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Introduction
In 1990, after decades of considerable advancements in nucleic 
acids research sparked by the birth of recombinant DNA tech-
niques, the US Department of Energy announced a bold and ambi-
tious project with a goal of sequencing, in nucleotide resolution, 
the entirety of the human genome. The resulting cascade of events 
that eventually spread the use of genomics in the biological and 
medical sciences is well known. Researchers had earlier realized 
that, with sufficient effort, they could uncover the code that holds 
the key to an organism’s physical traits. It did not take the more 
technologically minded part of the scientific community long to 
create novel methodologies to bring about vast increases in the 
throughput of genomic sequencing. This technological race began 
its exponential acceleration when public and private entities started 
competing to be the first to announce the first draft of the human 
genome.1,2 Even after this historic milestone was reached, the ambi-
tion of making a whole-genome sequence available on an individ-
ual basis for clinical purposes pushed the sequencing industry to 
further accelerate and streamline the technology, thereby driving 
down the costs. Other genotyping technologies were significantly 
overhauled in the process: chip capture–based profiling of the 
most common single-nucleotide polymorphisms (SNPs) became 
powerful and inexpensive enough to jumpstart the personalized 
genomics industry and enable the first genome-wide association 
studies (GWAS). As a result of these mid-throughput methods, 
companies such as 23andMe, Navigenics, and others have begun 
to navigate the challenging terrain comprising the ethical, logistic, 
and legal implications of affordable personal genomics data.3

GWAS have provided the first glimpse of the power of large-
scale genetic studies and the statistical and interpretational 
challenges that arise therein—characteristics that contrast with 
those of traditional linkage studies.4,5 GWAS have revealed 
associations between traits and common single-nucleotide 
genotypes in certain populations. In the area of pharmacog-
enomics, large-scale efforts have pinpointed loci important for 
a multitude of genotype–drug relationships, for example, antico-
agulant, antiplatelet, and interferon-α-enhanced antiviral drug 
response.6–9 Such studies have the potential to establish criteria 
for personalized dosing. Drug-related adverse events have also 
been used, albeit less frequently, as the target trait in GWAS, 
yielding associations between adverse events and commonly 
used drugs. Examples include simvastatin-induced myopathy,10 
flucloxacillin-induced liver injury,11 and thalidomide-related 
neuropathy.12

The results of GWAS are both encouraging and frustrating. 
Some of the genotype–phenotype relationships discovered in 
pharmacogenomics have proven strong enough that genotyping 
has been proposed as a recommended practice to the US Food and 
Drug Administration, thereby advancing the ideal of personal-
ized therapeutics.13 However, the heritability explained by genetic 
markers for most traits has been found surprisingly low, a dilemma 
now known as the “missing heritability problem.”14 Even while 
the less expensive genotyping technologies have helped dissemi-
nate the genome-wide paradigm, the price and turnaround time 
of high-throughput sequencing methods continue to fall expo-
nentially. As a result, whole-exome and whole-genome studies 
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have recently gained traction as a viable strategy for genotyping 
in the future. Whole-exome studies, a less expensive alternative 
to whole-genome methods, have in recent years proved useful in 
determining the genetic causes of Mendelian diseases in small 
cohorts; they have solved genetic mysteries such as those repre-
sented by Miller, Kabuki, and Schinzel–Giedon syndromes,15–17 
amyotrophic lateral sclerosis,18 and congenital cortical malfor-
mations.19 Whole exomes have also been used to analyze genetic 
inheritance in families, in unprecedented resolution.20

Furthermore, we are seeing successful applications of 
whole-genome sequencing in uncovering the genetic culprits 
in Charcot–Marie–Tooth neuropathy21 and dopa (3,4-
dihydroxyphenylalanine)–responsive dystonia22; indeed, the 
latter study even provided enough information for the develop-
ment of a personalized therapy. Even in cases where there is no 
adverse phenotype, clinical assessment of a whole genome has 
been shown to provide useful pharmacogenomic information 
and indications regarding risk of disease.23,24 Whole-genome 
inheritance patterns and statistics have also shed light on the 
perils of using a “generic” reference sequence and stimulated 
the creation of novel methods for combining multiple disease 
risks and assessing synonymous coding SNPs.24

The constant improvement in sequencing technologies makes 
it likely that a patient’s whole genome will be incorporated into 
the clinical profile. When integrated with the electronic health 
records and analyzed using tools for automatic genome analysis, 
the full genetic information of patients will provide a strong 
foundation for the development of drugs and therapeutics 
tailored to specific genetic profiles. It will also enable hypothesis-
free, large-scale population studies with enough power to reli-
ably discern loci of interest with single-nucleotide resolution.

