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On the Distinction Between Interaction and
Effect Modification

Tyler J. VanderWeele

Abstract: This paper contrasts the concepts of interaction and effect
modification using a series of examples. Interaction and effect
modification are formally defined within the counterfactual frame-
work. Interaction is defined in terms of the effects of 2 interventions
whereas effect modification is defined in terms of the effect of one
intervention varying across strata of a second variable. Effect mod-
ification can be present with no interaction; interaction can be
present with no effect modification. There are settings in which it is
possible to assess effect modification but not interaction, or to assess
interaction but not effect modification. The analytic procedures for
obtaining estimates of effect modification parameters and interaction
parameters using marginal structural models are compared and
contrasted. A characterization is given of the settings in which
interaction and effect modification coincide.

(Epidemiology 2009;20: 863–871)

This paper revisits certain issues concerning differences
between various concepts of interaction1–7 and shows how

ideas from causal inference can be used to draw a distinction
between the concepts of interaction and effect modification. As
formally defined below using counterfactuals, “interaction” may
be used to describe instances in which potential interventions on
a secondary exposure are in view, while “effect modification”
may be used to describe instances in which merely conditioning
on a secondary exposure is in view. Often the terms interaction
and effect modification are used interchangeably. However,
when epidemiologists run regression analyses with product
terms, sometimes only one of 2 possible interpretations is war-
ranted. In some cases, the coefficient for the product term in the
regression can be interpreted as a measure of what will be
formally defined below as effect modification; in other cases, the
coefficient for the product term can be interpreted as a measure

of what will be formally defined below as an interaction of
effects. Sometimes the coefficient for the product term can be
interpreted both as a measure of effect modification and as a
measure of interaction; sometimes only one of the 2 interpreta-
tions (or neither) is warranted.

The paper is structured as follows. First, I provide and
contrast formal counterfactual definitions for interaction and
effect modification. Second, examples are given showing that
it is possible to have effect modification without interaction
or interaction without effect modification. Third, further ex-
amples are given showing that in some cases it is possible to
identify effect modification but not interaction and that in
other cases it is possible to identify interaction but not effect
modification. Fourth, analytic procedures to estimate interac-
tion and effect modification parameters in marginal structural
models are contrasted. Finally, I characterize those settings in
which the concepts of interaction and effect modification do
in fact coincide. The goal is to help clarify the distinction
between the concepts of interaction and effect modification.

Throughout this paper causal directed acyclic graphs
(DAGs) will be employed to illustrate the ideas and exam-
ples.8–10 The focus, however, is not on causal DAGs but
rather on the concepts of interaction and effect modification.
Most examples will be accessible to readers who are not
familiar with such graphs; accessible introductions to causal
DAGs can be found elsewhere.10–13

DEFINITIONS AND NOTATION
I will use the following notation throughout the paper.

I consider either interaction between the effects of 2 expo-
sures E and Q on some outcome D or alternatively, effect
modification by Q of the effect of exposure E on outcome D.
Let De denote the counterfactual outcome D under an inter-
vention to set the exposure variable E (possibly contrary to
fact) to level e. Let Deq denote the counterfactual outcome D
under interventions to set the exposure variables E and Q to
levels e and q, respectively.

The presence of interaction or effect modification may
depend on the scale being used. Common scales in epidemi-
ologic research include the risk difference scale, the risk
ratio scale, and the odds ratio scale. Interaction and effect
modification can be present on one scale and absent on
another.14,15 The focus in this paper will be on the risk
difference scale because this scale is arguably of greatest
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Erratum: On the Distinction Between Interaction and Effect Modification

When this article was published in the November 2009 issue of Epidemiology, in Equation 1 (p. 867), the subscript q in E[Deq|Q = q] was erroneous. Equation 1 for the marginal structural model for effect modification should thus have read:

E[De|Q = q] = α0 + α1q + α2q + α3eq

The author thanks Alvaro Alonso for catching this error.




public health importance1–3 and also has certain relations to
biologically based notions of interaction.7 However, the re-
marks apply equally to other scales.

The formal counterfactual definitions given below for
effect modification and interaction are arguably present in the
literature, sometimes in words, sometimes implicitly and
sometimes formally; however, the distinction between the 2
concepts is usually not made explicit. The concept of effect
modification concerns whether the effect of one variable on
another differs across strata of a third.7

Definition 1
A variable Q is said to be an effect modifier on the

causal risk difference scale for the effect of E on D, condi-
tional on X, if Q is not an effect of E and if there are 2 levels
of E, e0 and e1, and 2 levels of Q, q0 and q1, and some x, such
that E�De1

�Q � q1, X � x� � E�De0
�Q � q1, X � x� � E

�De1
�Q � q0, X � x� � E�De0

�Q � q0, X � x�.

