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3.1 Joint probability distribution functions 

• The joint probability distribution function of random variables X and Y, 

denoted by , is defined by 

 , 

   for all x, y  

• As before, some obvious properties follow from this definition of joint 

cumulative distribution function: 

 

•  and  are called marginal distribution functions of X and Y, resp. 
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Copulas 

• Consider a random vector  and suppose that its margins  and 

are continuous. By applying the probability integral transformation to each 

component, the random vector 

  

has uniform margins. The copula of  is defined as the joint 

cumulative distribution function of :  
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3.2 The discrete case: joint probability mass functions 

• Let X and Y be two discrete random variables that assume at most a 

countable infinite number of value pairs , i,j = 1,2, …, with nonzero 

probabilities. Then the joint probability mass function of X and Y is defined 

by  

  

   for all x and y. It is zero everywhere except at the points , i,j = 1,2, …, 

   where it takes values equal to the joint probability . 

 

(Example of a simplified random walk)  
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3.3 The continuous case: joint probability density functions 

• The joint probability density function  of 2 continuous random 

variables X and Y is defined by the partial derivative  

  

• Since  is monotone non-decreasing in both x and y, the associated 

joint probability density function is nonnegative for all x and y. 

• As a direct consequence:  

where  are now called the 

marginal density functions of X and Y respectively 
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• Also,  

and  for 
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Meeting times 

• A boy and a girl plan to meet at a certain place between 9am and 10am, 

each not wanting to wait more than 10 minutes for the other. If all times of 

arrival within the hour are equally likely for each person, and if their times 

of arrival are independent, find the probability that they will meet. 

• Answer: for a single continuous random variable X that takes all values over 

an interval a to b with equal likelihood, the distribution is called a uniform 

distribution and its density function has the form  
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The joint density function of two 

independent uniformly distributed 

random variables is a flat surface 

within prescribed bounds. The 

volume under the surface is unity. 
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• We can derive from the joint probability, the joint probability distribution 

function, as usual 

 

 

• From this we can again derive the marginal probability density functions, 

which clearly satisfy the earlier definition for 2 random variables that are 

uniformly distributed over the interval [0,60]  
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4 Conditional distribution and independence 

 

• The concepts of conditional probability and independence introduced 

before also play an important role in the context of random variables 

• The conditional distribution of a random variable X, given that another 

random variable Y has taken a value y, is defined by  

  

• When a random variable X is discrete, the definition of conditional mass 

function of X given Y=y is  

  

• For a continuous random variable X, the conditional density function of X 

given Y=y is  
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• In the discrete case, using the definition of conditional probability, we 

have 

 

an expression which is very useful in practice when wishing to derive joint 

probability mass functions … 

• Using the definition of independent events in probability theory, when 

the random variables X and Y are assumed to be independent, 

  

so that   
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• The definition of a conditional density function for a random continuous 

variable X, given Y=y, entirely agrees with intuition …: 

 

 

By setting  and by taking the limit 

, this reduced to provided  
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From  

  

      and  

 

       we can derive that  

 

       a form that is identical to the discrete case. But note that  
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• When random variables X and Y are independent, however, 

  (using the definition for ) and (using the 

expression  

 

it follows that 
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• Finally, when random variables X and Y are discrete,  

 

and in the case of a continuous random variable, 

 

Note that these are very similar to those relating the distribution and 

density functions in the univariate case. 

• Generalization to more than two variables should now be 

straightforward, starting from the probability expression 
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Resistor problem 

• Resistors are designed to have a 

resistance of R of . 

Owing to some imprecision in 

the manufacturing process, the 

actual density function of R has 

the form shown (right), by the 

solid curve.  

• Determine the density function 

of R after screening (that is: 

after all the resistors with 

resistances beyond the 48-52  

range are rejected. 

• Answer: we are interested in the 

conditional density function 

 where A is the event 
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We start by considering 
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Where  

   

is a constant. 