In the following sections, we review the range of human 
genetic variation and its impact on genomic-guided therapies, 
describe current examples of translating whole-genome data 
into personalized diagnostics and therapeutics, and pinpoint 
challenges faced by the several disciplines involved in whole-
genome clinical analysis.

Anatomy of Human Genetic Variation
The development of personalized therapies based on a patient’s 
complete genetic information is both empowered and limited by 
our understanding of human genetic variation. After the release 
of the first two human reference sequences,1,2 large-scale stud-
ies of the SNPs and structural rearrangement underlying human 
genetic variation were initiated.25–27 The wealth of information 
that these studies and their resulting consortia have amassed has 
vastly increased our understanding of the plasticity of the human 
genome and has become the foundation of modern human genet-
ics. Below we present the range of human genetic variation, give 
examples of genetic biomarkers for drug and disease phenotypes, 
and discuss their role in whole-genome clinical assessment.

Single-nucleotide variants
Single-nucleotide variants (SNVs) occurring at a single site have 
been the main class of variants studied since sequencing efforts 
began. In the human genome there are approximately 11 million 

SNPs with observed major allele frequencies of at least 1%.28 
These variants occur in a highly correlated manner, forming 
linkage disequilibrium (LD) blocks of SNPs that are likely to 
be inherited in tandem and that vary widely among popula-
tion ancestries.26 The presence of these LD blocks allows for 
choosing a reduced set of SNPs that can serve as tag variants for 
large regions of the genome. LD blocks are the foundation of 
haplotype structure, the genetic profile that is commonly used 
to determine genotype–phenotype associations from GWAS.

Through linkage studies and GWAS, a multitude of SNVs 
have been associated with a wide range of traits: diseases such 
as inflammatory bowel disease, type 2 diabetes, breast can-
cer, multiple sclerosis, macular degeneration, and myocardial 
infarction,29–32 as well as pharmacodynamic/pharmacokinetic 
relationships such as those seen in Coumadin anticoagulant dos-
ing6 and responses to clopidogrel9 and methotrexate.33 These 
associations are recorded in publicly available databases such 
as the database of Genotypes and Phenotypes (dbGaP),34 the 
Human Gene Mutation Database (HGMD),35 and the Online 
Mendelian Inheritance in Man (OMIM)36 database (Table 1) 
and form the cornerstone for genetic diagnosis and subsequent 
personalization of treatment.

Structural variants
In a broad sense, any genetic variation that is not a base change 
at one site is considered a structural variant. Small insertions 
and deletions—indels—have sizes ranging from 1 to 10,000 
nucleotides and are estimated to occur with a frequency of 
1 million per genome.37 Indels occurring in coding regions can 
cause a reading frame shift or create a premature stop codon, 
possibly affecting a gene’s protein products; these indels are 
labeled non-sense mutations. Contrary to biological intuition, 
nonsense mutations do not always have a deleterious effect, 
although they do occur less frequently than their less disrup-
tive counterparts.38

Larger genome rearrangements include large regions that are 
duplicated in consecutive positions (known as copy number 
variants or CNVs) or inverted (inversions). In contrast with 
indels, large structural variants, especially CNVs, have been 
more commonly studied from a disease association perspective. 
CNVs are found in more than 20% of the human genome and 
have been linked to autoimmune diseases such as systemic lupus 
erythematosus as well as brain disorders such as autism and 
schizophrenia.39–41 CNVs have also been found to be present in 
abnormally elevated numbers in the genomes of several types of 
cancer cells.42 Similarly, inversions have been found to be more 
common than initially expected, occurring with a frequency of 
~50 to 60 per genome and spanning regions with an average of 
500,000 bases; they include the well-known genetic causes of 
hemophilia A and Hunter syndrome.43,44

