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Simple Random Sampling

Simple random sampling is a probability sampling procedure that gives
every element in the target population, and each possible sample of a
given size, an equal chance of being selected. As such, it is an equal
probability selection method (EPSEM).




Simple Random Sampling

There are six major steps in selecting a simple random sample:

o

o

Step 1 Define the target population.

Step 2 Identify an existing sampling frame of the target population
or develop a new one.

Step 3 Evaluate the sampling frame for undercoverage,
overcoverage, multiple coverage, and clustering, and make
adjustments where necessary.

Step 4 Assign a unique number to each element in the frame.
Step 5 Determine the sample size.

Step 6 Randomly select the predetermined number of population
elements.



Random Selection Techniques

There are several strategies to “randomly select”:

@ Lottery method (also known as blind draw method or hat method)
@ Table of random numbers

@ Randomly generated numbers using a computer programme (e.g., R
- see exercise classes)

> rnorm(10)

[1] -1.5378381 -0.3545813 -1.0502408 -0.4720105 -0.9171880 -2.2935331 -0.2855517 0.121156% 2.2065223 0.290453¢
> runif (10)

[1] 0.62032727 0.62115087 0.04646263 0.02957901 0.87730291 0.33043671 0.37631123 0.23880049% 0.7769%2247 0.82713673



Using a Table of Random Numbers

How to randomly choose n individuals from a group of N?

@ We first label each of the N individuals with a number (typically
from 1to N, or 0 to N —1)

@ A list of random digits is parsed into digits of the same length as N
(if N =233, then its length is 3; if N = 18, its length is 2).

@ The parsed list is read in sequence and the first n entries from this
list, corresponding to a label in our group of N, are selected.

@ The n individuals with these labels constitute our selection.



Using a Table of Random Numbers

Part of a random number table:

00000
00001
00002
00003
00004

00005
00006
00007
00008
00009

00010
00011
00012
00013
00014

00015
00016
00017
00018
00019

00020
00021

00023

10097
37542
08422
99019
12807

66065
31060
85269
63573
73796

98520
11805
83452

99594

65481
80124
74350
69916
09893

91499
80336
44104
12550

76520
64894
19645
09376
80157

34072
45571
02051
05325
03529

14905
39808
06288
86507
87517

17468
17727
77402
66252
14225

68479
26940
85157
11100

13586
74296
09303
70715
36147

76850
82406
65692
47048
64778

68607
27732
98083
58401
64969

50950
08015
77214
29148
68514

27686
36858
47954
02040

34673
24805
23209
38311
64032

36697
35303
68665
90553
35808

22109
50725
13746
36766
91826

58047
45318
43236
36936
46427

46162
70297
32979
12860

54876
24037
02560
311865
36653

36170
42614
74818
57548
34282

40558
68248
70078
67951
08928

76974
22374
00210
87203
56788

83554
34135
26575
74697

09117
10402
34764
74397
16877

39885
07439
85247
28709
20344

93433
24201
40610
76493
61368

57186
78253
64237
13990
78822

89923
33340

89439

74945
91665
33606
27659
76833

298170
09732
88579
25624
88435

73998
67851
77817
11062
34113

16544
53763
02655
56418
14598

20048
82341
06413
25815



Subtypes of Simple Random Sampling

@ Sampling with Replacement In sampling with replacement, after
an element has been selected from the sampling frame, it is returned
to the frame and is eligible to be selected again

@ Sampling without Replacement In sampling without replacement,
after an element is selected from the sampling frame, it is removed
from the population and is not returned to the sampling frame.
Sampling without replacement tends to be more efficient than
sampling with replacement in producing representative samples. It
does not allow the same population element to enter the sample
more than once. [Here: When talking about Simple Random
Sampling, we will mean sampling without replacement, unless stated
otherwise.]



Stength and Weaknesses of Simple Random Sampling

Strengths Weaknesses

Compared to other probability sampling Compared to other probability sampling
procedures: procedures:

Advanced auxiliary information on the A sampling frame of elements in the target

elements in the population is not required. | population is required.

Every possible combination of sampling Does not take advantage of knowledge of the
units has an equal and independent population that the researcher might have.
chance of being selected.

Easier to understand and communicate May have larger sampling errors and less
to others. precision, than other probability sampling designs
with the same sample size.

Tends to yield representative samples. If subgroups of the population are of particular
interests, they may not be included in sufficient
numbers in the sample.

Statistical procedures required to analyze If the population is widely dispersed, data
data and compute errors are easier. collection costs might be higher than those of
other probability sample designs.

Statistical procedures for computing May be very costly, particularly where
inferential are incorporated in most populations are geographically dispersed
statistical software. and/or individuals may be difficult to locate

because of change of last name due to marriage
or migration.




Stratified Sampling

Stratified Sampling is a probability sampling procedure in which the
target population is first separated into mutually exclusive, homogeneous
segments (strata), and then a simple random sample is selected from
each segment (stratum). The samples selected from the various strata
are then combined into a single sample.




Stratified Sampling

There are eight major steps in selecting a simple random sample:
@ Step 1 Define the target population.

@ Step 2 Identify stratification variable(s) and determine the number
of strata to be used. The stratification variables should relate to the
purposes of the study. If the purpose of the study is to make
subgroup estimates, the stratification variables should be related to
those subgroups. The availability of auxiliary information often
determines the stratification variables that are used. Considering
that as the number of stratification variables increases, the
likelihood increases that some of the variables will cancel the effects
of other variables, not more than four to six stratification variables
and not more than six strata for a particular variable should be used.



Stratified Sampling

@ Step 3 ldentify an existing sampling frame or develop a sampling

frame that includes information on the stratification variable(s) for
each element in the target population. If the sampling frame does
not include information on the stratification variables, stratification
would not be possible.

Step 4 Evaluate the sampling frame for undercoverage,
overcoverage, multiple coverage, and clustering, and make
adjustments where necessary.

Step b Divide the sampling frame into strata, categories of the
stratification variable(s), creating a sampling frame for each stratum.
Within-stratum differences should be minimized, and between-strata
differences should be maximized. The strata should not be
overlapping, and altogether, should constitute the entire population.
The strata should be independent and mutually exclusive subsets of
the population. Every element of the population must be in one and
only one stratum.



Stratified Sampling

@ Step 6 Assign a unique number to each element.

@ Step 7 Determine the sample size for each stratum. The numerical
distribution of the sampled elements across the various strata
determines the type of stratified sampling that is implemented. It
may be a proportionate stratified sampling or one of the various
types of disproportionate stratified sampling.

@ Step 8 Randomly select the targeted number of elements from each
stratum. At least one element must be selected from each stratum
for representation in the sample; and at least two elements must be
chosen from each stratum for the calculation of the margin of error
of estimates computed from the data collected.



Subtypes of Stratified Sampling

@ Proportionate Stratified Sampling In proportionate stratified
sampling, the number of elements allocated to the various strata is
proportional to the representation of the strata in the target
population. This sampling procedure is used when the purpose of
the research is to estimate a population parameter.