Until the penultimate section, the discussion will focus on
unconditional effect modification (ie, without conditioning on
additional covariates X). Unconditionally, we will thus say that
a variable Q is an effect modifier on the causal risk�difference
scale for the effect of E on D if Q is not an effect of E and if there
are 2 levels of E, e0, and e1, and 2 levels of Q, q0, and q1, such
that E�De1

�Q � q1� � E�De0
�Q � q1� � E�De1

�Q � q0� �
E�De0

�Q � q0�. This definition of effect modification requires
that for some e0 and e1, E�De1

�Q � q� � E�De0
�Q � q� is not

constant in q. Although the restriction that Q is not an effect of
E is perhaps not strictly necessary in the counterfactual frame-
work,16 methods that condition on effects of the exposure tend to
bias effect measures.16–21 Effect modification may be of public
health interest because the effect of E (the primary exposure or
treatment under study) may vary across subpopulations defined
by some variable or set of variables Q; different interventions
may be beneficial for different populations.

Note there is an asymmetry between E and Q in the
definition of effect modification: only the effect of one of the
2 exposures is principally in view, namely the effect of E on
D. The role of the other exposure Q in the definition simply
concerns whether the effect of primary interest varies across
strata of this other exposure Q. In contrast to this definition of
effect modification, the roles of E and Q in the definition of
interaction,2,6,22 given below, are symmetric.

Definition 2
There is said to be an interaction on the causal risk

difference scale between the effects of E and Q on D,
conditional on X, if there are 2 levels of E, e0, and e1, and
2 levels of Q, q0, and q1, such that for some x, E�De1q1�X �
x� � E�De0q1�X � x� � E�De1q0�X � x� � E�De0q0�X � x�.

Most of the following discussion will be on uncondi-
tional interaction of effects (ie, without conditioning on
additional covariates X). Unconditionally, interaction on the

causal risk�difference scale occurs between the effects of E
and Q on D if there are 2 levels of E, e0, and e1, and 2 levels
of Q, q0, and q1, such that E�De1q1� � E�De0q1� � E�De1q0� �
E�De0q0�. In essence, this requires the effect of 2 exposures
together to be different from the combination of the 2 effects
considered separately. From a public health perspective, know-
ing about interaction is important in determining whether or not
2 exposures or causes of interest can be studied separately
without losing some of the important features of the way the 2
exposures affect the outcome together.

Note that the condition in Definition 2 can be rewrit-
ten as E�De1q1� � E�De0q0� � {E�De1q0� � E�De0q0�} �
{E�De0q1� � E�De0q0�}. If the direction of the inequality is
that E�De1q1� � E�De0q0� � {E�De1q0� � E�De0q0�} �
{E�De0q1� � E�De0q0�}, then a superadditive interaction on
the causal risk difference scale would be said to be present;
if E�De1q1� � E�De0q0� � {E�De1q0� � E�De0q0�} �
{E�De0q1� � E�De0q0�}, then a subadditive interaction on
the causal risk difference scale would be said to be present.
With the condition for the interaction of effects written
as E�De1q1� � E�De0q0� � {E�De1q0� � E�De0q0�} �
{E�De0q1� � E�De0q0�}, it is clear that the role of E and Q
in Definition 2 are symmetric. Note further that in Defini-
tion 2, interventions on both E and Q are being considered.
In the definition given for effect modification, only inter-
ventions on exposure E were being considered (setting E
to e1 in contrast to setting E to e0) whereas interventions
were not being considered for Q; the role of Q in Defini-
tion 1 for effect modification was that of a conditioning
variable. Thus, Q is a conditioning variable in the definition of
effect modification, and an intervention variable in the definition
of interaction. This distinction between effect modification and
interaction also underlies the examples given in the following
sections.

One further point merits attention. Definition 2 allows
for the assessment of the interaction between the 2 effects
with regard to their magnitude. Whether quantitative interac-
tion (as defined in Definition 2) corresponds to an interaction
in a mechanistic or biologic sense (sometimes referred to as
synergism or antagonism) is another matter. It has been
shown that interactions (even causal interactions as given in
Definition 2) on the risk difference or risk ratio or odds ratio
scale need not correspond to interactions in any biologic or
mechanistic sense.7,22–24 The relation between mechanistic
interaction and statistical interaction for particular measures
of effect is considered elsewhere7,22,24,25 and is beyond the
scope of this paper.