Studies in the past decade have focused on the effects of single-
nucleotide variants in drug metabolism and response. However, 
there has been a steady shift toward studying the impact of struc-
tural variations in these phenotypes as next-generation sequenc-
ing—the best method for detecting them—becomes increasingly 
more cost-effective. Pharmacogenetic studies have revealed 
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CNVs that are possibly involved in sulfotransferase-related drug 
metabolism45 and an indel that affects codeine-to-morphine 
metabolism.46 The latter induces metabolism enhancement by 
generating an open reading frame in the CYP2D7 pseudogene, 
resulting in a functional protein that metabolizes codeine more 
efficiently as compared with the wild-type gene. This is a prime 
example of a mechanism that affects therapeutic efficacy and is 
present only in structural variants.

Rare variants
Although most attention has been focused on common vari-
ants, it now seems likely that the majority of genetic variation 
is, in fact, rare. Rare SNVs are defined as those having a major 
allele frequency of <1%; rare structural variants are more dif-
ficult to categorize because our catalog of structural variation 
in humans is still small. Prior to GWAS, it was widely believed 
that common variants were a main driver in the heritability of 
common traits and diseases. This view began to change when 
GWAS failed to detect common SNPs that strongly controlled 
the heritability of the most common traits and diseases, instead 

finding only associations with modest effects.14 This missing 
heritability problem is still unresolved and remains a central 
question among the genetics community. A tentative hypoth-
esis, known as the “rare-variant hypothesis,” proposes that the 
compounded genetic effects of rare variants act as the main con-
trollers of common traits.47 Recent studies have started to accu-
mulate evidence that supports this hypothesis, revealing that 
rare variants found to be associated with a particular trait tend 
to explain a larger percentage of the heritability than common 
variants do. An excellent example of this trend is the discovery 
of a rare variant in MYH6 that was found to be highly associ-
ated with the risk for sick sinus syndrome.48 This variant was 
identified by a combination of SNP-chip genotyping and whole-
genome sequencing and is associated with the syndrome with 
a surprising odds ratio of 12.53, which is an effect size ~10-fold 
higher than that for most GWAS variants. A more recent study 
has shown that rare variants in SLCO1B1 have greater effects on 
methotrexate clearance than common variants do, thereby sug-
gesting that therapeutics-associated traits may also be affected 
by rare variants.49 These large effects on drug hypersensitivity 

Table 1  Publicly available tools and databases for various tasks of genetic variant annotation and prioritization

Category Database/tool/project Description URL

Genetic variant data 
sources

dbSNP68 Comprehensive, curated SNP and short indel database http://www.ncbi.nlm.nih.gov/projects/SNP

DbVar69 Comprehensive, curated database for structural variants http://www.ncbi.nlm.nih.gov/dbvar

DGV70 Human structural variants from samples with no 
phenotype

http://projects.tcag.ca/variation

Functional 
characterization of 
genomic elements

ENCODE71 High-throughput functional characterization of DNA 
elements, including noncoding regions

http://www.genome.gov/10005107

SIFT72, PolyPhen73 Prioritization of nonsynonymous SNPs http://sift.jcvi.org, http://genetics.bwh.
harvard.edu/pph2

Public gene–trait 
associations

dbGaP34 Comprehensive listing of genotype-to-phenotype 
mappings

http://www.ncbi.nlm.nih.gov/gap

EGA74 Genotype–phenotype experiment archive http://www.ebi.ac.uk/ega

Disease-associated 
mutations

HGMD35 Database for human disease mutations http://www.hgmd.org

OMIM36 Mendelian disease gene associations http://www.ncbi.nlm.nih.gov/omim

SwissVar76 Variant catalog of the UniProt knowledge bases http://swissvar.expasy.org

GAD77 NCBI source for genotype–disease associations http://geneticassociationdb.nih.gov