The desired function is then obtained by differentiation. We thus obtain 

  

Now, look again at a graphical representation of this function. What do you 

observe? 
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Answer: 

The effect of screening is essentially a truncation of the tails of the 

distribution beyond the allowable limits. This is accompanied by an 

adjustment within the limits by a multiplicative factor 1/c so that the area 

under the curve is again equal to 1. 
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5 Expectations and moments 

5.1 Mean, median and mode 

Expectations 

• Let g(X) be a real-valued function of a random variable X. The mathematical 

expectation or simply expectation of g(X) is denoted by E(g(X)) and defined 

as 

  

   if X is discrete where are possible values assumed by X. 

• When the range of i extends from 1 to infinity, the sum above exists if it 

converges absolutely; that is,   
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• If the random variable X is continuous, then  

  

   if the improper integral is absolutely convergent, that is,  

  

   then this number will exist.  
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• Basic properties of the expectation operator E(.), for any constant c and 

any functions g(X) and h(X) for which expectations exist include: 

      

       Proofs are easy. For example, in the 3
rd

 scenario and continuous case : 
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• Two other measures of centrality of a random variable: 

o A median of X is any point that divides the mass of its distribution into 

two equal parts � think about our quantile discussion 

o A mode is any value of X corresponding to a peak in its mass function or 

density function 
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From left to right: positively skewed, 

negatively skewed, symmetrical 

distributions  
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Moments of a single random variable 

• Let ; the expectation , when it exists, is called 

the nth moment of X and denoted by : 

 

• The first moment of X is also called the mean, expectation, average value 

of X and is a measure of centrality  
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A one-dimensional random walk – read at home 

• An elementary example of a random walk is the random walk on the 

integer number line, which starts at 0 and at each step moves +1 or −1 with 

equal probability. 

• This walk can be illustrated as follows: A marker is placed at zero on the 

number line and a fair coin is flipped. If it lands on heads, the marker is 

moved one unit to the right. If it lands on tails, the marker is moved one 

unit to the left. After five flips, it is possible to have landed on 1, −1, 3, −3, 

5, or −5. With five flips, three heads and two tails, in any order, will land on 

1. There are 10 ways of landing on 1 or −1 (by flipping three tails and two 

heads), 5 ways of landing on 3 (by flipping four heads and one tail), 5 ways 

of landing on −3 (by flipping four tails and one head), 1 way of landing on 5 

(by flipping five heads), and 1 way of landing on −5 (by flipping five tails).  
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• Example of eight random walks in one dimension starting at 0. The plot 

shows the current position on the line (vertical axis) versus the time steps 

(horizontal axis). 



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS                                                                                                                                                 2b - 29 

 

• See the figure below for an illustration of the possible outcomes of 5 flips. 

 

• To define this walk formerly, take independent random variables 

where each variable is either 1 or -1 with a 50% probability for either value, 

and set  and . The series is called the simple random 

walk on   . This series of 1’s and -1’s gives the distance walked, if each part 

of the walk is of length 1. 
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• The expectation  of  is 0. That is, the mean of all coin flips 

approaches zero as the number of flips increase. This also follows by the 

finite additivity property of expectations:  

 . 

• A similar calculation, using independence of random variables and the fact 

that  shows that  

 . 

• This hints that  , the expected translation distance after n steps, 

should be of the order of . 
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• Suppose we draw a line some distance from the origin of the walk. How 

many times will the random walk cross the line?  
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• The following, perhaps surprising, theorem is the answer: for any random 

walk in one dimension, every point in the domain will almost surely be 

crossed an infinite number of times. [In two dimensions, this is equivalent 

to the statement that any line will be crossed an infinite number of 

times.] This problem has many names: the level-crossing problem, the 

recurrence problem or the gambler's ruin problem.  