EFFECT MODIFICATION WITH NO
INTERACTION AND INTERACTION WITH NO

EFFECT MODIFICATION
VanderWeele and Robins26 showed that a variable Q

could serve as an effect modifier for the effect of E on D even
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if Q had no causal effect on D. In such cases Q effectively
served as a proxy for some other variable that did have a
causal effect on D. Such examples will also serve to illustrate
how there can be effect modification without interaction. For
the first example, I return to an example of VanderWeele and
Robins,26 although the emphasis here is different. Consider
the causal DAG given in Figure 1.

Suppose that E denotes some drug in a randomized
trial, D denotes hypertension, X denotes a person’s genotype,
and Q denotes the person’s hair color. In this example, Q
might serve as an effect modifier for the effect of E on D
since Q is a proxy for X. We will thus likely have a situation
in which E�De � 1�Q � q� � E�De � 0�Q � q� is not constant
over q. However, because Q is not itself a cause of D, there will
be no interaction between the effects of E and Q on D. Because
Q has no effect whatsoever on D, we will have E�De � 1,q� �
E�De � 0,q� � E�De � 1� � E�De � 0� for all values of q.
Interventions on Q do nothing to D, so there can be no interac-
tion between E and Q. A variable Q can thus be an effect
modifier for the effect of E on D without there being an
interaction between the effects of E and Q on D.

It is also clear from the discussion above that this
example also demonstrates a case in which there is effect
modification of the effect of E on D by Q, but not of the effect
of Q on D by E. Once again, effect modification is not
symmetric in the 2 exposures.

I now turn to an example that demonstrates the con-
verse: interaction between the effects of E and D without

effect modification. Consider the causal DAG given in Figure
2, and suppose that E denotes a drug in a randomized trial for
weight loss for obese children, D denotes the final weight of
a child 6 months after the trial completion, X denotes the
sugar intake in a child’s diet, and Q denotes some measure of
exercise. Sugar intake might, for example, affect exercise by
making children more hyperactive. Suppose further that the
effects of the diet drug E and exercise Q interact so that
E�De1q1� � E�De0q1� � E�De1q0� � E�De0q0�. In other words,
if we were to intervene to give children the drug and also to
force exercise, then the effect of these 2 interventions to-
gether, compared with the baseline of no drug and no exer-
cise, would be greater than the sum of the effects of each
intervention considered separately. We would then say that
there is an interaction between the effects of E and Q on D.
However, it does not follow from this that Q is an effect
modifier for the effect of E on D. Suppose that sugar intake
had 2 effects on weight; first, high levels of sugar intake
within the diet will likely increase weight gain; second, sugar
intake might give children more energy, making them hyper-
active and thus more likely to exercise, and thereby lowering
their weight through exercise. It is furthermore possible that
the indirect effect of sugar intake that lowers weight through
exercise essentially cancels out the direct effect of sugar
intake which increases weight. In such cases, exercise Q may
not be an effect modifier for the effect of drug E on weight D.

A numerical example is given for this illustration in
Appendix 1 but the intuition can be given more simply. If we
let Q � 1 denote a high level of exercise and Q � 0 denote
a low level of exercise, then E�De � 1�Q � 1� � E�De � 0�Q �
1� denotes the effect of the drug for children with high levels of
exercise and E�De � 1�Q � 0� � E�De � 0�Q � 0� denotes the
effect of the drug for children with low levels of exercise.
Although high levels of exercise will tend to decrease weight,
children with high levels of exercise might also be those with
high levels of sugar intake, which itself increases weight. Like-
wise, although low levels of exercise will tend to increase
weight, children with low levels of exercise might also be those
with low levels of sugar intake which itself decreases weight.
These cancellations may occur irrespective of whether a child
receives drug E. It is therefore possible that we would observe
E�D

e � 1�Q � 1� � E�De � 0�Q � 1� � E�De � 1�Q � 0� � E
�De � 0�Q � 0� and thus conclude that Q is not an effect modifier
for the effect of E on D. In this case we would have interaction
of effects, without effect modification. Although in practice it is
unlikely that the effects related to sugar intake and exercise
will cancel out exactly, it is entirely possible, in this example
and in others, that we observe substantial interaction between
effects measured by (E�De1q1� � E�De0q1�) � (E�De1q0� �
E�De0q0�) but very slight effect modification as measured by
(E�De1

�Q � q1� � E�De0
�Q � q1�) � (E�De1

�Q � q0� �
E�De0

�Q � q0�) or vice versa. The conditioning on Q in effect

FIGURE 1. Effect modification by Q of the effect of E on D
without interaction between the effects of E and Q on D.