, Population Proportionate Stratified Sample

Marketing

Region Frequency Percent Frequency Percent
District 1 18000 33% 396 33%
District 2 600 1% 12 1%
District 3 12000 22% 264 22%
District 4 24000 44% 528 44%
Total 54600 100% 1200 100%




Subtypes of Stratified Sampling

@ Disproportionate Stratified Sampling Disproportionate stratified
sampling is a stratified sampling procedure in which the number of
elements sampled from each stratum is not proportional to their
representation in the total population. Population elements are not
given an equal chance to be included in the sample. The same
sampling fraction is not applied to each stratum.

Population Disproportionate Stratified Sample

Marketing

Region Frequency Percent Frequency Percent
District 1 18000 33% 357 30%
District 2 600 1% 130 11%
District 3 12000 22% 238 20%
District 4 24000 44% 475 39%

Total 54600 100% 1200 100%




Subtypes of Stratified Sampling

Stratified
Sampling

Disproportionate
Allocation for

Proportionate Disproportionate
Allocation Allocation
[ I
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Allocation for Optimum
Within-Strata Allocation

Analyses

Between-Strata
Analyses

Optimization of
Cost

Optimization of
Precision

Optimization of
Cost and
Precision




Stength and Weaknesses of Stratified Sampling

Strengths Weaknesses

Unlike simple random sampling, stratified Unlike simple random sampling, stratified
sampling;: sampling:

Has greater ability to make inferences within | Requires information on the proportion of the
a stratum and comparisons across strata. total population that belongs to each stratum.
Has slightly smaller random sampling errors | Information on stratification variables is

for samples of same sample size, thereby required for each element in the population. If
requiring smaller sample sizes for the same such information is not readily available, they
margin of error. may be costly to compile.

Obtains a more representative sample because | More expensive, time-consuming, and
it ensures that elements from each stratum are | complicated than simple random sampling.
represented in the sample.

Takes greater advantage of knowledge the Selection of stratification variables may be

researcher has about the population. difficult if a study involves a large number of
variables.

Data collection costs may be lower if the In order to calculate sampling estimates, at least

stratification variable breaks up the two elements must be taken in each stratum.

population into homogeneous geographical
areas, or so as to facilitate data collection.

Permits different research methods and The analysis of the data collected is more
procedures to be used in different strata. complex than the analysis of data collected via
simple random sampling.

Permits analyses of within-stratum patterns If disproportionate allocation is used, weighting
and separate reporting of the results for each | is required to make accurate estimates of
stratum. population parameters.




Differences between Quota and Stratified Sampling

Stratified Sampling

Quota Sampling

Stratified sampling and quota sampling are similar in that:

Population is divided into categories; elements
are then selected from each category.

Population is divided into categories; elements
are then selected from each category.

Purpose is to select a representative sample
and/or facilitate subgroup analyses.

Purpose is to select a representative sample
and/or facilitate subgroup analyses.

Stratified sampling and quota sampling are dissimilar in that:

Elements within each category are selected
using simple random sampling, and as a result:

Elements within each category are selected
using availability sampling, and as a result:

A sampling frame is required.

A sampling frame is not required.

Random sampling error can be estimated.

Random sampling error cannot be estimated.

Selection bias is minimized.

Selection bias is not minimized.

Purpose is to reduce sampling error.




Systematic Sampling

Systematic Sampling Systematic sampling (or interval random
sampling) is a probability sampling procedure in which a random
selection is made of the first element for the sample, and then
subsequent elements are selected using a fixed or systematic interval until
the desired sample size is reached. The random start distinguishes this
sampling procedure from its non-probability counterpart.

@ For example, after a random start, one may systematically select
every i-th patient visiting an emergency room in a hospital, store
customers standing in line, or records in file drawers.

@ At a technical level, systematic sampling does not create a truly
random sample. It is often referred to as “pseudo random sampling”,
“pseudo simple random sampling”, or “quasi-random sampling” .



Systematic Sampling

There are eight major steps in selecting a simple random sample:
@ Step 1 Define the target population.
@ Step 2 Determine the desired sample size (n).

@ Step 3 ldentify an existing sampling frame or develop a sampling
frame of the target population.

@ Step 4 Evaluate the sampling frame for undercoverage,
overcoverage, multiple coverage, clustering, and periodicity, and
make adjustments where necessary. ldeally, the list will be in a
random order with respect to the study variable. If the sampling
frame is randomized, systematic sampling is considered to be a good
approximation of simple random sampling.



Systematic Sampling

Step b Determine the number of elements in the sampling frame
(N).

Step 6 Calculate the sampling interval (i) by dividing the number of
elements in the sampling frame (N) by the targeted sample size (n).
One should ignore a remainder and round down or truncate to the
nearest whole number. Rounding down and truncating may cause
the sample size to be larger than desired. If so, one may randomly
delete the extra selections. If the exact size of the population is not
known and impractical to determine, one may fix the sampling
fraction.

Step 7 Randomly select a number, r, from “1" through i.

Step 8 Select for the sample, r,r 4+ i,r + 2i,r 4+ 3i, and so forth,
until the frame is exhausted.



Strengths and Weaknesses of Systematic Sampling

Strengths

Weaknesses

Unlike simple random sampling:

Unlike simple random sampling:

If the selection process is manual, systematic
sampling is easier, simpler, less time-consuming,
and more economical.

If the sampling interval is related to periodic
ordering of the elements in the sampling
frame, increased variability may result.

The target population need not be numbered
and a sampling frame compiled if there is
physical representation.

Combinations of elements have different
probabilities of being selected.

If the ordering of the elements in the sampling
frame is randomized, systematic sampling may

yield results similar to simple random sampling.

Technically, only the selection of the first
element is a probability selection since for
subsequent selections, there will be elements
of the target population that will have a zero
chance of being selected.

If the ordering of the elements in the sampling
frame is related to a study variable creating
implicit stratification, systematic sampling is
more efficient than simple random sampling.

Principle of independence is violated, for the
selection of the first element determines the
selection of all others.

Systematic sampling eliminates the possibility
of autocorrelation.

Estimating variances is more complex than
that for simple random sampling.

Systematic sampling ensures that the sample is
spread across the population.




Cluster Sampling

Cluster Sampling Cluster sampling is a probability sampling procedure
in which elements of the population are randomly selected in naturally
occurring groupings (clusters). In the context of cluster sampling, a
cluster is an aggregate or intact grouping of population elements.
Element sampling is the selection of population elements individually, one
at a time. On the other hand, cluster sampling involves the selection of
population elements not individually, but in aggregates.



Cluster Sampling

There are six major steps in selecting a cluster sample:
@ Step 1 Define the target population.
@ Step 2 Determine the desired sample size.

@ Step 3 ldentify an existing sampling frame or develop a new
sampling frame of clusters of the target population.

