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d
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−
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=
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=
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=
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=
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−
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=
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e
se
t
{0
,1
/3
,2
/3
,1
}w

e
h
av
e

th
at

P
(θ̂

=
θ)

=
0.

S
in
ce

θ̂
is
a
ra
n
d
o
m

va
ri
ab
le

w
e
m
ig
h
t
tr
y
to

ca
lc
u
la
te

it
s
ex
p
ec
te
d

va
lu
e
E
(θ̂
)
i.
e.

th
e
av
er
ag
e
va
lu
e
w
e
w
o
u
ld

g
et

if
w
e
ca
rr
ie
d
o
u
t
an

in
fi
n
it
e
n
u
m
b
er

of
in
d
ep
en
d
en
t
re
p
et
it
io
n
s
o
f
th
e
ex
p
er
im

en
t.

W
e
h
av
e
th
at

E
(θ̂
)

=
0
P
(θ̂

=
0
)
+

(1
/
3
)P

(θ̂
=

1
/
3
)
+

(2
/
3
)P

(θ̂
=

2
/
3
)
+

1
P
(θ̂

=
1
)
,

=
0
(1

−
θ
)3

+
(1
/
3
)3
θ
(1

−
θ
)2

+
(2
/
3
)3
θ
2
(1

−
θ
)
+

1
θ
3
,

=
θ
.

P
ro
f.

D
r.

D
r.

K
.
V
a
n
S
te
en

E
le
m
en

ts
o
f
st
a
ti
st
ic
s
(M

A
T
H
0
4
8
7
-1
)



E
st
im

a
ti
o
n

In
tr
o
d
u
ct
io
n

M
o
ti
va
ti
n
g
E
xa
m
p
le

A
p
p
ro
a
ch

es
to

E
st
im

a
ti
o
n
:
T
h
e
F
re
q
u
en

ti
s

H
ow

go
o
d
is
an

E
st
im

at
or
?
II

T
h
u
s
if
w
e
ca
rr
ie
d
o
u
t
an

in
fi
n
it
e
n
u
m
b
er

of
in
d
ep
en
d
en
t
re
p
et
it
io
n
s

o
f
th
e
ex
p
er
im

en
t
an
d
ca
lc
u
la
te

th
e
va
lu
e
o
f
θ̂
fo
r
ea
ch

re
p
et
it
io
n

th
e
av
er
ag
e
o
f
th
e
θ̂
va
lu
es

w
ou

ld
b
e
ex
ac
tl
y
θ,

th
e
tr
u
e
va
lu
e
o
f
th
e

p
ar
am

et
er
!
T
h
is
is
tr
u
e
n
o
m
at
te
r
w
h
at

th
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=
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=
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