GWAS catalog from  
NHGRI78

SNP-phenotype associations found by GWAS http://www.genome.gov/gwastudies

Whole-genome 
repositories

Complete genomics public 
genomes79

Complete genomics for 69 genomes from multiple 
ancestries (includes samples from the NHGRI and  
NIGMS repositories)

http://www.completegenomics.com/
sequence-data/download-data

1,000 Genomes80 Expanding resource currently housing three  
low-coverage whole genomes of multiple  
ancestries

http://www.1000genomes.org

Ancestry-focused 
variant data sources

HapMap26 Haplo-block mapping for diverse populations http://www.hapmap.org

HGDP27 SNP profiles of samples from several endogenous 
populations

http://hagsc.org/hgdp

Pharmacogenomic 
associations and data 
sources

PharmGKB56 Variant–pharmacokinetic/pharmacodynamic trait 
associations and gene–drug interactions

http://www.pharmgkb.org

DrugBank81 Drug-target database with biochemical properties http://drugbank.ca

dbGaP, database of Genotypes and Phenotypes; DGV, Database of Genomic Variants; EGA, European Genome–Phenome Archive; ENCODE, Encyclopedia of DNA Elements; GAD, 
Genetic Association Database; GWAS, genome-wide association studies; HGDP, Human Genome Diversity Project; HGMD, Human Gene Mutation Database; NCBI, National Center 
for Biotechnology Information; NHGRI, National Human Genome Research Institute; NIGMS, National Institute of General Medical Sciences; OMIM, Online Mendelian Inheritance 
in Man database; SIFT, tool that Sorts Intolerant From Tolerant amino-acid substitutions; SNP, single-nucleotide polymorphism.
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have attracted further efforts to uncover the mechanisms 
through which genetic variations in OATP1B1 and OATP1B3 
may increase the risks of drug toxicity.50

Noncoding, synonymous variants, repeat regions, and 
pseudogenes
Although we have a framework for the interpretation of many 
of the categories of genetic variation discussed above, a gap 
exists in our understanding of noncoding and synonymous 
variations. Our lack of understanding does not, however, imply 
unimportance. For example, the majority of SNVs in GWAS that 
are significant at the genome-wide level are present in noncod-
ing regions (and a significant minority are present in haplotype 
blocks that do not contain any gene).51 Furthermore, a good 
number of synonymous SNVs have been implicated in biological 
processes and diseases.52–55

Certain areas of the genome pose a technical challenge 
to identification even when next-generation sequencing 
approaches are employed. Repeat regions and pseudogenes are 
good examples. Many genes that are of importance in phar-
macogenomics have associated pseudogenes. With short-read 
sequencing approaches, assembly algorithms cannot indicate 
where a given short read should be placed. Long-read technolo-
gies will help greatly in tackling these challenges; however, in 
the meantime it is important to be aware of these limitations 
when analyzing next-generation sequencing data. As mentioned 
previously, structural variations have been shown to produce 
functional versions of otherwise nonfunctional pseudogenes, 
and these functional versions can even outperform the wild-
type homolog with respect to efficacy in drug metabolism.46 
The findings suggest that these genomic elements cannot be 
ignored.

Variant Prioritization and Meta-Analysis For 
Clinical Interpretation
The vast amounts of data available from whole-genome sequenc-
ing represent a challenge in interpretation, often requiring auto-
mated methods for annotation and prioritization of the variants 
(see Figure 1). Resources that house curated relationships between 
genotypes, disorders, and pharmacogenomic traits (Table 1) are 
essential for this task. Of particular interest to personalized thera-
peutics is the PharmGKB database,56 a curated database of more 
than 2,000 genes linked to drug metabolism or implicated in drug 
response. Once the relationship between a variant and a particu-
lar trait has been found through the annotation process, a score 
that encapsulates the strength of the dependency, as supported by 
external evidence, can be calculated. There is an ongoing debate 
over how to integrate the usually noisy evidence extracted from 
the literature; most clinical interpretations simply report the list 
of variants found to be associated with a trait of interest, with-
out venturing into estimating the total risk. In our recent whole-
genome clinical interpretation efforts, we have proposed the use 
of likelihood ratios as an approach to integrating effect size.23,57 
Given that multiple studies may support a particular association, 
their combined likelihood ratio can be calculated using straight-
forward Bayesian methods.