@ Step 4 Evaluate the sampling frame for undercoverage,
overcoverage, multiple coverage, and clustering, and make
adjustments where necessary. ldeally, the clusters would be as
heterogeneous as the population, mutually exclusive, and collectively
exhaustive. Duplication of elements in the sample may result if
population elements belonged to more than one cluster. Omissions
will result in coverage bias.



Cluster Sampling

@ Step 5 Determine the number of clusters to be selected. This may
be done by dividing the sample size by estimated average number of
population elements in each cluster. To the extent the homogeneity
and heterogeneity of the clusters are different from that of the
population, as cluster number increases, precision increases. On the
other hand, as differences between clusters increases, precision

decreases.
@ Step 6 Randomly select the targeted number of clusters.



Subtypes of Cluster Sampling

@ Single-stage cluster sampling In a single-stage cluster sample
design, sampling is done only once.

Example: interest in studying homeless persons who live in shelters.
If there are five shelters in a city, a researcher will randomly select
one of the shelters and then include in the study all the homeless
persons who reside at the selected shelter.

@ Two-stage cluster sampling A two-stage cluster sample design
includes all the steps in single-stage cluster sample design with one
exception, the last step. Instead of including all the elements in the
selected clusters in the sample, a random sample (either a simple
random sample, stratified sample, or systematic sample) is taken
from the elements in each selected cluster.

@ Multi-stage cluster sampling Multistage cluster sampling involves
the repetition of two basic steps: listing and sampling. Typically, at
each stage, the clusters get progressively smaller in size; and at the
last stage element sampling is used. Sampling procedures (simple
random sampling, stratified sampling, or systematic sampling) at
each stage may differ.



Cluster Sampling
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Stenghts and Weaknesses of Cluster Sampling

Strengths

Weaknesses

Compared to simple random sampling:

Compared to simple random sampling:

If the clusters are geographically defined,
cluster sampling requires less time, money,
and labor.

A cluster sample may not be as representative
of the population as a simple random sample of
the same sample size.

Cluster sampling permits subsequent
sampling because the sampled clusters are
aggregates of elements.

Variances of cluster samples tend to be much
higher than variances of simple random
samples.

One can estimate characteristics of the
clusters as well as the population.

Cluster sampling introduces more complexity
in analyzing data and interpreting results of the
analyses.

Cluster sampling does not require a
sampling frame of all of the elements in the
target population.

Cluster sampling yields larger sampling errors
for samples of comparable size than other
probability samples.




Sampling

Comparison Between Cluster Sampling and Stratified

Stratified Sampling

Cluster Sampling

The population is separated into strata, and
then sampling is conducted within each
stratum.

The population is separated into clusters, and
then clusters are sampled.

Analysis of individual strata is permitted in
addition to analysis of the total sample.

Analysis of individual categories (clusters) are
permitted in addition to analysis of the total
sample.

In order to minimize sampling error, within-
group differences among strata should be
minimized, and between/group differences
among strata should be maximized.

In order to minimize sampling error, within-
group differences should be consistent with
those in the population, and between-group
differences among the clusters should be
minimized.

A sampling frame is needed for the entire
target population.

In single-state cluster sampling, a
sampling frame is needed only for the
clusters. In two-stage and multistage
cluster sampling, a sampling frame of
individual elements is needed only for the
elements in the clusters selected at the
final stage.

Main purpose: increase precision and
representation.

Main purpose: decrease costs and increase
operational efficiency.




Sampling

Comparison Between Cluster Sampling and Stratified

Categories are imposed by the researcher.

Categories are naturally occurring pre-
existing groups.

More precision compared to simple random
sampling.

Lower precision compared to simple random
sampling.

The variables used for stratification should
be related to the research problem.

The variables used for clustering should not
be related to the research problem.

Common stratification variables: age, gender,
income, race.

Common classification variables:
geographical area, school, grade level.

Requires more prior information than cluster
sampling.

Requires less prior information than stratified
sampling.




Sampling Samples and Populations Sampling Schemes A Practical Application Stud

Rolling Down the River

A farmer has just cleared a new field for corn. It is a unique plot of land
in that a river runs along one side. The corn looks good in some areas of
the field but not others. The farmer is not sure that harvesting the field
is worth the expense. He has decided to harvest 10 plots and use this
information to estimate the total yield. Based on this estimate, he will
decide whether to harvest the remaining plots.

Prof. Dr. Dr. K. Van Steen Elements of statistics (MATHO0487-1)




Rolling Down the River

A farmer has just cleared a new field for corn. It is a unique plot of land
in that a river runs along one side. The corn looks good in some areas of
the field but not others. The farmer is not sure that harvesting the field
is worth the expense. He has decided to harvest 10 plots and use this
information to estimate the total yield. Based on this estimate, he will
decide whether to harvest the remaining plots.

Sampling Method | Mean yield Estimate of
per plot total yield

Convenience
Sample (farmer’s)
Simple Random
Sample

Vertical

Strata

Horizontal

Strata




Rolling Down the River

Discussion

@ Is there a reason, other than convenience, to choose one method
over another?

@ How do your estimates vary according to the different sampling
methods?

@ Do you have similar results as your neighbor?

@ What can you tell from comparing “boxplots” of the mean yields
under simple random sampling, vertical or horizontal stratified
sampling?

@ Which sampling method would you promote? Why?

@ What is the actual yield of the entire field? How do the boxplots
relate to this actual value?




Sampling

Study Designs: Design Dilemma

A study design is a specific plan or protocol for conducting the study,
which allows the investigator to translate the conceptual hypothesis into
an operational one.

Ideal question Data one can

one would pose collect or access

Prof. Dr. Dr. K. Van Steen Elements of statistics (MATHO0487-1)



Classification of Study Designs

Qualitative

Quantitative

Understanding

Prediction

Interview /observation

Survey/questionnaires

Discovering frameworks

Existing frameworks

Textual (words)

Numerical

Theory generating

Theory testing (experimental)

Quality of informant more important
than sample size

Sample size core issue in
reliability of data

Subjective

Objective

Embedded knowledge

Public

Models of analysis: fidelity to
text or words of interviewees

Model of analysis:parametric,
non-parametric




Classification of Study Designs

Qualitative
@ Methods

@ Focus Groups
9 Interviews

o Surveys

o Self-reports

@ Sampling: Purposive
@ Quality Assurance:

@ Trustworthiness: e.g.,
Credibility, Confirmability,
Transferability

@ Authenticity: e.g., Educative

Qualitative
@ Methods

@ Observational
@ Experimental
@ Sampling: Random (simple,
stratified, cluster, etc) or
purposive
@ Quality Assurance:

o Reliability: “Consistent”
o Validity: “Construct”



Reliability and Validity

@ Reliability:

@ The degree of consistency between two measures of the same thing.
(Mehrens and Lehman, 1987).

