sample’, which combines all the biological
samples so as to capture the most variation in gene expression. e | The nearest-neighbour supervised method first involves the
construction of hypothetical genes that best fit the desired patterns (for example, a gene with high expression in disease 1 and low
expression in disease 2, or vice versa). The technique then finds individual genes that are most similar to the hypothetical genes. 
f | Instead of restricting to individual genes, support vector machines efficiently try several mathematical combinations of genes to
find the line (or plane) that best separates groups of biological samples. CD3G, CD3G antigen, γ-polypeptide; CD28, CD28 antigen;
IL-24, interleukin-24; PHKB, phosphorylase kinase-β; PTGS2, prostaglandin-endoperoxidase synthase 2; PXF, peroxisomal
farnesylated protein; TCF12, transcription factor 12; STAT1, signal transducer and activator of transcription 1.
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biological samples might be described as 3 times the
expression level of the first gene, plus –2.1 times the
expression level of the second gene, and so on. The
principal components are linear combinations that
include every gene or sample, and the biological signif-
icance of these combinations is not directly intuitive.

There are other caveats in using principal compo-
nents. First, it is important to note whether genes have
been centred before analysis; if not, then the first prin-
cipal component might serve to centre the genes.
Second, it is crucial to note that although principal
components might best describe the variation seen in
an expression data set, they do not describe how to
best separate groups of genes or samples. For example,
if microarrays are measured on samples from two con-
ditions, principal components will best describe the
variation of those samples, but will not always be the
best way to split samples from those two conditions48.

Nearest neighbours. Although the nearest-neighbour
technique can be used in an unsupervised manner, it is
commonly used in a supervised fashion to find genes
directly with patterns that best match a designated
query pattern. For example, an ideal gene pattern might
be one that is highly expressed in one condition and
expressed at a low level in another condition. All the
genes that have been measured can then be compared to
this ideal gene pattern and ranked by their similarity, as
shown in FIG. 3e. For example, acute lymphocytic
leukaemia was distinguished from acute myelogenous
leukaemia using this method26.

Although this technique results in genes that
might individually split two sets of microarrays, it
does not necessarily find the smallest set of genes that
most accurately splits the two sets. In other words, a
combination of the expression levels of two genes
might split two conditions perfectly, but these two
genes might not necessarily be the top two genes that
are most similar to the idealized pattern.

This technique can be modified for specific cases,
such as toxicogenomics. Tissue exposed to various
compounds known to cause different types of toxicity
can be subjected to microarray measurements, as well
as measurements from normal tissues. This could
make up a training set, in that these data points
implicitly make up a model of toxicity. Newer com-
pounds can then be tested on these tissues (the test
set), and the ‘distance’ of these expression patterns
from the training set can be calculated, and a decision
made as to similarity of mechanism of toxicity.

Support vector machines. Support vector machines
address the problem of finding combinations of genes
that better split sets of biological samples30.Although it is
easy to find individual genes that split two sets with rea-
sonable accuracy owing to the large number of genes
(also known as features) measured on microarrays,
occasionally it is impossible to split sets perfectly using
individual genes. The support vector machines tech-
nique actually further expands the number of features
available by combining genes using mathematical

comparisons, such as dendrograms. However, there are
several disadvantages. First, the initial topology of a self-
organizing map is arbitrary and the movement of the
centroids is random, so the final configuration of cen-
troids might not be reproducible. Second, similar to
dendrograms, negative associations are not easily found.
Third, even after the centroids reach the centres of each
cluster, further techniques are needed to delineate the
boundaries of each cluster. Finally, genes can belong to
only a single cluster at a time.

Relevance networks. Continuing through the set of
unsupervised techniques, relevance networks allow
networks of features to be built, whether they repre-
sent genes, phenotypic or clinical measurements20. The
technique works by first comparing all features with
each other in a pairwise manner, similar to the initial
steps of hierarchical clustering. Typically, two genes are
compared with each other by plotting all the samples
on a scatterplot, using expression levels of the two
genes as coordinates. A correlation coefficient is then
calculated, although any dissimilarity measure can be
used. A threshold value is then chosen, and only those
pairs of features with a measure greater than the
threshold are kept. These are displayed in a graph simi-
lar to FIG. 3c, in which genes and phenotypic measure-
ments are nodes, and associations are edges between
nodes. Although the threshold is chosen using permu-
tation analysis, it can actually be used as a dial, increas-
ing and decreasing the number of connections shown.

There are several advantages in using relevance
networks. First, they allow features of more than one
data type to be represented together; for example, if
strong enough, a link between systolic blood pressure
and expression of a particular gene could be visual-
ized. Second, features can have a variable number of
associations; theoretically, a transcription factor might
be associated with more genes than a downstream
component. Finally, negative associations can be visu-
alized as well as positive ones.