Regardless of the methods used to combine genotype–pheno-
type association evidence, and even if statistical assumptions of 
test/study independence hold, several caveats should be kept in 
mind when performing this task:

•	 The quality of the study must be taken into account: some 
would discount all candidate gene studies performed 
before the GWAS era.

•	 The ancestry of the study population is key, and biases in 
the population samples must be accounted for.

•	 Combined likelihoods can lose their effect size as more 
studies are used in the meta-analysis, usually produc-
ing odds ratios that are much lower than those of studies 
supporting typical diagnoses or laboratory tests.57 It is 
difficult to discern whether this phenomenon, which may 
confound risk interpretation, is due to a regression-to-
the-mean process or to an incorrect assumption in the 
procedure for combining the likelihood ratios.

•	 There are a great number of conditional dependencies 
between a multitude traits and diseases, precluding an 
accurate, independent estimate of risk for each trait. The 
conditional dependencies may vary depending on the 
traits that are involved, and the complicated nature of 
the relationships precludes the use of standard statisti-
cal calculations to estimate the final risk. However, the 
directionality of the relationship can be calculated, giving 
an indication of the trait interactions.23

Major environmental factors that could outweigh the genetic 
effects must also be considered. The interplay among environ-
ment, genes, and disease is still poorly understood, mainly 
because of the vast number of possible gene–environment 
interactions. Even though environmental associations can be 
incorporated in the meta-analysis in much the same way as 
genotype–trait studies, the inclusion of the patient’s actual envi-
ronment into the equation is not trivial and can be done only in 
a qualitative fashion. Furthermore, environmental association 
studies are relatively rare as compared with their genetic coun-
terparts; this is a trend that may be altered with environment-
wide association studies.58

Clinical Assessment Incorporating Personal 
Genomes
Whole-genome sequencing is beginning to emerge as a clinical 
tool in certain controlled circumstances. The methodology has 
already been used to elucidate possible causes of a Mendelian 
disease: Lupski et al. conducted a study that found associations 
between Charcot–Marie–Tooth disease and several of the com-
pound alleles in SH3TC2. Using the whole-genome sequence of 
an affected individual, the authors validated the relevant vari-
ants in family members using lower-throughput methods. In the 
realm of personalized therapeutics, whole-genome sequencing 
was recently used in a pair of 14-year-old fraternal twins diag-
nosed with dopa (3,4-dihydroxyphenylalanine)–responsive dys-
tonia (DRD).22 The analysis provided further insights into DRD 
and revealed causative compound heterozygous mutations in the 
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SPR gene that encodes for sepiapterin reductase. The findings 
motivated the physicians to prescribe 5-hydroxytryptophan, a 
serotonin precursor, alongside the L-dopa dopamine precursor 
commonly used to treat DRD. This recommended treatment 
improved the clinical outcomes for both twins, further reinforc-
ing the fact that genome sequencing has potential in clinical 
therapeutics.

Cancer therapeutics
The promise offered by whole-genome sequencing in patients 
with cancer is the opportunity to move beyond historical organ- 
and microscopy-based diagnostic approaches to molecular 
diagnosis, changing the diseases’ classification and suggesting 
tailored interventions. In a recent study, the whole genomes 
and whole transcriptomes of tumor biopsies were combined 
with targeted whole-exome sequencing of tumors and normal 
DNA in four patients with metastatic cancers.59 One patient in 

the study, with metastatic colorectal cancer, was found to have 
somatic point mutations in the NRAS, TP53, AURKA, FAS, and 
MYH11 genes as well as an amplification and overexpression of 
cyclin-dependent kinase 8 (CDK8); another patient with malig-
nant melanoma had point mutations in HRAS and a structural 
rearrangement affecting CDKN2C. Interestingly, both resulting 
mutational landscapes provided evidence of common affected 
pathways that could be targeted by a combination of therapies: 
CDK8 amplification could be targeted by CDK inhibitors, 
whereas the Ras-associated mutations could be treated with 
MEK (mitogen-activated or extracellular signal-regulated pro-
tein kinase) and PI3K (phosphatidylinositol 3-kinase) inhibitors. 
Unfortunately, because neither of these patients was eligible for 
enrollment in the trials that were actively testing these com-
pounds, the therapeutic hypotheses could not be tested.

