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Partial Observability
We consider a POMDP (𝒮, 𝒜, 𝒪, 𝑃 , 𝑂, 𝑇 , 𝑅, 𝛾):

• States 𝑠𝑡 ∈ 𝒮,
• Actions 𝑎𝑡 ∈ 𝒜,
• Observations 𝑜𝑡 ∈ 𝒪,
• Initialization 𝑠0 ∼ 𝑃(·),

• Perception 𝑜𝑡 ∼ 𝑂(· |𝑠𝑡),
• Transition 𝑠𝑡+1 ∼ 𝑇(· |𝑠𝑡, 𝑎𝑡),
• Reward 𝑟𝑡 ∼ 𝑅(· |𝑠𝑡, 𝑎𝑡),
• Discount 𝛾 ∈ [0, 1).

Given an agent state 𝑧 = 𝑓(ℎ), recurrent s.t. 𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′), we want
an optimal agent-state policy 𝜋∗ ∈ argmax

𝜋∈Π
𝐽(𝜋) with Π = 𝒵 → Δ(𝒜) and,

𝐽(𝜋) = 𝔼𝜋[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡].

Asymmetric Observability
Partial observability is more realistic than full observability. But in some
cases, the state may still be available during training.
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Asymmetric RL leverages the state at training time to learn faster.

Asymmetric Actor-Critic
In actor-critic methods, the critic is not needed at execution.
⇒ The critic can be informed with the state: 𝑄𝜋(𝑧, 𝑎) → 𝑄𝜋(𝑠, 𝑧, 𝑎).

𝑠

𝑧

𝑄𝜋𝜓(𝑠, 𝑧, ·)

𝜋𝜓(· |𝑧)
log 𝜋𝜓(𝑎|𝑧)𝑄𝜋𝜓(𝑠, 𝑧, 𝑎)

While the asymmetric policy gradient is unbiased compared to the sym,
metric one [1], a theoretical justification for its benefits is still missing.

Proposed Analysis
We provide a theoretical justification by adapting a finite-time bound for
symmetric actor,critic [2] to the asymmetric setting.

• Linear finite-state critics:
‣ 𝒬𝜋

𝛽(𝑠, 𝑧, 𝑎) = ⟨𝛽, 𝜑(𝑠, 𝑧, 𝑎)⟩ and �̂�𝜋
𝛽(𝑧, 𝑎) = ⟨𝛽, 𝜒(𝑧, 𝑎)⟩.

• Log-linear finite-state policy:
‣ 𝜋𝜃(𝑎|𝑧) ∝ exp(⟨𝜃, 𝜓(𝑧, 𝑎)⟩).

Algorithm 1. (A)symmetric natural actor,critic.

1. Initialize policy parameters 𝜓0.
2. For 𝑡 = 1…𝑇 :

1. Estimate 𝒬𝜋𝜓
𝜑 ≈ 𝒬𝜋𝜓  or �̂�𝜋

𝜒 ≈ 𝑄𝜋𝜓 .
‣ TD learning for 𝐾 steps.

2. Estimate 𝑔𝑡−1 ≈ 𝐹 †
𝜋𝜓𝑡−1

∇𝜓𝐽(𝜋𝜓𝑡−1
) with 𝒬𝜋𝜓

𝜑  or �̂�𝜋𝜓
𝜒 .

‣ NPG estimation for 𝑁  steps.
3. Update policy 𝜓𝑡 = 𝜓𝑡−1 + 𝜂𝑔𝑡−1.

3. Return 𝜋𝜓𝑇
.

Because we use TD learning with agent states, we note that:

• The fixed point �̃�𝜋 of the asymmetric Bellman operator is 𝒬𝜋,
• The fixed point �̃�𝜋 of the symmetric Bellman operator is not 𝑄𝜋.

Using the belief 𝑏(𝑠|ℎ) = Pr(𝑠|ℎ) and approximate belief �̂�(𝑠|𝑧) = Pr(𝑠|𝑧),
we introduce a measure of aliasing for the agent state.

Definition 1. Aliasing measure.

𝜀alias/inf ∝ 𝔼[‖𝑏(· |ℎ) − �̂�(· |𝑧)‖]

Finite-Time Bounds

1 Theorem 1. For any 𝜋 ∈ Π and any 𝑚 ∈ ℕ, these finite,time
bounds hold for TD learning with 𝛼 = 1

𝐾 .

√𝔼[‖𝒬𝜋 − 𝒬𝜋‖
2

𝑑𝜋
] ≤ 𝜀td + 𝜀app + 𝜀shift

√𝔼[‖𝑄𝜋 − 𝑄𝜋‖
2

𝑑𝜋
] ≤ 𝜀td + 𝜀app + 𝜀shift + 𝜀alias

(1)

𝜀td =
√

√√
√

4𝐵2 + ( 1
1−𝛾 + 2𝐵)

2

2
√

𝐾(1 − 𝛾𝑚)

𝜀app = 1 + 𝛾𝑚

1 − 𝛾𝑚 min
𝑓∈ℱ𝐵

𝜑

‖𝑓 − 𝑄𝜋‖𝑑𝜋

𝜀shift = (𝐵 + 1
1 − 𝛾

)√ 2𝛾𝑚

1 − 𝛾𝑚 √‖𝑑𝜋
𝑚 ⊗ 𝜋 − 𝑑𝜋 ⊗ 𝜋‖TV

𝜀alias = 2
1 − 𝛾

‖𝔼𝜋[∑
∞

𝑘=0
𝛾𝑘𝑚‖�̂�𝑘𝑚 − 𝑏𝑘𝑚‖

TV
| 𝑍0 = ·, 𝐴0 = ·]‖

𝑑𝜋

2 Theorem 2. For any 𝑓 : ℋ → 𝒵, this finite,time bound holds for
Algorithm 1 with 𝛼 = 1

𝐾 , 𝜁 = 𝐵
√

1−𝛾√
2𝑁

 and 𝜂 = 1√
𝑇 .

(1 − 𝛾) min
0≤𝑡<𝑇

𝔼[𝐽(𝜋∗) − 𝐽(𝜋𝑡)]

   ≤ 𝜀nac + 𝜀actor + 𝜀grad + 𝜀inf + 1
𝑇

∑
𝑇−1

𝑡=0
𝜀𝜋𝑡

critic
(2)

𝜀nac = 𝐵2 + 2 log|𝐴|
2
√

𝑇
 𝜀actor = 𝐶∞√ (2 − 𝛾)𝐵

(1 − 𝛾)
√

𝑁

𝜀asym
grad = 2𝐶∞ sup

0≤𝑡<𝑇
√min

𝑤
ℒ𝑡(𝑤) 𝜀sym

grad = 2𝐶∞ sup
0≤𝑡<𝑇

√min
𝑤

𝐿𝑡(𝑤)

𝜀asym
inf = 0 𝜀sym

inf = 2𝔼𝜋∗[∑
∞

𝑘=0
𝛾𝑘‖�̂�𝑘 − 𝑏𝑘‖

TV
]

𝜀𝜋𝑡
critic = 2𝐶∞

√
6(RHS of (1))

Conclusion

Asymmetric learning is less sensitive to aliasing in the agent state.

Future works:

• Consider learnable agent states or nonlinear approximators,
• Relax some assumptions (iid sampling and concentrability) [3],
• Generalize to non Markovian additional information.
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