@ The measure of how stable, dependable, trustworthy, and consistent
a test is in measuring the same thing each time (Worthen et al.,
1993)

@ Validity:

@ Truthfulness: Does the test measure what it purports to measure?
the extent to which certain inferences can be made from test scores
or other measurement. (Mehrens and Lehman, 1987)

@ The degree to which they accomplish the purpose for which they are
being used. (Worthen et al., 1993)



Sampling Samples and Populations Sampling Schemes A Practical Application Stud

Observational Study Designs

Observational: studies that do not involve any intervention or
experiment.

E(-)

Control

No Expo.

Participants,

Patients,

Subjects
Case

E(-)
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Controls
g
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=
X
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Control

Case

E(+)
Cases
&

[ > Cases Controls

E(+) | E(-) || E(+) | E()

Time
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Experimental Study Designs

Experimental: studies that entail manipulation of the study factor
(exposure) and randomization of subjects to treatment (exposure) groups.
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Popular Statistics and their Distribution

Who do you want to
generalize to?

What population can
you get access to?

How can you get
access to them?

Who is in your study?

AL EA A%

A7 gﬂ!f; The Theoretical

1””“““”!} ! Population
L

The Study
Population

The Sampling
Frame

The Sample




Sampling Samples and Populations Sampling Schemes A Practical Application Stud

Some Definitions

@ Distribution of sample Let Xi, X5,..., X, denote a sample of size
n. The distribution of the sample Xi, X5, ..., X, is defined to be the
joint distribution of X7, X5,..., X, .

@ Hence, if X1, X5,..., X, is a random sample of size n from f(.) then
the distribution of the random sample X7, X5, ..., X, defined as the
joint distribution of X7, X5,..., X, , is given by
fX1,X2,...,Xn(X17X27 ce 7Xn) = f(Xl)f(XQ) c. f(Xn), and Xl, Xz, ce ,Xn
are stochastically independent.

@ Statistic Any function of the elements of a random sample, which
does not depend on unknown parameters, is called a statistic.

@ Statistics may serve as estimators for a parameter of interest.

Prof. Dr. Dr. K. Van Steen Elements of statistics (MATHO0487-1)




Examples of Statistics

@ X =Y ", X;/nis called the sample mean.

o

o

o

52 =35"1(Xi — X)?/(n—1) is called the sample variance
(sometimes denoted as S2 ;).

S = v/ 52 is called the sample standard deviation.

M, =37, X/nis called the rth sample moment about the
origin.

Suppose that the random variables X, ..., X, are ordered and
re-written as X(l), X(Q), e ,X(n). The vector (X(l), e ,X(n)) IS

called the ordered sample.

The standard error (SE) is an estimate of the standard deviation of

a statistic. It is important because it is used to compute other
measures, like confidence intervals or margins of error (see later)



Sampling Distributions

When the distribution of interest consists of all the unique samples
of size n that can be drawn from a population, the resulting
distribution of sample means is called the sampling distribution of
the mean.

We can generate a distribution of anything, as long as we have
values / scores to work with (cfr tossing a coin and scoring the
sample wrt nr of heads).

There are also sampling distributions of medians, standard
deviations, and any other statistic you can think of.

In other words, populations, which are distributions of individual
elements, give rise to sampling distributions, which describe how
collections of elements are distributed in the population.



Sampling Distributions

Level Collection Elements

Population All individuals The scores each individual
(N = size of population) receives on some attribute

Sample Subset of individuals from the population The scores each individual

(n =size of sample)

in the sample receives on
some attribute

Sampling Distribution

All unique samples of size n from
the population

The values of a statistic
applied to each sample




Sampling Distributions

@ In inferential statistics we make use of two important properties of
sampling distributions, expressed in lay terms as:

@ The mean of all unique samples of size n (i.e., the average of all the
means) is identical to the mean of the population from which those
samples are drawn. Thus, any claims about the mean of the
sampling distribution apply to the population mean.

@ The shape of the sampling distribution increasingly approximates a
normal curve as sample size n is increased, even if the original
population is not normally distributed.

@ If the original population is itself normally distributed, then the
sampling distribution will be normally distributed even when the
sample size is only one.



The Empirical Rule

@ Sometimes the door handles in office buildings show a wear pattern
caused by thousands, maybe millions of times being pulled or pushed
to open the door. Often you will see that there is a middle region
that shows by far the most amount of wear at the place where
people opening the door are the most likely to grab the handle,
surrounded by areas on either side showing less wear. On average,
people are more likely to have grabbed the handle in the same spot
and less likely to use the extremes on either side.

@ Many real-life phenomena are “normal”.



The Empirical Rule

@ The so-called empirical rule states that the bulk of a set of data
will cluster around the mean in the following fashion:

@ 68% of values fall within 1 standard deviation of the mean
@ 95% fall within -2 standard deviations of the mean
@ 99% fall within +3 standard deviations of the mean

@ It is called the “empirical rule” since experimenters have observed
roughly these patterns from their data over and over again when
they empirically collect data.

0.0 01 02 03 04




Theoretical Sampling Distributions

@ Unless the details of a population are known in advance, it is not

possible to perfectly describe any of its sampling distributions.

@ When the population details are known, we can simply calculate the
desired parameter, and then there would be no point in collecting
samples.

For this reason, a variety of idealized, theoretical sampling
distributions have been described mathematically, including the
student t distribution or the F distribution (see later: theory and
practical sessions), which can be used as statistical models for the
real sampling distributions.

The theoretical sampling distributions can then be used to obtain
the likelihood (or probability) of sampling a particular mean if the
mean of the sampling distribution (and hence the mean of the
original population) is some particular value. The population
parameter will first have to be hypothesized, as the true state of
affairs is generally unknown. This is called the null hypothesis (see
later: Chapter “Hypothesis Testing")



Computing the Standard Error: a Measure of Sampling

Error

Parameters: p, o, 62
[ Inferential
Statistics
POPULATION
Deductive
Population parameter Sample statistic
N: Number of observations in the population n: Number of observations in the sample
N;: Number of observations in population i n;: Number of observations in sample i
P: Proportion of successes in population p: Proportion of successes in sample
P;: Proportion of successes in population i pi: Proportion of successes in sample i
w: Population mean X: Sample estimate of population mean
wi: Mean of population i x;: Sample estimate of u;
o: Population standard deviation s or S: Sample estimate of o
op: Standard deviation of p SE,: Standard error of p
ox. Standard deviation of X SEx: Standard error of x




Computing the Standard Error: a Measure of Sampling

Error

@ The variability of a statistic is measured by its standard deviation.
The table below show formulas for computing the standard deviation
of statistics from simple random samples.

Statistic Standard Deviation

Sample mean, X ox = o/+\/n

Sample proportion, p op =+/P(1—P)/n

Difference between means, x{ — X3 Ox—x5 = \/J%/nl + o3 /n;

Difference between proportions, p1 — po Tpi—py = \/Pl(l — P1)/n + P2(1 — P2)/ny

@ So in order to compute the standard deviation of a sample statistic
(spread in sample distribution of the statistic), you must know the
value of one or more population paramaters.