One disadvantage to this method is the degree of
complexity seen at lower thresholds, at which many
links are found associating many genes in a single net-
work. Completely connected subcomponents of these
complex graphs (known as ‘cliques’) are not easy to
find computationally.

Principal-components analysis. Principal-components
analysis is more useful as a visualization technique than
as an analytical method33,36. It can be applied to either
genes or samples, which are represented as points in
multidimensional space, similar to self-organizing
maps. Principal components are a set of vectors in this
space that decreasingly capture the variation seen in the
points. The first principal component captures more
variation than the second, and so on. The first two or
three principal components are used to visualize the
gene on screen or on a page, as shown in FIG. 3d.

Because each principal component exists in the
same multidimensional space, they are linear combina-
tions of the genes. For example, the greatest variation of
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Relating hypotheses to techniques
As microarrays now cover the measurable genome, a user
does not need to have a set of candidate genes in mind
before use. However, this does not mean that a micro-
array user operates in a hypothesis-free manner.With all
the supervised and unsupervised methods that are avail-
able for analysis, the challenge is in translating hypotheses
into an appropriate bioinformatics technique.

In the domains of drug discovery and diagnostic
testing, it is easy to find uses for supervised methods.
Two examples illustrate this point. First, hypotheses in
toxicogenomics, such as ‘some genes in the genome
influence liver metabolism of a particular compound’,
could be answered with a technique designed to find
those genes for which expression measurements are
most significantly different between liver cells with
and without the compound. If many samples are pre-
sent from each group, a nearest-neighbour approach
could be used, in which an idealized gene is created
that is expressed at a high level in samples with the
compound and at a low level in samples without the
compound. This is then used as a query to find genes
that are most similar to the idealized pattern.

Second, hypotheses in the development of diag-
nostic tests, such as ‘a combination of gene expression
measurements accurately distinguishes metastatic
from non-metastatic disease’, can be answered by
searching for such patterns using any of the super-
vised methods, including support vector machines.
Certainly, any specific question can be answered
directly in a supervised manner.

The need for unsupervised methods is less intu-
itive, because these start with a less direct question.
For example, questions about the number and type of

operations (called kernel functions). For example, in
addition to using the expression levels of two individ-
ual genes A and B to separate two sets of biological
samples, the combination features A × B, A/B, (A × B)2

and others, can also be generated and used. To make
this clear, it is possible that even if genes A and B indi-
vidually could not be used to separate the two sets of
biological samples, together with the proper kernel
function, they might successfully separate the two.

This can be visualized graphically as well, as shown
in FIG. 3f. Similar to the principal-components analysis
method above, consider each biological sample as a
point in multidimensional space, in which each
dimension is a gene and the coordinate of each point
is the expression level of that gene in the sample.
Using support vector machines, this high-dimensional
space gains even more dimensions, representing the
mathematical combinations of genes. The goal for
support vector machines is to find a plane in this
high-dimensional space that perfectly splits two or
more sets of biological samples. Using this technique,
the resulting plane has the largest possible margin
from samples in the two conditions, therefore avoid-
ing data over-fitting.

It is clear that within this high-dimensional space,
it is easier to separate samples from two or more con-
ditions, but one problem is that the separating plane is
defined as a function using all the dimensions avail-
able. For example, the most accurate plane to separate
one disease from another might be (A × B)2 < 20,
where A and B are expression levels of genes.
Although this might not be the most mathematically
accurate way to separate two diseases, the biological
significance of such functions is not always intuitive.

Box 2 | Downloadable large data sets of microarray measurements

Although Perou and others have called for the release of raw microarray data after the publication of manuscripts,
this still rarely occurs52. The following web sites are the exception, and contain large amounts of microarray data that
are of good quality and are freely available for academic use:

Stanford Microarray Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://genome-www5.stanford.edu/MicroArray/SMD/
• 3,290 Microarrays measured across 11 species, from 80 publications.

National Center for Biotechnology Information Gene Expression Omnibus. . . . . . . . . http://www.ncbi.nlm.nih.gov/geo/
• 2,354 Microarrays from 105 types of microarray, measured across 78 experiments.

TREX Program in Genomic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://pga.tigr.org/data.shtml
• 565 Microarrays from mouse and rat models of sleep, infection, hypertension and pulmonary disease.

Children’s National Medical Center (HopGenes Program in Genomic Applications) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://microarray.cnmcresearch.org/pgadatatable.asp

• More than 500 microarrays from many human diseases, including muscular dystrophy, dermatomyositis and heart
failure, as well as mouse, rat and dog models of spinal-cord injury, pulmonary disease and heart failure.

CardioGenomics Program in Genomic Applications . . . . . . . . http://cardiogenomics.med.harvard.edu/public-data.html
• 142 Microarrays involving mouse models of cardiac development and signal transduction, including measurements

made in time-series.