FIGURE 2. Potential interaction between the effects of E and Q
on D without effect modification by Q of the effect of E on D.
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modification will not in general yield the same results as inter-
vening on Q in the assessment of the interaction of 2 effects.

Note that in the first example, the absence of interaction
was structural; interaction between the effects of E and Q is
absent irrespective of the distribution of the variables. In
contrast, in the second example, the absence of effect modi-
fication depended on the cancellation of effects. In general, if
interaction between the effects of E and Q is present, then the
absence of effect modification will require the cancellation of
effects. If there is an interaction between the effects of E and
Q, then if effect modification is absent it will not be for
structural reasons. This is because, in this case, Q itself must
have a nonadditive effect on D. Conditioning on Q will
capture this effect, and thus effect modification will be absent
only if there is cancellation by the effect of some other
variable related to Q.

THE IDENTIFICATION OF INTERACTION AND
EFFECT MODIFICATION

The previous section considered only whether effect
modification and interaction were present or absent, not
whether effect modification and interaction could be assessed
given data on a particular set of variables. This section
focuses on the identification of effect modification and of
interaction. The point of this section is somewhat more
subtle: it may be possible to identify effect modification from
data but not interaction, or to identify interaction from data
but not effect modification. Consider first the causal DAG
given in Figure 3.

In this example, we can identify E�De1
�Q � q� �

E�De0
�Q � q� from data on E, Q and D alone; we do not need

data on U.8 We can thus assess whether Q is an effect
modifier for the effect of E on D by using data only on E, Q,
and D. This is because conditioning on Q suffices to control
for confounding of the effects of E on D; Q blocks all
“back-door paths” from E to D.8–10 Suppose, however, we
were interested in assessing not just effect modification but
interaction between the effects of E and Q on D. In this case
we would need to identify joint effects of the form E�Deq� so
that we could test whether E�De1q1� � E�De0q1� � E�De1q0� �
E�De0q0�. It can be shown, however, that the joint effects of E
and Q on D cannot be identified with data on E, Q, and D
alone (see corollary 4.5.4 of Pearl9). This is because the
unmeasured variable U is a common cause of Q and D, and
thus confounds the effect of Q on D. If we had data on U as
well as E, Q, and D, we could identify joint effects of the
form E�Deq� because we could block all back-door paths from
E and Q to D. Because data are not available on U, joint
effects of the form E�Deq� are not identified. Thus, we cannot
assess whether there is an interaction between the effects of E
and Q on D. Consequently, Figure 3 constitutes an example
in which we can identify whether or not effect modification is
present, but not whether there is an interaction between
effects.

We now consider the converse situation, in which
we can identify whether an interaction between effects
is present but not whether there is effect modification.
Consider the causal DAG given in Figure 4. Technical
details for this example are given in the eAppendix
(http://links.lww.com/EDE/A340) of this paper and require
various theoretical results concerning causal DAGs.8,9,27–31

In Figure 4, suppose that data are available on E, Q, X, and D,
but that U1 and U2 are unmeasured. It is shown in the
eAppendix that joint effects of the form E�Deq� are identified
with data on just E, Q, X, and D and thus the condition
E�De1q1� � E�De0q1� � E�De1q0� � E�De0q0� can be tested and
interaction between the effects of E and Q on D can be
assessed. However, it is furthermore shown in the eAppendix
(using Theorem 6 of Shpitser and Pearl28 and Theorem 3 of
Tian and Pearl31) that effects of the form E�De1

�Q � q� �
E�De0

�Q � q� are not in general identified, so that effect
modification cannot be assessed with data on E, Q, X, and D
alone. In Figure 4 we thus have an example in which we can
identify whether an interaction between effects is present but
not whether effect modification is present. In Appendix 2 we
discuss the identification of interaction and effect modifica-
tion in greater detail, and give 2 results that relate the
identification of interaction and effect modification to causal
DAGs.27–31

FIGURE 3. Identification of effect modification of the effect
of E on D by Q without identification of the joint effects of
E and D.

