RESEARCH NOTE

What Are Degrees of Freedom?

Shanta Pandey and Charlotte Lyn Bright

A

s we were teaching a multivariate statistics
Acourse for doctoral students, one of the stu-

dents in the class asked,“What are degrees
of freedom? I know it is not good to lose degrees of
freedom, but what are they?” Other students in the
class waited for a clear-cut response. As we tried to
give a textbook answer, we were not satisfied and we
did not get the sense that our students understood.
We looked through our statistics books to deter-
mine whether we could find a more clear way to
explain this term to social work students. The wide
variety of language used to define degrees of freedom
is enough to confuse any social worker! Definitions
range from the broad,“Degrees of freedom are the
number of values in a distribution that are free
to vary for any particular statistic” (Healey, 1990,
p- 214), to the technical:

Statisticians start with the number of terms in
the sum [of squares], then subtract the number
of mean values that were calculated along the
way. The result is called the degrees of freedom,
for reasons that reside, believe it or not, in the
theory of thermodynamics. (Norman & Streiner,
2003, p. 43)

Authors who have tried to be more specific have
defined degrees of freedom in relation to sample
size (Trochim, 2005; Weinbach & Grinnell, 2004),
cell size (Salkind, 2004), the number of relation-
ships in the data (Walker, 1940), and the difference

in dimensionalities of the parameter spaces (Good,

1973). The most common definition includes the
number or pieces of information that are free to
vary (Healey, 1990; Jaccard & Becker, 1990; Pagano,
2004; Warner, 2008; Wonnacott & Wonnacott,
1990). These specifications do not seem to aug-
ment students’ understanding of this term. Hence,
degrees of freedom are conceptually difficult but
are important to report to understand statistical
analysis. For example, without degrees of freedom,
we are unable to calculate or to understand any

underlying population variability. Also,in a bivariate
and multivariate analysis, degrees of freedom are a
function of sample size, number of variables, and
number of parameters to be estimated; therefore,
degrees of freedom are also associated with statisti-
cal power. This research note is intended to com-
prehensively define degrees of freedom, to explain
how they are calculated, and to give examples of
the different types of degrees of freedom in some
commonly used analyses.

DEGREES OF FREEDOM DEFINED

In any statistical analysis the goal is to understand
how the variables (or parameters to be estimated) and
observations are linked. Hence, degrees of freedom
are a function of both sample size (N) (Trochim,
2005) and the number of independent variables (k)
in one’s model (Toothaker & Miller, 1996; Walker,
1940; Yu, 1997).The degrees of freedom are equal to
the number of independent observations (N), or the
number of subjects in the data, minus the number of
parameters (k) estimated (Toothaker & Miller, 1996;
Walker, 1940). A parameter (for example, slope) to be
estimated is related to the value of an independent
variable and included in a statistical equation (an
additional parameter is estimated for an intercept in
a general linear model). A researcher may estimate
parameters using different amounts or pieces of
information, and the number of independent pieces
of information he or she uses to estimate a statistic
or a parameter are called the degrees of freedom (df)
(HyperStat Online, n.d.). For example, a researcher
records income of N number of individuals from a
community. Here he or she has Nindependent pieces
of information (that is, N points of incomes) and
one variable called income (k);in subsequent analysis
of this data set, degrees of freedom are associated
with both N and k. For instance, if this researcher
wants to calculate sample variance to understand the
extent to which incomes vary in this community,
the degrees of freedom equal N — k. The relation-
ship between sample size and degrees of freedom is
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positive; as sample size increases so do the degrees
of freedom. On the other hand, the relationship
between the degrees of freedom and number of pa-
rameters to be estimated is negative. In other words,
the degrees of freedom decrease as the number of
parameters to be estimated increases. That is why
some statisticians define degrees of freedom as the
number of independent values that are left after the
researcher has applied all the restrictions (Rosenthal,
2001; Runyon & Haber, 1991); therefore, degrees
of freedom vary from one statistical test to another
(Salkind, 2004). For the purpose of clarification, let
us look at some examples.