Computing the Standard Error: a Measure of Sampling

Error

@ The values of population parameters are often unknown, making it
impossible to compute the standard deviation of a statistic. When
this occurs, use the standard error.

@ The standard error is computed from known sample statistics, and it
provides an unbiased estimate of the standard deviation of the
statistic. The table below shows how to compute the standard error
for simple random samples, assuming the population size is at least
10 times larger than the sample size.

Statistic Standard Error

Sample mean, X SEx = s/\/n

Sample proportion, p SE, = +/p(1 — p)/n

Difference between means, x{ — xa SEx; x5 = \/slz/nl + s2/np

Difference between proportions, p1 — po SEp —p, = VPi(l —p1)/m + p2(l — p2)/n




Taylor Expansion - An aside to compute variances

Definition: If a function g(x) has derivatives of order r, that is
g(x) = E?Xrg(x) exists, then for any constant a, the Taylor
expansion of order r about a is:

" g (a
7,00 =5 8@

k!
k=0

The major theorem from Taylor is that the remainder from the
approximation, namely g(x) — T,(x), tends to 0 faster than the
highest-order term in T,(x).

Theorem: If g{")(a) = g;,g(x)\xza exists, then

lim g(x) — T,(x) _
X—a (X — a)r

0.

For the purpose of the Delta Method, we will only use r = 1.



Applying the Taylor Theorem

@ Let Ty, To,..., Ty be random variables with means 61,6, ..., 0,
and define T = (Ty,..., Tx) and 6 = (61, ...,6k).

@ The first order Taylor series expansion of g about 6 (multivariate
version) is

k
g(t) ~ g(0) + Zg,-’(@)(T,- — 60;) + Remainder
i=1

@ Taking expectations from both sides:

Elg(T)] ~ g(0)

@ We can also approximate the variance of g(T) by

Var[g(T)] ~ E[(g(T)—g(0))’]

EI(Y_ /(0)(T, ~ 0))?

2

k
= Z gl (0)*Var(T;) + 2 Z gi(0)g;(0)Cov(T;, T;)

i=1 i>]



Replicated sampling

@ The essence of this strategy is to facilitate the variance calculation
by selecting a set of replicated subsamples instead of a single sample.

@ |t requires each subsample to be drawn independently and to use an
identical sample selection design.

@ Then an estimate is made in each subsample by the identical
process, and the sampling variance of the overall estimate (based on
all subsamples) can be estimated from the variability of these
independent subsample estimates.



Jacknife and bootstrap

@ The jackknife procedure is to estimate the parameter of interest n
times, each time deleting one sample data point. The average of the
resulting estimators, called “pseudovalues”, is the jackknife estimate
for the parameter. For large n, the jackknife estimate is
approximately normally distributed about the true parameter.

@ The bootstrap method involves drawing samples repeatedly from
the empirical distribution. So in practice, a large number of samples
of size n are drawn with replacement, from the original n data
points. Each time, the parameter of interest is estimated from the
bootstrap sample, and the average over all bootstrap samples is
taken to be the bootstrap estimate of the parameter of interest.



In summary

How can we know whether our sample is representative of the underlying
population?

@ Avoid small samples, as there are more extreme (i.e., rare) sample
means in the sampling distribution, and we are more likely to get
one of them in an experiment.

@ We have control over sampling error because sample size determines
the standard error (variability) in a sampling distribution.

@ We will see that sample size is closely connected to the concept of
“power” : if a specific power is targeted to identify an effect in a
testing strategy, then one can compute the necessary sample size to
achieve the pre-specified power of the test.

@ On a practical note:

o Realize that large samples are not always attainable and that clever
more complicated sample strategies than simple random sampling
need to be followed.

@ A correction is needed when sampling from a finite distribution



@ The central limit theorem and the formulae for standard errors of
the mean and the proportion are based on the premise that the
samples selected are chosen with replacement.

@ However, in virtually all survey research, sampling is conducted
without replacement from populations that are of a finite size n,

@ In these cases, particularly when the sample size n is not small in
comparison with the population size n, (i.e., more than 5% of the
population is sampled) so that n > n,0.05, a finite population
correction factor (fpc) is used to define for instance both the
standard error of the mean and the standard error of the proportion.



@ If we denote the mean and standard deviation of the sampling
distribution of means by ux and ox, and the population mean and
standard deviation by i and o, then actually

0 [np,—n
- n\[n, -1

@ If the population is infinite or if sampling is with replacement, the
above result reduces to

Ox

in line with “large sample theory” and the Central Limit Theorem.



Sampling Samples and Populations Sampling Schemes A Practical Application Stud

Resampling

@ Approximations obtained by random sampling or simulation are
called Monte Carlo estimates.

@ Assume random variable Y has a certain distribution. Use
simulation or analytic derivations to study how an estimator,
computed from samples from this distribution, behaves: e.g., Y has
lognormal distribution, what is the variance of the median?

@ Analytical solution? Need knowledge of the population distribution
function

o Simulate 500 samples of size n from the lognormal distribution,
compute the sample median for each sample, and then compute the
sample variance of the 500 sample medians.
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The Bootstrap

@ Efrons bootstrap is a general purpose technique for obtaining
estimates of properties of statistical estimators without making
assumptions about the distribution of the data.

@ Often used to find:

o Standard errors of estimates (may be easier than “Delta Method")
o Confidence intervals for unknown paramters (see later “Confidence

Intervals”)
@ p-values for test statistics under a null hypothesis (see later

“Hypothesis testing’)



The Bootstrap

REAL WORLD

Unknown

Observed
Probability Random
Distribution Sample
F——> y=(V1:¥2,--Yn)

l

0 =s(y)

Statistic of interest




The Bootstrap

@ Suppose Y has a cumulative distribution function (cdf)
Fly)=P(Y <y).

@ We have a sample of size n from F(y), Y1, Yo,..., Y,

@ Steps:

@ Repeatedly simulate sample of size n from F
@ Compute statistic of interest
o Study behavior of statistic over B repetitions



The Bootstrap

@ Without knowledge of F use the empirical cdf
Fo(y)=1/n 27:1 I(Y; < y) as estimate of F.

@ Pretend that F,(y) is the original distribution F(y).

@ Sampling from F,(y) is equivalent to sampling with replacement
from originally observed Y7,...,Y,.

@ Special case: leave-one-out observation samples = Jackknife
samples



Inverse Transform Method for Simulating Continuous

Random Variables

@ The Method of Inverse Transforms is most often used to simulate
a realization of a random variable associated with a particular
distribution. Inverse transform sampling works as follows.

@ Consider, for example, a continuous random variable with
cumulative distribution function F.

@ Let U be a uniform random variable over the unit interval and pass
U through the inverse of the cumulative distribution function, that
is, compute X = F~1(U), where X constitutes a “sample”.