FIGURE 4. Identification of the joint effects of E and D without
identification of effect modification of the effect of E on D by Q.
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INTERACTION AND EFFECT MODIFICATION IN
MARGINAL STRUCTURAL MODELS

The concepts of interaction and effect modification can
also be distinguished in the different analytic procedures used
to assess interaction or effect modification with marginal
structural models. For simplicity, I assume that E and Q are
binary and that D is continuous. A marginal structural model
is a model for expected counterfactual outcomes. Ordinary
regression models are models for expected outcomes condi-
tional on covariates. Thus a regression model might be a
model for the conditional expected outcome E�D�E � e, Q �
q, X � x� for some measured covariates X, whereas a
marginal structural model is a model for the counterfactual
outcomes E�Deq�. A marginal structural model for the effect
of E on D conditional on Q that allows for potential effect
modification of the effect of E on D by Q takes the form

E�Deq�Q � q� � �0 � �1e � �2q � �3eq (1)

A marginal structural model for the joint effects of E
and Q on D and that allows for an interaction between the
effects of E and Q on D takes the form

E�Deq� � �0 � �1e � �2q � �3eq (2)

Although the 2 marginal structural models look very
similar in form, the models themselves and the interpretation
of the model coefficients (�0,�1,�2,�3) and (�0,�1,�2,�3) are
subtly different. Model 1 is a model for the counterfactual
outcome intervening on E only, but conditional on Q. Model
2 is a model for counterfactual outcomes intervening on both
E and Q. In model 1, �3 represents the parameter for assess-
ing whether there is effect modification. In model 2, �3

represents the parameter for assessing whether there is an
interaction between the effects of E and Q on D.

The distinction between interaction and effect modifi-
cation in marginal structural models can best be seen by
contrasting the analytic techniques used to fit models 1 and 2.
In a marginal structural model, control for confounding
variables is made not by conditioning but by weighting.32,33

This weighting technique is generally referred to as inverse
probability of treatment weighting.32,33 We will consider the
procedures for fitting models 1 and 2 in turn. We assume that
the unmeasured confounding assumptions required to fit these
models are satisfied. In particular we assume that we have
some measured covariates X such that the effect of E on D is
unconfounded given X and Q; this will allow us to estimate
the parameters in model 1. If, in addition to this assumption,
the effect of Q on D is unconfounded given X, then we can
also estimate the parameters in model 2. (See Appendix 2 for
further details on evaluating these no-unmeasured-confound-
ing assumptions.) Assuming that these assumptions hold, we
can estimate model 1 using inverse probability of treatment
weighting by calculating the following weights:

wi
E �

P	E � ei�Q � qi


P	E � ei�Q � qi, X � xi


where ei, qi, and xi denote individual i’s values of E, Q, and
X, respectively. The probabilities in the weights can be
estimated using regular logistic regression. The inclusion of
the probability in the numerator is optional, but tends to lead
to more efficient estimates.33 To fit the marginal structural
model in equation 1, one can use a weighted regression of D
on E and Q including an E � Q product term where the
weights are given by wi

E. The estimates of the parameters
from the weighted regression will correspond to those of the
marginal structural model in equation 1. For the estimates of
the standard errors to be valid, robust estimation of standard
errors must be used. (See Robins et al for further details on
fitting marginal structural models.33)

To fit model 2, an additional set of weights is needed,
namely weights for Q that can be constructed as follows:

wi
Q �

P	Q � qi


P	Q � qi�X � xi

.

These numerator and denominator probabilities can
once again be estimated using regular logistic regression.
Once these weights are calculated, the parameters of the
marginal structural model in equation 2 can be estimated by
again using a weighted regression. One uses a weighted
regression of D on E and Q including an E � Q product
term, but this time the observations are then weighted by the
product wi

E�wi
Q and not just wi

E. The estimates of the param-
eters from the weighted regression will correspond to those of
the marginal structural model in equation 2. If Q is not a
cause of E (nor E of Q), then it may not be necessary to
condition on Q in the numerator and denominator probabili-
ties in the weights wi

E for E; if one is in doubt, or if E and
Q are correlated even conditional on X, then conditioning
on Q is advisable. If, on the other hand, there are variables
V that are effects of Q confounding the relationship be-
tween E and D, then these need to be included in the
denominator probabilities for the weight for E (but are not
included in the weights for Q). The weight for E is then

wi
E �

P	E � ei�Q � qi


P	E � ei�Q � qi, X � xi, V � vi

. Positivity and consis-

tency assumptions must hold for the estimation of the
parameters of marginal structural models through inverse�
probability�of�treatment weighting; these assumptions are
discussed elsewhere.32–36 The estimation procedures de-
scribed above are a special case of an entire class of estima-
tors for interaction parameters that include doubly robust and
multiply robust estimators.37