A Single Observation with One Parameter

to Be Estimated

If a researcher has measured income (k = 1) for
one observation (N = 1) from a community, the
mean sample income is the same as the value of
this observation. With this value, the researcher has
some idea of the mean income of this community
but does not know anything about the population
spread or variability (Wonnacott & Wonnacott,
1990). Also, the researcher has only one indepen-
dent observation (income) with a parameter that he
or she needs to estimate. The degrees of freedom
here are equal to N — k. Thus, there is no degree
of freedom in this example (1 — 1 = 0). In other
words, the data point has no freedom to vary, and
the analysis is limited to the presentation of the value
of this data point (Wonnacott & Wonnacott, 1990;
Yu, 1997). For us to understand data variability, N
must be larger than 1.

Multiple Observations (N) with One
Parameter to Be Estimated

Suppose there are N observations for income. To
examine the variability in income, we need to esti-
mate only one parameter (that is, sample variance)
for income (k), leaving the degrees of freedom of
N — k. Because we know that we have only one
parameter to estimate, we may say that we have a
total of N — 1 degrees of freedom. Therefore, all
univariate sample characteristics that are computed
with the sum of squares including the standard de-
viation and variance have N— 1 degrees of freedom
(Warner, 2008).

Degrees of freedom vary from one statistical test
to another as we move from univariate to bivari-
ate and multivariate statistical analysis, depending
on the nature of restrictions applied even when

sample size remains unchanged. In the examples
that follow, we explain how degrees of freedom are
calculated in some of the commonly used bivariate
and multivariate analyses.

Two Samples with One Parameter

(or t Test)

Suppose that the researcher has two samples, men
and women, or n, +n, observations. Here, one can
use an independent samples f test to analyze whether
the mean incomes of these two groups are different.
In the comparison of income variability between
these two independent means (or k number of
means), the researcher will have n,+n,—2 degrees
of freedom. The total degrees of freedom are the
sum of the number of cases in group 1 and group
2 minus the number of groups. As a case in point,
see the SAS and SPSS outputs of a  test comparing
the literacy rate (LITER ACY, dependent variable) of
poor and rich countries (GNPSPLIT, independent
variable) in Table 1. All in all, SAS output has four
different values of degrees of freedom (two of which
are also given by SPSS). We review each of them in
the following paragraphs.

The first value for degrees of freedom under ¢
tests is 100 (reported by both SAS and SPSS). The
two groups of countries (rich and poor) are assumed
to have equal variances in their literacy rate, the
dependent variable. This first value of degrees of
freedom is calculated as n, + n, — 2 (the sum of the
sample size of each group compared in the t test
minus the number of groups being compared), that
is, 64 + 38 — 2 = 100.

For the test of equality of variance, both SAS and
SPSS use the F test. SAS uses two different values
of degrees of freedom and reports folded Fstatistics.
The numerator degrees of freedom are calculated as n,
— 1, that is 64 — 1 = 63.The denominator degrees of
freedom are calculated as n,— 1 or 38 — 1 = 37.These
degrees of freedom are used in testing the assump-
tion that the variances in the two groups (rich and
poor countries, in our example) are not significantly
different. These two values are included in the cal-
culations computed within the statistical program
and are reported on SAS output as shown in Table
1. SPSS, however, computes Levene’s weighted F
statistic (see Table 1) and uses k— 1 and N— k degrees
of freedom, where k stands for the number of groups
being compared and N stands for the total number
of observations in the sample; therefore, the degrees
of freedom associated with the Levene’s F statistic
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are the same (thatis,k—1=2-1=1,N-k =102
—2=100) as the degrees of freedom associated with
“equal” variance test discussed earlier, and therefore
SPSS does not report it separately.

If the assumption of equal variance is violated
and the two groups have different variances as is
the case in this example, where the folded F test or
Levene’s F weighted statistic is significant, indicat-
ing that the two groups have significantly different
variances, the value for degrees of freedom (100) is
no longer accurate. Therefore, we need to estimate
the correct degrees of freedom (SAS Institute, 1985;
also see Satterthwaite, 1946, for the computations
involved in this estimation).

