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Asymmetric Observability



Partial observability
A POMDP is described by a model 𝒫 = (𝒮,𝒜,𝒪, 𝑃 ,𝑂, 𝑇 ,𝑅, 𝛾).

• States 𝑠𝑡 ∈ 𝒮,
• Actions 𝑎𝑡 ∈ 𝒜,
• Observations 𝑜𝑡 ∈ 𝒪,
• Initialisation 𝑠0 ∼ 𝑃(·),

• Perception 𝑜𝑡 ∼ 𝑂(· |𝑠𝑡),
• Transition 𝑠𝑡+1 ∼ 𝑇(· |𝑠𝑡, 𝑎𝑡),
• Reward 𝑟𝑡 ∼ 𝑅(· |𝑠𝑡, 𝑎𝑡),
• Discount 𝛾 ∈ [0, 1).

The history at time 𝑡 is ℎ𝑡 = (𝑜0, 𝑎0,…, 𝑜𝑡) ∈ ℋ.

Definition 1: History-dependent stochastic policy.
A history-dependent stochastic policy 𝜋 ∈ Π = ℋ→ Δ(𝒜) is a mapping
from histories to distributions over the actions, with density 𝜋(𝑎|ℎ).

Fig. 1: History-dependent policy.
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Learning under partial observability

Fig. 2: Bayesian graph of a POMDP.

The problem of RL in POMDP is to find an optimal history-dependent policy

𝜋∗ ∈ argmax
𝜋∈Π

𝔼𝜋[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡]

from samples (𝑜0, 𝑎0, 𝑟0,…, 𝑜𝑡).
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Asymmetric observability

Decision process Execution Training Generality

MDP Too optimistic.

POMDP Too pessimistic.

Privileged POMDP Too optimistic.

Informed POMDP Just right?

Examples: simulator state, trajectory in hindsight, additional sensors, addi-
tional viewpoints, observations of other agents, etc.
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Learning under asymmetric observability

Fig. 3: Bayesian graph of an informed POMDP.

The problem of RL in POMDP is to find an optimal history-dependent policy

𝜋∗ ∈ argmax
𝜋∈Π

𝔼𝜋[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡]

from samples (𝑖0, 𝑜0, 𝑎0, 𝑟0,…, 𝑖𝑡, 𝑜𝑡).
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Asymmetric learning is successful
• Magnetic Control of Tokamak Plasma through Deep RL (Degrave et al., 2022).
• Champion-Level Drone Racing using Deep RL (Kaufmann et al., 2023).
• A Super-Human Vision-Based RL Agent in Gran Turismo (Vasco et al., 2024).

Image credits: first, second, third.
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Asymmetric Learning



1. Imitation learning approaches
The idea consists of imitating an expert policy (Choudhury et al., 2018):

1. Learn a policy for the MDP: 𝜇(𝑎|𝑠),
2. Imitate the policy: 𝜋(𝑎|ℎ) ≈ 𝜇(𝑎|𝑠).

It is known to be suboptimal: the policy corresponds to the greedy policy with
respect to the Q-MDP approximation (Littman et al., 1995):

𝑉POMDP(ℎ) = 𝔼[𝑉MDP(𝑆)|𝐻 = ℎ].

Q
A S B

Fig. 4: Environment with random unobserved goal where imitation is optimal.

Recent works have constrained the expert policy such that its imitation results
in an optimal history-dependent policy (Warrington et al., 2021).
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2. Asymmetric critic approaches
The idea comes from the lack of need of the critic at execution (Pinto et al., 2018):

1. The policy is conditioned on the history: 𝜋(𝑎|ℎ).
2. The critic is conditioned on the state: 𝑄(𝑠, 𝑎).
3. The policy gradient is approximated using: log 𝜋(𝑎|ℎ)𝑄(𝑠, 𝑎).

It is known to be biased or even ill-defined: the environment state 𝑠 is not a
Markovian state of the future execution of the environment and policy 𝜋(𝑎|ℎ).

𝑠

ℎ

𝑄(𝑠, ·)

𝜋(· |ℎ)
log 𝜋(𝑎|ℎ)𝑄(𝑠, 𝑎)

Fig. 5: Illustration of the asymmetric actor-critic.

Recent works have proposed a well-defined and unbiased asymmetric actor-
critic by introducing the history-state critic 𝑄(ℎ, 𝑠, 𝑎) (Baisero & Amato, 2022).
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3. Representation learning approaches
The idea comes from the sufficiency of the belief (Nguyen et al., 2021).