Robins et al33 showed that the analytic procedures
required to fit marginal structural models clarify the distinc-
tion between confounding and effect modification, a distinc-
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tion that regression analysis often obscures. To fit a marginal
structural model using inverse�probability�of�treatment
weighting, confounding is taken care of by including the
confounding variables X as covariates in the denominator
probabilities of the weights; effect modification on the other
hand is evaluated by including the potential effect modifier Q
in the weighted regression model. Similarly, in the discussion
above, the analytic procedures required to fit marginal struc-
tural models make clear the distinction between effect mod-
ification and interaction. The assessment of interaction and
effect modification both use a weighted regression model of
the outcome D on exposures E and Q; however, to estimate
the effect modification parameter �3, the regression is
weighted by only one set of weights, wi

E, whereas to estimate
the interaction parameter �3 the regression is weighted by the
product of 2 sets of weights, wi

E�wi
Q.

WHEN INTERACTION AND EFFECT
MODIFICATION COINCIDE

Throughout this paper, I have emphasized the distinction
between effect modification and interaction. In many settings, of
course, interaction and effect modification will coincide. The
question thus arises whether we can characterize settings in
which interaction and effect modification do indeed coincide. A
characterization can be given in terms of causal DAGs. It
follows from the rules of causal DAGs (see Rule 2 of Pearl’s
do-calculus8) that we will have that interaction and effect mod-
ification will coincide (because E�Deq� � E�De�Q �
q�), whenever all paths between D and Q are blocked by E on a
graph obtained by modifying the original graph to remove the
arrows into E and the arrows emerging from Q. The character-
ization can be made conditional on X if conditional effect
modification or conditional interaction is under consideration. In
this case, 	E, X
 must block all of the aforementioned paths8; if
this condition holds then E�Deq�X � x� � E�De�Q � q, X � x�.
In any case, it can be verified that the condition needed for
interaction and effect modification to coincide fails (in its un-
conditional form) for all of the examples shown in Figures 1–4.
In each case there is a common cause of Q and D, sometimes
measured (X), sometimes unmeasured (U), that leads to the
failure of the condition. In these cases, conditioning on Q gives
some information about a common cause of Q and D, and
because this common cause affects D, conditioning on Q
will not coincide with intervening on Q. Effect modifica-
tion and interaction are thus not unconditionally equivalent
in Figures 1– 4.

In other settings, however, the equivalence will hold.
For example, a common setting in the literature on interaction
is to assume that the effects of both E and Q on D are
unconfounded given X. If this holds, and the exposure Q
precedes the exposure E then the condition above will be
satisfied and we will have E�Deq�X � x� � E�De�Q � q, X �
x�. Thus, interaction between E and Q conditional on X and

effect modification of E by Q conditional on X will coincide
in this setting.

In practice, the distinction between effect modification
and interaction is often ignored. The researcher might simply
regress D on E, Q, E � Q and possibly some covariates X.
However, while effect modification and interaction may often
coincide, they do not always. For example, a regression of D
on E, Q and E � Q for the variables given in Figure 3 could
be used to assess effect modification, but not interaction. In
Figure 4, a regression of D on E, Q, E � Q (with or without
X) cannot be used to assess either effect modification or
interaction; data on E, Q, D, and X can be used to assess the
interaction between the effects of E and Q on D but methods
other than regression are needed (see Appendix 2 for further
details).

In Figure 2, the interpretation of the coefficient for the
product term in a regression of D on E, Q, E � Q and X is
somewhat more straightforward. In Figure 2, X blocks all
paths from Q to D on the graph with the arrows into E and the
arrows emerging from Q removed. Thus in Figure 2, effect
modification conditional on X and interaction conditional on
X will coincide. The estimate of the coefficient for the
product term in a regression of D on E, Q, E � Q, and X can,
in Figure 2, be interpreted as a measure of effect modification
conditional on X, and as a measure of interaction conditional
on X. To obtain unconditional measures of interaction, one
could standardize the conditional measures over the distribu-
tion of X; to obtain unconditional measures of effect modifi-
cation, one could standardize the conditional measures over
the distribution of X given Q. As noted above, these uncon-
ditional measures of interaction and effect modification (un-
like the conditional measures) will not in general coincide for
Figure 2.

Finally, in Figure 1, it can be seen that conditional on
X there is neither interaction between the effects of E and Q,
nor effect modification of E by Q; clearly Q has no effect on
D, and once we condition on X, Q is independent of D. Thus
interaction conditional on X and effect modification condi-
tional on X coincide trivially.

DISCUSSION
This paper discusses the distinction between interaction

and effect modification. The distinction is manifest in a
variety of ways: in the definition of these concepts, in situations
where one is present but the other is absent, in the conditions
required for their identification, and in the analytic procedures
required to estimate parameters in marginal structural models
corresponding to interaction or effect modification.