We can estimate the degrees of freedom accord-
ing to Satterthwaite’s (1946) method by using the
following formula:

df Satterthwaite =
=~ 1) (s, ~ 1)
Ht Sm__f', ) T

where n, = sample size of group 1, n,= sample size
of group 2,and S and §, are the standard deviations
of groups 1 and 2, respectively. By inserting subgroup
data from Table 1, we arrive at the more accurate
degrees of freedom as follows:

(64— 1) (38— 1)
[ 25.65'x 38 |

25.65'x 38 |

(64-1) Lzs.ssz x 38 ) +(38-1) Lzs.asz x 38 )
18.07 x 64 18.07 x 64
1 2331
[ 2500096 T 2500096
63l = 72500006\ * 37 ( 25000.%)
+ 20897.59 + 20897.59
& 2331
2 2
2500096 25000.96
P [1 45898.55] o [45898.55]
~ 2331
G3[1 — 5447] + 37[.544T)
2331 sk o a5

T 63 x.207 + 37 x .2967 _ 24.0379

Because the assumption of equality of variances is
violated, in the previous analysis the Satterthwaite’s

value for degrees of freedom, 96.97 (SAS rounds it
to 97), is accurate, and our earlier value, 100, is not.
Fortunately, it is no longer necessary to hand cal-
culate this as major statistical packages such as SAS
and SPSS provide the correct value for degrees of
freedom when the assumption of equal variance is
violated and equal variances are not assumed. This
is the fourth value for degrees of freedom in our
example, which appears in Table 1 as 97 in SAS
and 96.967 in SPSS. Again, this value is the correct
number to report, as the assumption of equal vari-
ances is violated in our example.

Comparing the Means of g Groups with
One Parameter (Analysis of Variance)
What if we have more than two groups to com-
pare? Let us assume that we have n + ... + n,
groups of observations or countries grouped by
political freedom (FREEDOMX) and that we
are interested in differences in their literacy rates
(LITERACY, the dependent variable ). We can test
the variability of ¢ means by using the analysis of
variance (ANOVA). The ANOVA procedure pro-
duces three different types of degrees of freedom,
calculated as follows:

* The first type of degrees of freedom is called
the between-groups degrees of freedom or model
degrees of freedom and can be determined by
using the number of group means we want
to compare. The ANOVA procedure tests
the assumption that the g groups have equal
means and that the population mean is not
statistically different from the individual group
means. This assumption reflects the null hy-
pothesis, which is that there is no statistically
significant difference between literacy rates
in ¢ groups of countries (4, = u, = u,). The
alternative hypothesis is that the g sample
means are significantly different from one
another. There are ¢ — 1 model degrees of
freedom for testing the null hypothesis and for
assessing variability among the ¢ means. This
value of model degrees of freedom is used in
the numerator for calculating the F ratio in
ANOVA.

* Thesecond type of degrees of freedom, called
the within-groups degrees of freedom or error de-
grees of freedom, is derived from subtracting the
model degrees of freedom from the corrected
total degrees of freedom. The within-groups
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degrees of freedom equal the total number
of observations minus the number of groups
to be compared, n, + ... + n — g This value
also accounts for the denominator degrees of
freedom for calculating the F statistic in an
ANOVA. '

* Calculating the third type of degrees of
freedom is straightforward. We know that
the sum of deviation from the mean or Z(Y,
—~Y) = 0.We also know that the total sum of
squares or Z(Y, - Y)? is nothing but the sum
of N? deviations from the mean. Therefore,
to estimate the total sum of squares Z(Y —
Y)?, we need only the sum of N — 1 devia-
tions from the mean. Therefore, with the total
sample size we can obtain the total degrees
of freedom, or corrected total degrees of
freedom, by using the formula N - 1.

InTable 2, we show the SAS and SPSS output with
these three different values of degrees of freedom
using the ANOVA procedure. The dependent vari-
able, literacy rate, s continuous,and the independent
variable, political freedom or FREEDOMX, is
nominal. Countries are classified into three groups
on the basis of the amount of political freedom each
country enjoys: Countries that enjoy high political
freedom are coded as 1 (n = 32), countries that enjoy
moderate political freedom are coded as 2 (n = 34),
and countries that enjoy no political freedom are
coded as 3 (n = 36). The mean literacy rates (de-
pendent variable) of these groups of countries are
examined. The null hypothesis tests the assumption
that there is no significant difference in the literacy
rates of these countries according to their level of
political freedom.