Another exposition of the use of whole-genome sequencing in 
personalized oncology and treatment was published in a study 
involving a patient with acute promyeolocytic leukemia.60 This 
patient was diagnosed with acute myeloid leukemia and received 
all-trans-retinoic acid (ATRA) chemotherapy treatment for this 
disease until routine fluorescence in vitro hybridization tests 
revealed patterns of cryptic fusions that were not consistent with 
acute myeloid leukemia. The diagnostic conundrum of whether 
the patient had acute promyeolocytic leukemia or acute myeloid 
leukemia was solved with the detection, through whole-genome 
sequencing, of previously unseen breakpoints that resulted in a 
cryptic fusion oncogene consistent with non-ATRA-resistant 
acute promyeolocytic leukemia types. Consequently, ATRA 
was re-prescribed and had a positive effect. In the treatment 
of cancer, the power of whole-genome sequencing lies in its 
enhanced ability both to classify the disease and to personalize 
the therapy.

Preventive medicine
The noninvasive nature of whole-genome sequencing also allows 
for it to be applied to preventive medicine. Lo et al. presented 
low-coverage whole-genome sequencing of a fetus through 
sequencing maternal cell-free plasma DNA. In this study, both 
parents were carriers of mutations in the HBB gene that results 
in the autosomal recessive disorder β-thalassemia. Interrogation 
of the trio’s DNA samples revealed that the fetus had inherited 
only the paternal HBB mutations, making him a carrier of the 
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usually received in the form of aligned reads with perhaps some tentative 
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structural variant calls, such as indels, inversions, and CNVs. (b) The resulting 
calls are then annotated and prioritized using meta-analyses to calculate 
disease risk, patient ancestry to accurately measure genetic variation 
characteristics, and computational methods based on evolutionary criteria 
and functional annotations to assess the effects of rare and personal 
variants, as well as variants falling in noncoding loci. (c) Disease risk, 
pharmacogenomic particularities, and disease–disease/disease–environment 
interactions are delivered in the final analysis and (d) interpreted clinically, 
informed by further, integrative meta-analysis, and orthogonal and functional 
validation to produce personalized therapies and recommendations. CNV, 
copy number variant; SNP, single-nucleotide polymorphism.



1006				    VOLUME 91 NUMBER 6 | june 2012 | www.nature.com/cpt

state          artstate          art

disease but not affected by it. In other settings, whole-genome 
sequencing can provide unparalleled power in risk assessment. 
We recently performed whole-genome clinical interpretations 
in five individuals. The first, whom we met in our clinic at the 
Stanford Center for Inherited Cardiovascular disease, was the 
fifth individual to undergo whole-genome sequencing. Given 
the individual’s family history of sudden death and coronary 
artery disease, our assessment focused on cardiovascular risk 
and pharmacogenomics advice.23 In a follow-up study, we 
refined methods for whole-genome clinical assessment in a 
family of four, developing a novel major-allele human reference 
sequence, building tools for computational long-range phasing, 
and revealing an inherited predisposition to blood clot forma-
tion and response to blood-thinning medications.24

As genome-wide studies are extended beyond common vari-
ants to include rare variants, risk scores will inevitably improve 
and become part of the clinical information given to patients. 
Several groups are exploring patient response to genetic findings 
presented both by direct-to-consumer genetic testing61 and by 
research groups targeting the reporting of specific disease risks 
such as those for type 2 diabetes62 and cardiovascular disease (J. 
Knowles et al., personal communication). In direct-to-consumer 
clients, who usually have no associated phenotype, there has 
been no evidence of significant behavioral change after post-test 
risks are reported; however, this may not hold true for individu-
als who receive reports with a limited clinical scope (as in the 
type 2 diabetes and cardiovascular disease example studies). 
Behavioral studies are required to investigate the changes in 
lifestyle patterns in patients who have been exposed to knowl-
edge of their estimated genetic risks for disease. Data from such 
studies will be crucial for understanding how the knowledge of 
personal risk affects therapeutic outcome.