Although the definitions above and the series of con-
trasting examples make clear the formal distinction between
these concepts, there is a certain ambiguity or duality in the
language that is used. As noted above, the 2 terms are often
used interchangeably in practice. Moreover, what has been
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formally defined above as effect modification is considered
by many to fall under a very general category of interaction,
conceived as broadly encompassing several distinct con-
cepts.7 If one conceives of interaction broadly in this manner,
then Definition 1 concerning effect modification and Defini-
tion 2 concerning the interaction of the causal effects of 2
exposures would both be considered as 2 distinct concepts
within the broader category of interaction.

Conversely, what has formally been defined above as
an “interaction of effects” one could also conceive of as
“effect modification by intervention.” Although the phrase
effect modification is customarily used when the effect of one
variable on another differs conditionally within strata of a
third, it seems not unreasonable to use the term effect mod-
ification (by intervention) to refer to cases in which the effect
of one variable on another varies under different interventions
on a third variable.

We see then a certain duality or ambiguity in the
language we use; the formal definitions given above, how-
ever, allow for a clear distinction between concepts to be
drawn. Although it is understandable that the language is
often used interchangeably, it is nevertheless important to be
aware that there are 2 distinct concepts, irrespective of what
we might choose to call them. When epidemiologists run
regression analyses with product terms, sometimes only one
of 2 possible interpretations is warranted. In some cases the
regression coefficient for the product term can be interpreted
as a measure of (what has been defined above as) effect
modification; in other cases the coefficient can be interpreted
as a measure of (what has been defined above) as interaction.
Sometimes both interpretations are warranted; sometimes
only one, or the other, and sometimes neither. In general,
some knowledge of the causal structure among variables is
necessary to determine which interpretation (or interpreta-
tions) is warranted.

The distinction between interaction and effect modifi-
cation has implications for the analysis of randomized trials.
Often subgroup analyses are conducted in such trials. Pro-
vided the variable Q defining the subgroups is a pretreatment
baseline covariate, the subgroup analyses will warrant an
interpretation as measures of effect modification because the
treatment itself is randomized (and thus its effect on the
outcome will in general be unconfounded). However, these
subgroup analyses will not in general allow for an interpre-
tation as measures of interaction (as given in Definition 2
above) because the effect of the secondary variable Q, defin-
ing the subgroups, will not in general be unconfounded. To
interpret contrasts between subgroup analyses as measures
of interaction, one would also need to control for confounders
of the relationship between the secondary variable, Q, and the
outcome. For each distinct secondary exposure variable Q for
which an interaction interpretation of the subgroup analyses
is desired, it will likely be necessary to consider a different

set of confounding variables. Again, randomization of the
primary treatment does not ensure unconfoundedness of the
effects of a secondary exposure variable used to define
subgroups.

In future research, more complex examples could be
considered that include time-varying effect modifiers38,39 and
interactions, or that explicitly consider time itself as potential
effect modifier.
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APPENDIX 1. NUMERICAL EXAMPLE OF
INTERACTION WITHOUT EFFECT

MODIFICATION
This appendix provides a numerical example (related to

Fig. 2) to show interaction between effects without effect mod-
ification. Suppose that E denotes a drug in a randomized trial
for weight loss for obese children, D denotes the final weight
of a child 6 months after the trial completion, X denotes the
sugar intake in a child’s diet (standardized on a scale from 0–1), and
Q denotes some measure of exercise (standardized on a scale from
0–1). For simplicity we will consider an example in which the
link between exercise and sugar intake is deterministic so that
Q � X. More complicated examples with stochastic links could
also be constructed. Suppose further now that E�X� � 0.6 and
E�D�E, Q, X� � (150 � 10E � 5EQ � 30X � 5EX). Then on
the causal DAG given in Figure 2 we have that E�Deq� ��xE
�D�E � e, Q � q, X � x�P(X � x) � �x(150 � 10e � 5eq �
30x � 5ex)P(X � x) � (150 � 10e�5eq � 30E�X� � 5eE�X�) �
150 � 10e � 5eq � (30)(0.6) � 5e(0.6) � 168 � 7e � 5eq. Thus
E�De � 1,q � 1� � E�De � 0,q � 1� � (168 � 7 � 5) � (168) � �12
and E�De � 1, q � 0� � E�De � 0, q � 0� � (168 � 7) �
(168) � �7 and thus there is interaction on the causal risk