Human Gene Expression Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . http://www.hugeindex.org/databases/index.html
• 121 Microarrays from 19 normal human tissues.

Whitehead Institute Center for Genome Research . . . . . . . . . http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
• Microarrays from 12 publications involving many types of cancer, including some clinical measurements associated

with each sample.
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are incorrectly designed against the wrong strand or
wrong species. Oligonucleotide sequences that were
once thought to be unique for a particular gene might
not remain unique as more genomic data are col-
lected. Finally, in using spotted cDNA arrays, particu-
larly those for which the probe sequences have not
been validated, the findings might be incorrect.

Operationally, this means that one is never done
analysing a set of microarray data. The infrastructure
has to be developed to re-investigate constantly genes
and gene information from microarray analyses per-
formed in the past. It could be next month, for example,
that new information about a gene that was positive
in an analysis performed three months ago finally
leads to a new and important hypothesis.

Conclusion
The challenge in determining the proper analytical
methods to use is usually only a short-term difficulty,
and typically, after the ‘functional-genomics pipeline’
has been established, the rate-limiting step shifts to the
post-analytical challenges51. In the future, truly showing
a ‘return on investment’ from functional genomics will
depend on taking findings beyond the microarray stage
and integrating them with the rest of the discovery
pipeline. The ‘list of genes’ resulting from a microarray
analysis should not be viewed as an end in itself; its real
value increases only as that list moves through biologi-
cal validation, ranging from the numerical verification
of expression levels with alternative techniques, to ascer-
taining the meaning of the results, such as finding com-
mon promoter regions or biological relationships
between the genes. However, tools that link these genes
back to known biological pathways, as well as discover-
ing new pathways, are in their infancy. Tools that can
automatically indicate the importance of particular
findings have yet to be invented. Until they come into
being, the analysis of microarray data sets in a vacuum
devoid of biological knowledge will be less rewarding.

Finally, the use of microarrays in basic and applied
research in drug discovery is only going to increase,
but as these data sets grow in size, it is important to
recognize that untapped information and potential
discoveries might still be present in existing data sets
(BOX 2). It should be clear that any set of microarray
measurements could be analysed and re-analysed in
many different ways. In the application of functional
genomics to drug discovery, to extract the most infor-
mation from microarrays, an open mind always needs
to be kept with regard to the choices of analytical meth-
ods, using supervised and unsupervised techniques,
and methods yet to come.

expression responses in a period of time after applica-
tion of a compound cannot be found in a supervised
manner. Unsupervised techniques, such as hierarchi-
cal clustering and self-organizing maps, survey all
genes and cluster them together on the basis of their
expression patterns. A search for the pairs of genes
that are most likely to be co-expressed can be accom-
plished using a technique such as relevance networks.
Finally, true genetic regulatory networks (that is,
hypotheses that the expression of one gene correlates
with the expression of another) might be found using
methods such as constructing Bayesian networks.
What is common in these three examples is that there
is no ideal answer that is being sought, and that it is
difficult to ascertain when the method is correct.
Nonetheless, unsupervised methods could be instru-
mental in the early discovery process.

There are a few special cases worth noting. When
attempting to find connections between dissimilar
items, such as a response to a small molecule (that is, a
phenotypic measurement) and expression measure-
ments, two-dimensional hierarchical clustering can be
used for each measurement separately (for example,
clustering the small molecules separately from the
genes, as done by Ross et al.19), or building a relevance
network (as in Butte et al.20). Finally, when searching for
subtypes of a condition or disease that might influence
survival or a disease-free state, unsupervised hierarchi-
cal clustering can be paired with Kaplan–Meier survival
statistics, as shown by Alizadeh and colleagues49.

Challenges after analysis
After several microarray analyses, it quickly becomes
obvious that the rate-limiting step in functional-
genomics experiments is neither the handling of the
biological samples nor the actual analysis, but instead
the post-analytical work in determining what the
results actually mean. First, detailed names and infor-
mation might not yet be available for genes that have
been found to be significant, even though these genes
might have been measured on microarrays for years.
This complicates the interpretation of results. The
official gene name, predicted protein domains or
gene-ontology50 classification might become available
as early as tomorrow, or as late as decades from now.

There are further post-analysis challenges. Occa-
sionally, microarray probes are designed against
chromosomal regions instead of expressed products,
and when these probe sets are positive in an analysis,
it is usually not clear which genes are being detected.
It is worth finding these probe sets before analysis
begins and eliminating them. Occasionally, probe sets
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Cancer.gov: http://www.cancer.gov/cancer_information/
acute lymphocytic leukaemia | acute myelogenous leukaemia
LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/
p53

FURTHER INFORMATION
CardioGenomics:
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http://www-genome.wi.mit.edu/cancer/software/genecluster2/
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National Cancer Institute: http://www.cancer.gov/
RELNET: http://www.chip.org/relnet
Access to this interactive links box is free online