Perspectives and Future Challenges
Eleven years after the first drafts of the human genome were 
published, we have finally arrived at a point where we can start 
making use of the complete genetic information of an individual 
to personalize disease diagnosis and therapeutics. The accel-
eration of sequencing technology has allowed high-through-
put sequencing to reach the clinical realm unexpectedly early. 
Whole-genome sequencing presents enormous potential but 
also significant challenges. The promise of personalized medi-
cine can come to pass only through concerted efforts between 
multiple groups in a wide range of disciplines (see Figure 2):

•	 Statistical and population genetics: the goal of future efforts 
in statistical genetics will be to provide methods that can 
deliver high-confidence genotype–phenotype associations 
by routinely, or even automatically, scanning patients’ 
genomic information. Current GWAS data already present 
formidable statistical challenges given the number of loci 
they interrogate; these difficulties will be exacerbated when 
3 billion loci per person need to be handled. A knowledge 
of the true LD structure of each particular population or 
individual will help enormously, but this will require a 
uniform and rapid diffusion of sequencing technology.

•	 Health-care administration and information technology: 
the electronic medical record will be key in linking clini-
cal observables to genetic data. Standardized and robust 
systems will facilitate studies that use genomic data and 
test the storage and delivery of genetic information. The 
manner of interaction of these systems is likely to lead to a 
shift in the ownership of clinical data, from the physician 
to the patient. Policies will have to be designed to allow 
rapid interinstitutional sharing of genetic data, channeled 
either through the patients themselves or through the use 
of open electronic health record platforms.

•	 Medical sciences: apart from the tremendous efforts that 
will be needed to fully interpret a whole genome, linking 
genetic information with phenotypic traits requires that 
the phenotyping itself be properly carried out. Adequate 
quantification of disease states that go beyond simple 
physical descriptions and aggregate measurements will 
be critical in making whole-genome sequencing clinically 
relevant. Interplay between phenotypes will also have to be 
taken into consideration; perhaps the concept would have 
to be redefined altogether and move toward a considera-
tion of trait networks rather than of lone traits.

•	 High-throughput experimentation: now that we can 
measure and digitize the entire genetic material of an 
individual, additional molecular phenotyping will be 
necessary to track down genetic effects in the genotype–
phenotype chain and to discover relevant biomarkers for 
further personalization of diagnoses and therapeutics. 
High-throughput experimentation technologies that give 
us insight into the transcriptomics, proteomics, metabo-
lomics, and other biological aspects of an individual will 
have to mature further before they can be used in the clin-
ic.63 Our discovery that higher-order phenotypes can be 
affected through epigenetic events such as DNA methyla-
tion is a great example of the usefulness of these technolo-
gies. The genomic methylation landscape and other forms 
of genomic organization have been tremendously useful 
in characterizing several cancers,64 and other forms of 
epigenetic flow may be at the core of other pathologies and 
drug–response phenotypes.65

•	 Biomedical informatics: the bioinformatics community will 
be challenged with the scope of population whole-genome 
data. The current limitations of storage technology, com-
puting capacity, and technical ability of health-care staff 
will have to be overcome in the short term with automated, 
open-source pipelines for genomic clinical interpretation. 
Confident meta-analysis of these data will require tools 
and databases that are updated constantly with new find-
ings from the scientific literature.

In summary, the translation of the diagnostic power of genome 
sequencing into therapeutics will require strategies to handle 
huge amounts of biological and medical data and present signifi-
cant results in intuitive and clinically meaningful ways. We look 
forward to continuous, incremental, and ultimately transforma-
tive changes in clinical research and practice motivated by the 
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multidisciplinary advancements and analyses of whole-genome 
sequencing. In the next few years, the utility of a patient’s com-
plete genetic profile will become increasingly apparent, to the 
benefit of many.
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