The first of the three degrees of freedom, the
between-groups degrees of freedom, equals g — 1.
Because there are three groups of countries in this
analysis, we have 3 — 1 = 2 degrees of freedom. This
accounts for the numerator degrees of freedom in
estimating the Fstatistic. Second, the within-groups
degrees of freedom, which accounts for the de-
nominator degrees of freedom for calculating the F
statistic in ANOVA, equals n, +. ..+ n — g These
degrees of freedom are calculated as 32 + 34 + 36
— 3 = 99, Finally, the third degrees of freedom, the
total degrees of freedom, are calculated as N — 1
(102 -1 = 101).When reporting F values and their
respective degrees of freedom, researchers should
report them as follows: The independent and the

dependent variables are significantly related [F(2,
99) = 16.64, p <.0001].

Degrees of Freedom in Multiple
Regression Analysis

We skip to multiple regression because degrees of
freedom are the same in ANOVA and in simple
regression. In multiple regression analysis, there is
more than one independent variable and one de-
pendent variable. Here, a parameter stands for the
relationship between a dependent variable (Y) and
each independent variable (X). One must under-
stand four different types of degrees of freedom in
multiple regression.

» The first type is the model (regression) degrees
of freedom. Model degrees of freedom are as-
sociated with the number of independent
variables in the model and can be understood
as follows:

A null model or a model without inde-
pendent variables will have zero parameters to
be estimated. Therefore, predicted Y is equal
to the mean of Y and the degrees of freedom
equal 0.

A model with one independent variable has
one predictor or one piece of useful informa-
tion (k = 1) for estimation of variability in Y.
This model must also estimate the point where
the regression line originates or an intercept.
Hence, in a model with one predictor, there
are (k + 1) parameters—k regression coef-
ficients plus an intercept—to be estimated,
with k signifying the number of predictors.
Therefore, there are [(k + 1) — 1], or k degrees
of freedom for testing this regression model.

Accordingly, a multiple regression model
with more than one independent variable has
some more useful information in estimating
the variability in the dependent variable, and
the model degrees of freedom increase as the
number of independent variables increase. The
null hypothesis is that all of the predictors
have the same regression coefficient of zero,
thus there is only one common coefficient
to be estimated (Dallal, 2003).The alternative
hypothesis is that the regression coeflicients
are not zero and that each variable explains a
different amount of variance in the dependent
variable. Thus, the researcher must estimate
k coefficients plus the intercept. Therefore,

PANDEY AND BriGuT / What Are Degrees of Freedom?
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there are (k + 1) — 1 or k degrees of freedom
for testing the null hypothesis (Dallal, 2003).
In other words, the model degrees of freedom
equal the number of useful pieces of informa-
tion available for estimation of variability in
the dependent variable.

« The second type is the residual, or error, degrees
of freedom. Residual degrees of freedom in mul-
tiple regression involve information of both
sample size and predictor variables. In addition,
we also need to account for the intercept. For
example, if our sample size equals N, we need
to estimate k + 1 parameters, or one regression
coefficient for each of the predictor variables
(k) plus one for the intercept. The residual
degrees of freedom are calculated N — (k +
1). This is the same as the formula for the
error, or within-groups, degrees of freedom
in the ANOVA, It is important to note that
increasing the number of predictor variables
has implications for the residual degrees of
freedom. Each additional parameter to be
estimated costs one residual degree of freedom
(Dallal, 2003).The remaining residual degrees
of freedom are used to estimate variability in
the dependent variable.

* The third type of degrees of freedom is the
total, or corrected total, degrees of freedom. As in
ANOVA, this is calculated N — 1.

* Finally, the fourth type of degrees of freedom
that SAS (and not SPSS) reports under the
parameter estimate in multiple regression is
worth mentioning. Here, the null hypothesis
is that there is no relationship between each
independent variable and the dependent vari-
able. The degree of freedom is always 1 for
each relationship and therefore, some statistical
software, such as SPSS, do not bother to report
it.