difference scale. However, E�De�Q � q� � �x E�D�E � e, Q �
q, X � x�P(X � x�Q � q) � �x (150 � 10e � 5eq � 30x �
5ex)P(X � x�Q � q) � (150 � 10e � 5eq � 30E �X�Q � q� �
5eE�X�Q � q�) � (150 � 10e � 5eq � 30q � 5eq) � (150 �
10e � 30q). Thus E�De � 1�Q � 1� � E�De � 0�Q � 1� �
(150 � 10 � 30) � (150 � 30) � �10 and E�De � 1�Q �
0� � E�De � 0�Q � 0� � (150 � 10) � (150) � �10 and thus
there is no effect modification by Q on the causal risk difference
scale of the effect of E on D.

APPENDIX 2. IDENTIFICATION RESULTS FOR
EFFECT MODIFICATION AND INTERACTION

This appendix provides results concerning the identifi-
cation of effect modification and of the interaction of effects.
The notation X Y�Z denotes that X is conditionally indepen-
dent of Y given Z. We will assume data is available on some
set of covariates X. In general, to identify effect modification
by Q of the effect of E on D the effect of E on D must be
unconfounded given X and Q. More formally, in counterfac-
tual notation, this condition is that De E�(X, Q). Conditions
required to identify joint effects E�Deq� (and thereby interac-
tions between effects) are more subtle. On the crudest level,
it will suffice to identify joint effects E�Deq� if the effects of
E and Q on D are unconfounded given X or in counterfactual
notation, Deq (E, Q)�X. Somewhat more generally, the joint
effect E�Deq� will be identified if there exist 2 sets of measured
covariates X and V such that either Deq Q�X and Deq E�(X, V,
Q), or Deq E�X and Deq Q�(X, V, E). In words, it will suffice
either if the effect of Q on D is unconfounded given X and the
effect of E on D is unconfounded given 	X, V, Q
 or if the effect
of E on D is unconfounded given X and the effect of Q on D is
unconfounded given 	X, V, E
. Below, however, we give an
even more general set of identification conditions. The
results for the identification of effect modification and the
interaction of effects concern causal DAGs and follow
immediately from previous results in the literature. The
first result concerns the identification of effect modifica-
tion and is an immediate consequence of the rules of
Pearl’s do-calculus.8

Result 1
If on a causal directed acyclic graph, Q is not a descendent

of E and there exists a set X of non � descendents of E such that
all the backdoor paths from E to D are blocked by 	X, Q
 then
E�De�Q � q� is identified and is given by E�De�Q � q� � �x

E�D�E � e, X � x, Q � q�P(X � x�Q � q).

If the conditions of Result 1 hold, then effect modifi-
cation can be identified since each term in (E�De1

�Q � q1� �
E�De0

�Q � q1�) � (E�De1
�Q � q0� � E�De0

�Q � q0�) is
identified. The second result concerns the identification of the
interaction of effects. The result is a special case of Theorem
1 in the work of Pearl and Robins.27
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Result 2
Consider a causal directed acyclic with 2 exposures A1

and A2 and some outcome D. Suppose there exists a set W of
nondescendents of A1 such that all backdoor paths from A1 to D
are blocked by W in the graph with the arrows going into A2

removed. Suppose further that there exists a set V of nondescen-
dents of A2 such that all backdoor paths from A2 to D on the
original graph are blocked by (V, W, A1) then E�Da1a2

� is
identified and is given by E�Da1a2

� � �v,w E�D�A2 � a2, V � v,
A1 � a1, W � w�P(V � v�A1 � a1, W � w)P(W � w).

If the conditions of Result 2 hold with A1 and A2 corre-
sponding to Q and E respectively, or vice versa, then the

interaction of effects can be identified since each term in
(E�De1q1� � E�De0q1�) � (E�De1q0� � E�De0q0�) is identified.

Figure 3 above constitutes an example in which we
can apply Result 1 but not Result 2; it is shown in the
eAppendix (http://links.lww.com/EDE/A340) that Figure 4
above constitutes an example in which we can apply Result
2 but not Result 1. Results 1 and 2 represent reasonably
general sufficient conditions for the identification of effect
modification and the interaction of effects but they are not
necessary conditions. Conditions for conditional effects28

and for joint effects29,30 that are both necessary and suf-
ficient have been derived, but it is not easy to provide a
simple characterization of these results.

Epidemiology • Volume 20, Number 6, November 2009 Interaction and Effect Modification

© 2009 Lippincott Williams & Wilkins www.epidem.com | 871

http://www.epidem.com