1. The history is compressed into a statistic: 𝑧 = 𝑓(ℎ).
2. The statistic is trained to be predictive of the belief: ̂𝑏(𝑠|𝑧) ≈ 𝑝(𝑠|ℎ).
3. The policy is conditioned on that statistic: 𝜋(𝑎|ℎ) = 𝑔(𝑎|𝑧).

It is known to unrealistic: computing the belief 𝑝(𝑠|ℎ) requires the dynamics to
be known and is in general intractable.

Fig. 6: Representation learning in POMDP.

Recent works have proposed to learn belief representations from the sample
states that are observed at training time (Wang et al., 2023).
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4. Model-based learning approaches
Several concurrent approaches to replace the word model 𝑞(𝑟, 𝑜′|ℎ, 𝑎):
• Bisimulation of belief world model (Avalos et al., 2024):

1. Predict the belief: 𝑏 = 𝑓(ℎ).
2. Learn a belief world model: 𝑏′ = 𝑔(𝑏, 𝑎, 𝑜′).

• Representation learning with asymmetric model (Lambrechts et al., 2024):
1. Predict the next information: 𝑞(𝑟, 𝑖′|ℎ, 𝑎).
2. Use latent policy to learn from the informed world model.

• Distillation of a privileged world-model (Hu et al., 2024):
1. Learn a privileged world model: 𝑞(𝑟, 𝑜′|ℎ+, 𝑎).
2. Distillate the world model: 𝑞(𝑟, 𝑜′|ℎ, 𝑎).

Fig. 7: Informed world model.
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A Theoretical Justification for
Asymmetric Actor-Critic Algorithms



Lack of justification
To sum up, while early approaches were heuristic, a recent line of work has
focused on proposing theoretically grounded objectives:
• They provide optimal history-dependent policies when satisfied,
• They make use of the additional state information.

But there are still no theoretical justification for the benefits. While at
optimality policies are equivalent, asymmetric learning should converge faster.

Goal of this work: justification for the asymmetric actor-critic algorithm.

NB: Some explanations exist in the literature (Baisero & Amato, 2022; Sinha &
Mahajan, 2023). Recently, an asymmetric actor-critic relying on learning beliefs
was shown more efficient than symmetric learning (Cai et al., 2024).
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Asymmetric actor-critic algorithm
We make the following assumptions:

• Discrete space:
‣ State space 𝒮, observation space 𝒪, action space 𝒜.
‣ Agent state space 𝒵.

• Finite state policy:
‣ Agent state process 𝑧𝑡+1 ∼ 𝑈(· |𝑧𝑡, 𝑎𝑡, 𝑜𝑡+1).
‣ Policy 𝑎𝑡 ∼ 𝜋(· |𝑧𝑡).

• Finite state Q-functions:
‣ Asymmetric 𝒬𝜋(𝑠, 𝑧, 𝑎) = 𝔼𝜋[∑𝑡=0 𝛾

𝑡𝑅𝑡|𝑆0 = 𝑠,𝑍0 = 𝑧,𝐴0 = 𝑧].
‣ Symmetric 𝑄𝜋(𝑧, 𝑎) = 𝔼𝜋[∑𝑡=0 𝛾

𝑡𝑅𝑡|𝑍0 = 𝑧,𝐴0 = 𝑧].
• Linear Q-functions approximations:

‣ Asymmetric 𝒬𝜋𝛽(·) = ⟨𝛽, 𝜑(·)⟩ with 𝜑 : 𝒮 × 𝒵 ×𝒜 → ℝ𝑑.
‣ Symmetric 𝑄̂𝜋𝛽(·) = ⟨𝛽, 𝜒(·)⟩ with 𝜒 : 𝒵 ×𝒜 → ℝ𝑑.

• Log-linear policy:
‣ 𝜋𝜃(𝑎|𝑧) ∝ exp(⟨𝜃, 𝜓(𝑧, 𝑎)⟩).
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Asymmetric actor-critic algorithm (ii)
We use the abbreviations 𝒬𝜋𝑘,𝑖 = 𝒬𝜋(𝑠𝑘,𝑖, 𝑧𝑘,𝑖, 𝑎𝑘,𝑖) and 𝑄̂𝜋𝑘,𝑖 = 𝑄̂𝜋(𝑧𝑘,𝑖, 𝑎𝑘,𝑖).