In the example of multiple regression analysis (see
Table 3), there are four different values of degrees
of freedom. The first is the regression degrees of
freedom. This is estimated as (k + 1) — 1 or (6 +
1) = 1 = 6, where k is the number of independent
variables in the model. Second, the residual degrees
of freedom are estimated as N — (k + 1). Its value
here is 99 — (6 + 1) = 92.Third, the total degrees
of freedom are calculated N — 1 (or 99 =1 = 98).
Finally, the degrees of freedom shown under pa-
rameter estimates for each parameter always equal

1, as explained above. F values and the respective
degrees of freedom from the current regression
output should be reported as follows: The regres-
sion model is statistically significant with F(6, 92)
= 44.86, p < .0001.

Degrees of Freedom in a

Nonparametric Test

Pearson’s chi square, or simply the chi-square sta-
tistic, is an example of a nonparametric test that is
widely used to examine the association between two
nominal level variables. According to Weiss (1968)
“the number of degrees of freedom to be associated
with a chi-square statistic is equal to the number of
independent components that entered into its calcu-
lation” (p.262). He further explained that each cell in
a chi-square statistic represents a single component
and that an independent component is one where
neither observed nor expected values are determined
by the frequencies in other cells. In other words, in
a contingency table, one row and one column are
fixed and the remaining cells are independent and are
free to vary. Therefore, the chi-square distribution
has (r— 1) X (c— 1) degrees of freedom, where r is
the number of rows and ¢ is the number of columns
in the analysis (Cohen, 1988; Walker, 1940; Weiss,
1968). We subtract one from both the number of
rows and columns simply because by knowing the
values in other cells we can tell the values in the last
cells for both rows and columns; therefore, these last
cells are not independent.

As an example, we ran a chi-square test to examine
whether gross national product (GNP) per capita
of a country (GNPSPLIT) is related to its level
of political freedom (FREEDOMX). Countries
(GNPSPLIT) are divided into two categories—rich
countries or countries with high GNP per capita
(coded as 1) and poor countries or countries with
low GNP per capita (coded as 0), and political free-
dom (FREEDOMX) has three levels—free (coded
as 1), partly free (coded as 2), not free (coded as 3)
(see Table 4). In this analysis, the degrees of free-
dom are (2—1) X (3 — 1) = 2. In other words, by
knowing the number of rich countries, we would
automatically know the number of poor countries.
But by knowing the number of countries that are
free, we would not know the number of countries
that are partly free and not free. Here, we need to
know two of the three components—for instance,
the number of countries that are free and partly
free—so that we will know the number of countries

PanDEY AND BriGuT /| What Are Degrees of Freedom?
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that are not free. Therefore, in this analysis there are
two independent components that are free to vary,
and thus the degrees of freedom are 2.

Readers may note that there are three values under
degrees of freedom in Table 4. The first two values
are calculated the same way as discussed earlier and
have the same values and are reported most widely.
These are the values associated with the Pearson
chi-square and likelihood ratio chi-square tests. The
final test is rarely used. We explain this briefly. The
degree of freedom for the Mantel-Haenszel chi-
square statistic is calculated to test the hypothesis
that the relationship between two variables (row
and column variables) is linear; it is calculated as
(N—=1) X 7, where 7 is the Pearson product-mo-
ment correlation between the row variable and the
column variable (SAS Institute, 1990). This degree
of freedom is always 1 and is useful only when both
row and column variables are ordinal.

CONCLUSION
Yu (1997) noted that “degree of freedom is an
intimate stranger to statistics students” (p. 1). This
research note has attempted to decrease the strange-
ness of this relationship with an introduction to the
logic of the use of degrees of freedom to correctly
interpret statistical results. More advanced research-
ers, however, will note that the information provided
in this article is limited and fairly elementary. As
degrees of freedom vary by statistical test (Salkind,
2004), space prohibits a more comprehensive dem-
onstration. Anyone with a desire to learn more
about degrees of freedom in statistical calculations is
encouraged to consult more detailed resources, such
as Good (1973), Walker (1940), and Yu (1997).
Finally, for illustrative purposes we used World
Data that reports information at country level. In
our analysis, we have treated each country as an
independent unit of analysis. Also, in the analysis,
each country is given the same weight irrespec-
tive of its population size or area. We have ignored
limitations that are inherent in the use of such data.
We warn readers to ignore the statistical findings of
our analysis and take away only the discussion that
pertains to degrees of freedom.
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