• The source of the last name is as follows: if you are a gambler with a finite 

amount of money playing a fair game against a bank with an infinite 

amount of money, you will surely lose. The amount of money you have 

will perform a random walk, and it will almost surely, at some time, reach 

0 and the game will be over. 
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• At zero flips, the only possibility will be to remain at zero. At one turn, 

you can move either to the left or the right of zero: there is one chance of 

landing on -1 or one chance of landing on 1. At two turns, you examine 

the turns from before. If you had been at 1, you could move to 2 or back 

to zero. If you had been at -1, you could move to -2 or back to zero. So, f.i. 

there are two chances of landing on zero, and one chance of landing on 2.  

If you continue the analysis of probabilities, you can see Pascal's triangle 
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5.2 Variance and standard deviation 

Central moments 

• The central moments of a random variable X are the moments of X with 

respect to its mean. So the nt central moment of X, denoted as , is 

defined as   

 

• The variance of X is the second central moment and usually denoted as 

 or Var(X). It is the most common measure of dispersion of a 

distribution about its mean, and by definition always nonnegative. 

• Important properties of the variance of a random variable X include: 
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• The standard deviation of X, another such measure of dispersion, is the 

square root of Var(X) and often denoted by .   

• One of the advantages of using  instead of  is that the standard 

deviation of X has the same unit as the mean. It can therefore be 

compared with the mean on the same scale to gain some measure of the 

degree of spread of the distribution.  

• A dimensionless number that 

characterizes dispersion relative 

to the mean which also 

facilitates comparison among 

random variables of different 

units is the coefficient of 

variation, defined by  
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Relation between variance and simple moments 

  

Indeed, with : 

 

 

• Hence, there are two ways of computing variances …,  

o using the original definition, or  

o using the relation to the first and second simple moments 
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Third central moment 

• The third moment about the mean is sometimes called a measure of 

asymmetry, or skewness 

• The skewness for a normal distribution is zero, and any symmetric data 

should have a skewness near zero.  

• Negative values for the skewness indicate data that are skewed left and 

positive values for the skewness indicate data that are skewed right.  

• By skewed left, we mean that the left tail is long relative to the right tail. 

Similarly, skewed right means that the right tail is long relative to the left 

tail.  

• Some measurements have a lower bound and are thus skewed right. For 

example, in reliability studies, failure times cannot be negative.  
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• Knowledge of the third moment hardly gives a clue about the shape of the 

distribution … (e.g., f3(x) is far from symmetrical but its third moment is 

zero ) 

 

• The ratio  

                       

is called the coefficient of skewness and is unitless. 
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CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS                                                                                                                                      

 

                                                                                                                                        2b - 39 

 

 



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS                                                                                                                                                 2b - 40 

 

Fourth central moment 

• The fourth moment about the mean is sometimes called a measure of 

excess, or kurtosis 

• It refers to the degree of flatness of a density near its center, and usually 

the coefficient of excess kurtosis is considered (-3 ensures that the excess 

is zero for normal distributions):  

                               

• A distribution with negative excess kurtosis is called platykurtic. A 

distribution with positive excess kurtosis is called leptokurtic. Distributions 

with zero excess kurtosis are called mesokurtic 

• This measure however suffers from the same failing as does the measure of 

skewness: It does not always measure what it is supposed to. 
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The importance of moments … or not? 

• In applied statistics, the first two moments are obviously of great 

importance. It is usually necessary to know at least the location of the 

distribution and to have some idea about its dispersion or spread 

• These characteristics can be estimated by examining a sample drawn from a 

set of objects known to have the distribution in question (see future 

chapters) 

• In some cases, if the moments are known, then the density can be 

determined (e.g., cfr Normal Distribution).  

• It would be useful if a function could be found that would give a 

representation of all the moments. Such a function is called a moment 

generating function.  
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5.3 Moment generating functions
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Moment generating functions 
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Origin of the name “moment generating function”
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Importance of moment generating functions 

 

• In principle it is possible that there exists a sequence of moments for which 

there is a large collection of different distributions functions having these 

same moments � so a sequence of moments does not determine uniquely 

the corresponding distribution function … 
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For example:  
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• Densities for two distributions with the SAME infinite series of moments 
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• Is there any moment criterion for identifying distributions that would 

ensure that two distributions are identical? 