@ It can be seen that for a sufficiently large set of samples, the
associated normalized histogram generates a close approximation to
the probability density function of the random variable associated
with the cumulative distribution function F.



Inverse Transform Method for Simulating Continuous

Random Variables

Standard Normal Cumulative Standard Normal
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Exploratory Why? What? How? Assumptions of EDA

Exploratory Data Analysis: Motivating example

@ Given 4 data sets (actual data omitted), for which

o N=11

@ Mean of X = 9.0

@ Meanof Y = 7.5

o Intercept (Bo) = 3

o Slope (1) = 0.5

@ Residual standard deviation = 1.236

o Correlation = 0.816 (0.817 for data set 4)

@ Y = By + 81X + €, with € a random variable called the error-term,
and [y, 01 parameters, is called a simple linear regression model.
In such a model, it is assumed that the expecation of Y given X is

E(Y) = Bo + B1X (see later).

Do you think these 4 data sets will give equivalent results? J
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Motivating example

E(y)

Regression line

Intercept

Slope £
B, Pe€ A

1S pOSil‘iVE‘.

Do you think the four aformentioned data sets will give equivalent results?J




Motivating example

@ A “scatter plot” of each data set (i.e., plotting Y values versus
corresponding X values in a plane), would be the first step of any
EDA approach ...and would immediately reveal non-equivalence!

1
10

& o o Ny @

DATASET 1

4 5§56 78 91011121314
DATASET 3

4 56 78 91011121314

1

—
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13
12
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—
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DATA SET2

45 67 891011121314

DATA SETA4

15

20




Exploratory Why? What? How? Assumptions of EDA

Data analysis procedures

@ There are three popular data analysis approaches

classical analysis  Problem — Data —

Model — Analysis — Conclusions
Bayesian analysis Problem — Data —

Model — Prior Distribution — Analysis — Conclusions
EDA Problem — Data —

Analysis — Model — Conclusions
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Data analysis procedures

@ For classical analysis, the data collection is followed by proposing a
model (normality, linearity, etc.) and the analysis, estimation, and
testing that follows are focused on the parameters of that model.

@ For a Bayesian analysis, the analyst attempts to incorporate
scientific/engineering knowledge /expertise into the analysis by
imposing a data-independent distribution on the parameters of the
selected model: the analysis formally combines both the prior
distribution on the parameters and the collected data to jointly make
inferences and/or test assumptions about the model parameters.

@ For EDA, the data collection is not followed by a model imposition:
it is followed immediately by analysis with a goal of inferring what
model would be appropriate



Data analysis procedures

@ Moreover, statistics and data analysis procedures can broadly be
split into two parts:

@ Quantitative procedures
@ Graphical procedures

@ Quantitative techniques are the set of statistical procedures that
yield numeric or tabular output:
@ hypothesis testing
@ analysis of variance (is there more variation within groups of
observations than between groups of observations?)
@ point estimates and confidence intervals
o least squares regression

@ These and similar techniques are all valuable and are mainstream in
terms of classical analysis.



Data analysis procedures

@ The graphical techniques are for a large part employed in an
Exploratory Data Analysis framework. They are often quite simple:

@ plotting the raw data such as via histograms, probability plots

o plotting simple statistics such as mean plots, standard deviation
plots, box plots, and main effects plots of the raw data.

@ positioning such plots so as to maximize our natural
pattern-recognition abilities (multiple plots, when grouped together,
may give a more complete picture of what is going on in the data)



Exploratory Data Analysis

@ EDA is not identical to statistical graphics (although the two terms
are used almost interchangeably) ... It is much more.

@ Statistical graphics is a collection of graphically-based techniques.
They are all focusing on data characterization aspects.

@ EDA is an approach to data analysis that postpones the usual
assumptions about what kind of model the data follow with the
more direct approach of allowing the data itself to reveal its
underlying structure and model.

Exploratory Data Analysis is an approach/philosophy
for data analysis that employs a variety of techniques.
The main role of EDA is to open-mindedly explore,
and graphics gives the analysts unparalleled power to
do so.




Exploratory Data Analysis

@ Exploratory Data Analysis (EDA) is an approach/philosophy for data
analysis that employs a variety of techniques (mostly graphical) to

9o

¢ ¢ ¢ ¢ ¢

maximize insight into a data set;
uncover underlying structure;
extract important variables;

test underlying assumptions;
develop parsimonious models;
detect outliers and anomalies



Exploratory Why? What? How? Assumptions of EDA

Outlier Detection

@ Definition of Hawkins [Hawkins 1980]:

An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a
different mechanism

@ Statistics-based intuition

@ “Normal data” objects follow a “generating mechanisms”, e.g. some

given statistical process
@ “Abnormal objects” deviate from this generating mechanism

@ Whether an occurrence is abnormal depends on different aspects like
frequency, spatial correlation, etc.

Should one always discard outlying observations? )

Elements of statistics (MATHO0487-1)
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Examples (I)

@ Fraud detection

@ Purchasing behavior of a credit card owner usually changes when the
card is stolen
@ Abnormal buying patterns can characterize credit card abuse

@ Medicine

@ Unusual symptoms or test results may indicate potential health
problems of a patient

@ Whether a particular test result is abnormal may depend on other
characteristics of the patients (e.g. gender, age, )

@ Public health

@ The occurrence of a particular disease, e.g. tetanus, scattered across
various hospitals of a city indicate problems with the corresponding
vaccination program in that city



Examples (1)

@ Sports statistics
@ In many sports, various parameters are recorded for players in order
to evaluate the players’ performances
o Outstanding (in a positive as well as a negative sense) players may
be identified as having abnormal parameter values
@ Sometimes, players show abnormal values only on a subset or a
special combination of the recorded parameters

@ Detecting measurement errors

o Data derived from sensors (e.g. in a given scientific experiment) may

contain measurement errors
@ Abnormal values could provide an indication of a measurement error

@ Removing such errors can be important in other data mining and
data analysis tasks
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Food for Thought

Data usually are multivariate, i.e., multi-dimensional: The basic
model for outliers is univariate, i.e. one-dimensional

There is usually more than one generating mechanism /statistical
process underlying the “normal” data: basic model assumes only one
“normal” generating mechanism

Anomalies may represent a different class (generating mechanism) of
objects, so there may be a large class of similar objects that are the
outliers: The basic model assumes that outliers are rare observations

A lot of models and approaches have evolved in the past years in
order to extend these assumptions: For instance, extreme-value
analysis techniques

Remember: One person’s noise could be another person’s signal!



Exploratory Why? What? How? Assumptions of EDA

Methods of EDA: one-way

@ Ordering : Stem-and-Leaf plots

@ Grouping: frequency displays, distributions; histograms

@ Summaries: summary statistics, standard deviation, box-and-whisker
plots
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Stem-and-leaf Plots

Age in years (10 observations):

25, 26, 29, 32, 35, .36, 38, 44, 49, 51

Age Interval

Observations

20-29
30-39
40-49
50-59

569
2568
49

1



Stem-and-leaf Plots

@ The age interval is the stem

@ [ he observations are the leaves

@ Rule of thumb:

@ The number of stems should roughly equal the square root of the
number of observations
@ Or the stems should be logical categories



Cumulative Frequency Distribution Tables

Show the frequency, the relative frequency, and cumulative
frequency of observations

Age Interval | Frequency | Cum. Freq. | Rel. Freq | Cum. Rel. Freq.
20-29 3 3 0.3 0.3
30-39 4 7 0.4 0.7
40-49 2 9 0.2 0.9
50-59 1 10 0.1 1.0

@ This table shows an empirical distribution function obtained from
a sample

@ [ he true distribution function is the distribution of the entire
population



Picture of the frequency or relative frequency distribution

Histogram of Age

2
2.
| Note: Graphs are generally
o better to use in
e
% ™ presentations than tables.
> | They allow your audience
(] - A
T 2- to visualize a trend
| quickly.
Q

o [ I I I I I |
25 30 35 40 45 50 55
Age



Histograms and densities

Symmetrical Positively skewed Negatively skewed
and bell shaped or skewed to the right or skewed to the left

Bimodal Reverse J-shaped Uniform




Summary statistics: percentiles

@ The r-th percentile P, of a set of values, divides them such that r
percent of the values lie below and (100 — r) percent of the values

above.
Percentile | Quartile Formula
P>s Q1 ”jfl ™ observation
Pso Q7 ”;rl " observation
P7s Q3 3(”:1) i observation




Calculating quartiles

From the age data:
25, 26, 29, 32, 35, 36, 38, 44, 49, 51

with n=10

> = median
— average of 5! and 6"observations
35 4 36

2
= 28

Remember to order your data!



Calculating quartiles

®@1 = median of lower half of data

third smallest value
= 20

@3 = median of upper half of data
— third largest value
= 44

Note: If n is odd, include the median in the upper and lower half
of the data.



Box-and-whisker plots

@ Box-and-whisker plots display quartiles
@ Some terminology:

o Upper Hinge = @3 = Third quartile
@ Lower Hinge = Q1 = First quartile
o Interquartile range (IQR) = Q3 — @1

Contains the middle 50% of data
o Upper Fence = Upper Hinge + 1.5 * (IQR)
o Lower Fence = Lower Hinge - 1.5 * (IQR)
@ Outliers: Data values beyond the fences

@ Whiskers are drawn to the smallest and largest observations within
the fences



Box-and-whisker plots

@ IQR = 44-29 = 15
@ Upper Fence = 44 + 15*1.5 = 66.5
@ Lower Fence = 29 - 15*1.5 = 6.5

Boxplot of Age

Age in Years
25 30 35 40 45 50




Extensions to box-plots

Compared to the classical box plot, what extra information is provided in
the plots below?




Extensions to box-plots

@ Several methods exist for adding density to the box plot:

9

9o
o
9

a) histplot,
b) vaseplot,
c) box-percentile plot,

d) violin plot (a combination of a boxplot and a kernel density plot)
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@ In the notched boxplot, if the notches of two boxes do not overlap
this is “strong evidence” for their medians to be different



Quantile-Quantile (Q-Q) Plots

We have seen a quantile function before ...; one corresponding to a
normal density function

In general, the quantile function of a probability distribution f is
the inverse of its cumulative distribution function (cdf) F

Quantile functions as well can be estimated from the data at hand.

If we consider the estimated quantile function to be a “good”
estimate (sample level) for the truth (population level), it will learn
us something about the true underlying mechanisms of the data

If we assume a particular “model” or mechanism that could have
generated the data, we can compare the quantile function
corresponding to this “theoretically proposed” distribution to the
quantile function corresponding to our observed data



Quantile plots: The sample
quantiles are plotted against the
fraction of the sample they corre-
spond to
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Q-Q plots: The sample quantiles
are plotted against the theoretical
quantiles (“observed” quantiles
are compared to “expected’ quan-
tiles under the assumed model)
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@ In general, Q-Q plots allow us to compare the quantiles of two sets
of numbers. They go beyond the information provided by box-plots
(also using quantiles), in that Q-Q plots give us a clue about the
validity of a proposed model for the data or data generation
mechanism

@ There is a cost associated with this extra detail. We need more
observations than for simple comparisons

@ Remark:

@ A P-P plot compares the empirical cumulative distribution function
of a data set with a specified theoretical cumulative distribution
function.

o Q-Q plot compares the quantiles of a data distribution with the
quantiles of a standardized theoretical distribution from a specified
family of distributions



Examples (I)

Normal Q-Q Plots of Samples from Normal Populations

@ A sufficiently trained statistician can read a Q-Q-plot like a holistic
medical doctor can read the internal organs of a person. Interpreting
Q-Q plots is more a visceral than an intellectual exercise. The
uninitiated are often mystified by the process.

@ Experience is the key here. The first step is to examine normal Q-Q
plots of samples known to be from normal populations, to get some
idea of how much straggling about the line is acceptable.

eeeeeeeeeee

Normal Q-Q plot of a sample of 20 observations from a Normal population with mean 10 and

standard deviation 3



Examples (1)

Normal Q-Q Plots of Samples from Skew Populations

@ The lognormal density is given by

f(x) = 1/(\/ZQW)OX)e_((|°gx_“)2/(202))

lognormal data with mu=11.33 and sigma=srmal with mean and variance of lognorme
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Examples (1)

Normal Q-Q Plots of Samples from Skew Populations

@ Specific departures from normality in the population being sampled
manifest themselves as specific departures from the straight and

narrow in the Q-Q plot.

@ If the population being sampled is actually skewed to the right, i.e.
has a long right hand tail, and thus short left tail, then the sample
quantiles close to 1 will lie to the right of where normality would
place them, and similarly for the sample quantiles close to 0. For
quantiles closer to 0.5, the Normal quantiles will exceed those of the

sample.

Why? )




Why Do Q-Q Plots from Skewed Populations Look Like

They Do?

@ A plot of a right-skewed lognormal population compared to a normal
population with the same mean and standard deviation
(mean=11.33, st.dev.=6.04):

20 -10 a

0 40

@ If you imagine where the 0.1, 0.2,...,0.9 quantiles (for example) lie in
both populations, it seems reasonably clear that the normal
quantiles will be less than their lognormal counterparts to begin with.
By quantile 0.5 the situation has been reversed, since the lognormal
has a median of 10 and the Normal a median of 11.33. At the right
hand end of the plot, the normal quantiles will again be less than
their lognormal counterparts.



Examples (1)

Normal Q-Q Plots of Samples from Skew Populations

@ The result is a Q-Q plot which resembles the left hand top of an
arch, starting below the target line (or to the right if you prefer),
arching across it and then back to finish below (or to the right of)
the line again.