 

Yes: 

If random variables X and Y both have moment generating functions 

 that exist in some neighborhood of zero and if they are 

equal for all t in this neighborhood, then X and Y have the same 

distributions! 

 

“Simple proof” of a special case: 
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Now 
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6 Functions of random variables 

6.1 Functions of one random variable 

• Real-life examples often present themselves with far more complex density 

functions that the one described so far.  

• In many cases the random variable of interest is a function of one that we 

know better, or for which we are better able to describe its density or 

distributional properties 

• For this reason, we devote an entire part on densities of “functions of 

random variables”. We first assume a random variable X and Y=g(X), with 

g(X) a continuous function of X.  

o How does the corresponding distribution for Y look like? 

o What are its moment properties?   
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Discrete random variables 

• Suppose that the possible values taken by X can be enumerated as 

. Then the corresponding possible values of Y can be enumerated 

as .  

• Let the probability mass function of X be given by  

then the probability mass function of Y is determined as  
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Continuous random variables 

• To carry out similar mapping steps as outlined for discrete random 

variables, care must be exercised in choosing appropriate corresponding 

regions in ranges spaces  

• For strictly monotone increasing functions of x 

: 

  

        By differentiating both sides: 

  

• In general, for X a continuous random variable and Y=g(X), with g(X) 

continuous in X and strictly monotone,  
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• Let X be a continuous random variable and Y=g(X), where g(X) is 

continuous in X, and y=g(x) admits at most a countable number (r) of 

roots  then  
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Example of Y=  and X normally distributed, leading to -distribution 
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Recall: the probability integral transform
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Two ways to compute expectation
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Two ways to compute moments 

• Expressing the nth moment of Y as , 

 

• Alternatively, using characteristic functions (here: j is the imaginary unit): 

 

after which the moments of Y are given via taking derivatives:  

  

• Note that  
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6.2 Functions of two or more random variables

variables 

Deriving moments – mean
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unctions of two or more random variables: sums of random 

n and variances 
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: sums of random 
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Covariances and correlations
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• 
 Several sets of (X, Y) points, with the correla

each set, are shown in the following plot. Note that the correlation reflects 

the noisiness and direction of a 

slope of that relationship (middle), nor many aspects of nonlinear 

relationships (bottom).  

• Remark: the figure in the center has a slope of 0 but in that case the 

correlation coefficient is undefined because the variance of 
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) points, with the correlation coefficient of 

each set, are shown in the following plot. Note that the correlation reflects 

the noisiness and direction of a linear relationship (top row), but not the 

slope of that relationship (middle), nor many aspects of nonlinear 

 

Remark: the figure in the center has a slope of 0 but in that case the 

correlation coefficient is undefined because the variance of 
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tion coefficient of X and Y for 

each set, are shown in the following plot. Note that the correlation reflects 

(top row), but not the 

slope of that relationship (middle), nor many aspects of nonlinear 

Remark: the figure in the center has a slope of 0 but in that case the 

correlation coefficient is undefined because the variance of Y is zero 
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The Central Limit Theorem

• One of the most important theorems of probability theory is the 

Limit Theorem. It gives an approximate distribution of an averag
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One of the most important theorems of probability theory is the Central 

heorem. It gives an approximate distribution of an average. 
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Remark : In the light of the central limit theorem, our results concerning 1

dimensional random walks is of no surprise: as the number of steps increases, 

it is expected that position of the particle becomes normally distributed in the 

limit.  
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                                                                                                                                        2b - 66 

 

 
: In the light of the central limit theorem, our results concerning 1-

dimensional random walks is of no surprise: as the number of steps increases, 

it is expected that position of the particle becomes normally distributed in the 
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Determine the distributio
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on : (1) Cumulative-distribution function 
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function technique 
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(2) Moment-generating-function technique
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function technique 
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Multivariate transform  associated with X and Y 

• The multivariate transform  of X and Y is given by  

  

• It is a direct generalization of the moment generating functions we have 

seen for a single random variable or a sum of independent random 

variables: 

o If X and Y are independent random variables, and , then 

 

• The function  is called the joint moment generating function of 

X and Y 
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(3) The transformation technique
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technique– when the number of variables grows
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when the number of variables grows 
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where x0 is the location parameter, specifying the location of the peak of the 

Cauchy distribution, and γ 

deviation are undefined!) 
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6.3 Two or more random variables: multivariate moments 

• Let X1 and X2 be a jointly distributed random variables (discrete or 

continuous), then for any pair of positive integers (k1, k2) the joint moment 

of  (X1, X2) of order (k1, k2) is defined to be: 
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• Let X1 and X2 be a jointly distributed random variables (discrete or 

continuous), then for any pair of positive integers (k1, k2) the joint central 

moment of  (X1, X2) of order (k1, k2)  is defined to be: 
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7 Inequalities 

7.1 Jensen inequality
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• Note that in general, 

• Jensen inequality can be used to prove the 

• The latter provides a method for improving the performance of an unbiased 

estimator of a parameter (i.e. reduce its variance

that a “sufficient” statistic for this estimator is available.

• With g(x)=x
2
 (hence g is a convex function), Jensen inequality says

 

and therefore that the variance of X is always non
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can be used to prove the Rao-Blackwell theorem

The latter provides a method for improving the performance of an unbiased 

estimator of a parameter (i.e. reduce its variance – cfr Cha

statistic for this estimator is available. 

(hence g is a convex function), Jensen inequality says
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Blackwell theorem 

The latter provides a method for improving the performance of an unbiased 

apter 5) provided 

(hence g is a convex function), Jensen inequality says 
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7.2 Markov’s inequality 

• In probability theory, Markov's inequality gives an upper bound for the 

probability that a non-negative function of a random variable is greater 

than or equal to some positive constant.  

• Markov's inequality (and other similar inequalities) relate probabilities to 

expectations, and provide (frequently) loose but still useful bounds for the 

cumulative distribution function of a random variable. 
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• Markov's inequality gives an upper bound for the probability that 

within the set indicated in red.

• Markov's inequality states that for any real

any positive number a, we have 
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Markov's inequality gives an upper bound for the probability that X lies 

 

valued random variable X and 
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Proof: 

Clearly,   

Therefore also 

Using linearity of expectations, the left side 

 

Thus we have 

and since a > 0, we can divide both sides by 
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of this inequality is the same as 



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS  

7.3 Chebyshev’s inequality
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7.4 Cantelli's inequality – no exam material 

• A one-tailed variant of Chebyshev’s inequality with k > 0, is  

  

Proof: 

Without loss of generality, we assume  .  

Let   

Thus for any  t such that   we have 
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• The second inequality follows from Markov inequality:   

• The above derivation holds for any t such that t+a>0. We can therefore 

select t to minimize the right-hand side:   
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• An application: for probability distributions having an expected value and a 

median, the mean (i.e., the expected value) and the median can never 

differ from each other by more than one standard deviation.  

To express this in mathematical notation, let μ, m, and σ be respectively the 

mean, the median, and the standard deviation. Then  

  

(There is no need to rely on an assumption that the variance exists, i.e., is 

finite. This inequality is trivially true if the variance is infinite.) 
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Proof:  

Setting k = 1 in the statement for the one

 

By changing the sign of X and so of 

 

Thus the median is within one standard deviation of the mean.

 

 

• Chebyshev inequality can also be used to prove the law of large numbers
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1 in the statement for the one-sided inequality gives:

and so of μ, we get 

Thus the median is within one standard deviation of the mean.

Chebyshev inequality can also be used to prove the law of large numbers
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7.5 Law of large numbers revisited 

 



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS                                                                                                                                                 2b - 91 

 

• Or formulated in the formal way … 

 

 

 

 