@ If the sampled population is skewed to the left, the arch is reflected
about Y = X, starting above it, crossing below and then back to
finish above.

lllllllllll

Normal Q-Q plot of a sample of 20 observations from a lognormal population with mean 10 and

standard deviation 3. This population is skewed to the right (i.e. it has a long right hand tail).



Examples (1)

Normal Q-Q Plots of Samples from Heavy Tailed (Leptokurtic)
Populations

@ Heavy tailed populations are symmetric, with more members at
greater remove from the population mean than in a Normal
population with the same standard deviation.

@ To compensate for the extreme members of the population, there
must also be higher concentration around the population mean than
in a Normal population with the same standard deviation. Heavy
tailed populations have higher, narrower peaks than the benchmark
Normal population. Hence, the term leptokurtic - narrow arched.



Examples (1)

Normal Q-Q Plots of Samples from Heavy Tailed (Leptokurtic)
Populations

@ With a normal population (same mean and standard deviation as the
leptokurtic population) as benchmark, the sample quantiles might
be expected to start ahead of their normal counterparts, but be soon
overtaken by them. Symmetry would place both sample and target
median back together again. The situation would be reversed as you
move from the median into the right hand tail, with the sample
quantiles in front of the targets to begin with, but eventually being
overtaken by them.

Heavy tailed population (red) com- A section of the extreme right hand

pared with a normal population tails of the two populations, showing

(blue) the extended reach of the heavy
tailed (red) population compared to
its Normal (blue) benchmark.



Examples (1)

Normal Q-Q Plots of Samples from Heavy Tailed (Leptokurtic)
Populations

@ The result is a Q-Q plot which resembles a stretched S, starting to
the left of the target line, and ending to the right of it, having
crossed 1t three times in between.

lllllllllll

Normal Q-Q plot of a sample of 20 observations from a heavy tailed population with mean 10 and

standard deviation 3.



Exploratory Why? What? How? Assumptions of EDA

Methods of EDA: two-way

@ 2 Categorical Variables
@ Frequency table
@ 1 Categorical, 1 Continuous Variable

o Stratified stem-and-leaf plots
o Side-by-side box plots

@ 2 Continuous variables

o Scatterplot
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2 categorical variables

Frequency Table

Age Interval Gender Total
Female Male
20-29 1 2 3
30-39 2 2 4
40-49 1 1 2
50-59 1 0 1
Total 5 5 10

It looks like the men tend to be younger than women in this
example.



1 categorical + 1 continuous variable

Stratified Stem-and-Leaf plots

Female Male

Age Interval | Obs. || Age Interval | Obs.
20-29 | 6 20-29 | 59
30-39 | 56 30-39 | 28
40-49 | 9 40-49 | 4
50-50 | 1 50-59
Total | 5 5 10




Side-by-Side Box Plots

Boxplot of Age by Gender

Age in Years

25 30 35 40 45 50

I
Female

Male

1 categorical + 1 continuous variable

Allows us to compare the
distribution of the
continuous variable (age)
across values of the
categorical variable
(gender)



2 continous variables

Scatterplot

165 175 185

Height in Centimeters

199

Age by Height

25

30

35 40 45 50

Age in Years

Scatterplots visually
display the relationship
between two continuous
variables



2 continous variables

library(aplpack) attach(mtcars) bagplot(wt,mpg, xlab="Car Weight
ylab="Miles Per Gallon", main="Bagplot Example")

Bagplot Example

20
|

Miles Per Gallon

20

15

10

Car Weight
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Exploratory Why? What? How? Assumptions of EDA

Assumptions of EDA

@ Virtually any data analysis approach relies on assumptions that need
to be verified

@ There are four assumptions that typically underlie all measurement
processes; namely, that the data from the process at hand "behave
like":

@ random drawings,

@ from a fixed distribution,

@ with the distribution having fixed location and
@ with the distribution having fixed variation

@ The data are called to follow a univariate process

Prof. Dr. Dr. K. Van Steen Elements of statistics (MATHO0487-1)




Assumptions of EDA

@ The most common assumption in any data analysis is that the
differences between the raw response data and the predicted values
from a fitted model (these are called residuals) should themselves
behave like a univariate process

@ So, if the residuals from the fitted model behave like the ideal, then
testing the underlying assumptions for univariate processes becomes
a tool for the validation and quality of fit of the chosen model.

@ On the other hand, if the residuals from the chosen fitted model
violate one or more of the aforementioned univariate assumptions,
then we can say that the chosen fitted model is inadequate and an
opportunity exists for arriving at an improved model.



Verifying the Assumptions of EDA

@ The following EDA techniques are simple, efficient, and powerful for
the routine testing of underlying assumptions:

run sequence plot (Y; versus i) — upper left on next slide

lag plot (Y; versus Y;_1) — upper right on next slide

histogram (counts versus subgroups of Y') — lower left on next slide
normal probability plot (ordered Y versus theoretical ordered Y) -
lower right on next slide

o
o
9
o

@ Together they form what is often called a 4-plot of the data.



Verifying the Assumptions of EDA

Normal Random Numbers: 4-Plot
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Interpretation of 4-plots

@ Randomness: If the randomness assumption holds, then the lag plot
(Y; versus Y;_1) will be without any apparent structure and random.

@ Fixed Distribution: If the fixed distribution assumption holds, in
particular if the fixed normal distribution holds, then the histogram
will be bell-shaped, and the normal probability plot will be linear.

@ Fixed Location: If the fixed location assumption holds, then the
run sequence plot (Y; versus i) will be flat and non-drifting.

@ Fixed Variation: If the fixed variation assumption holds, then the
vertical spread in the run sequence plot (Y; versus i) will be the
approximately the same over the entire horizontal axis.

Can we reverse the reasoning? )




Interpretation of 4-plots

@ Run Sequence Plot: If the run sequence plot (Y; versus i) is flat
and non-drifting, the fixed-location assumption holds. If the run
sequence plot has a vertical spread that is about the same over the
entire plot, then the fixed-variation assumption holds.

@ Lag Plot: If the lag plot is without structure, then the randomness
assumption holds.

@ Histogram: If the histogram is bell-shaped, the underlying
distribution is symmetric and perhaps approximately normal.

@ Normal Probability Plot: If the normal probability plot is linear,
the underlying distribution is approximately normal



When assumptions are violated

@ Consequences of non-randomness:

9@ All of the usual statistical tests are invalid.

o
9

The calculated uncertainties for commonly used statistics become
meaningless.

The calculated minimal sample size required for a pre-specified
tolerance becomes meaningless.

Even the simple model linear regression model becomes invalid.
The parameter estimates become suspect and non-supportable

o ...

@ When violations cannot be corrected in some sense, usually a more
complicated analysis strategy needs to be adopted (for instance:
mixed modelling to account for dependencies caused by multiple

measurements taken over a specific time span, for the same
individual).