The asymmetric semi-gradient is,

𝑔𝑘 = (∑
𝑚−1

𝑖=0
𝛾𝑖𝑟𝑘,𝑖 + 𝛾𝑚𝒬𝜋𝑘,𝑚 −𝒬𝜋𝑘,0)∇𝛽𝒬𝜋𝑘,0. (1)

and the symmetric semi-gradient is,

𝑔𝑘 = (∑
𝑚−1

𝑖=0
𝛾𝑖𝑟𝑘,𝑖 + 𝛾𝑚𝑄̂𝜋𝑘,𝑚 − 𝑄̂𝜋𝑘,0)∇𝛽𝑄̂𝜋𝑘,0. (2)

Interestingly, the asymmetric Q-function 𝒬(𝑠, 𝑧, 𝑎) is the solution of its Bellman
equation, while the symmetric Q-function 𝑄(𝑧, 𝑎) is not!
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Asymmetric actor-critic algorithm (iii)

Algorithm 1: 𝑚-step TD learning.
1. For 𝑘 = 0,…,𝐾 − 1:

1. Sample 𝑠𝑘,0, 𝑧𝑘,0 from the discounted visitation measure 𝑑𝜋(·).
2. For 𝑖 = 0,…,𝑚 − 1:

1. Take action 𝑎𝑘,𝑖 ∼ 𝜋(· |𝑧𝑘,𝑖).
2. Observe 𝑟𝑘,𝑖+1, 𝑠𝑘,𝑖+1, 𝑜𝑘,𝑖+1, 𝑧𝑘,𝑖+1 according to 𝑅, 𝑇 ,𝑂,𝑈 .

3. Sample last action 𝑎𝑘,𝑚 ∼ 𝜋(𝑧𝑘,𝑚).
4. Compute semi-gradient 𝑔𝑘 using (1) or (2).
5. Update parameters: 𝛽𝑘+1 = Γℬ(0,𝐵)(𝛽𝑘 + 𝛼𝑔𝑘).

2. Return average estimate 𝒬𝜋(·) = ⟨𝛽, 𝜑(·)⟩ or 𝑄𝜋(·) = ⟨𝛽, 𝜒(·)⟩ with av-
erage parameter 𝛽 = 1

𝐾∑
𝐾−1
𝑘=0 𝛽𝑘.
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Asymmetric actor-critic algorithm (iv)
Let us define the asymmetric and symmetric advantage functions:

𝒜𝜋(𝑠, 𝑧, 𝑎) = 𝒬𝜋(𝑠, 𝑧, 𝑎) −∑
𝑎∈𝒜
𝒬𝜋(𝑠, 𝑧, 𝑎)

𝐴𝜋(𝑧, 𝑎) = 𝑄̂𝜋(𝑧, 𝑎) −∑
𝑎∈𝒜
𝑄̂𝜋(𝑧, 𝑎).

We use the abbreviations 𝒜𝜋 = 𝒜𝜋(𝑠, 𝑧, 𝑎) and 𝐴𝜋 = 𝐴𝜋(𝑧, 𝑎).

Finally, the asymmetric natural gradient loss is,

𝑣𝑡,𝑛 = ∇𝑤(⟨∇𝜃 log 𝜋𝜃(𝑎𝑡,𝑛|𝑧𝑡,𝑛), 𝑤𝑡,𝑛⟩ − 𝒜𝑡,𝑛)
2
. (3)

and the symmetric natural gradient loss is,

𝑣𝑡,𝑛 = ∇𝑤(⟨∇𝜃 log 𝜋𝜃(𝑎𝑡,𝑛|𝑧𝑡,𝑛), 𝑤𝑡,𝑛⟩ − 𝐴𝑡,𝑛)
2
. (4)
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Asymmetric actor-critic algorithm (v)

Algorithm 2: Natural actor critic.
1. For 𝑡 = 0,…, 𝑇 − 1:

1. Obtain 𝒬𝜋𝑡  or 𝑄𝜋𝑡  using Algorithm 1.
2. For 𝑛 = 0,…,𝑁 − 1:

1. Sample 𝑠𝑘,𝑛, 𝑧𝑘,𝑛 from the discounted visitation measure 𝑑𝜋(·).
2. Take action 𝑎𝑘,𝑛 ∼ 𝜋(· |𝑧𝑘,𝑛).
3. Compute gradient 𝑣𝑡,𝑛 of the natural policy gradient using (3) or (4).
4. Update natural policy gradient: 𝑤𝑡,𝑛+1 = Γℬ(0,𝐵)(𝑤𝑡,𝑛 + 𝜁𝑣𝑡,𝑛).

3. Estimate natural policy gradient: 𝑤̄𝑡 = 1
𝑁 ∑

𝑁−1
𝑛=0 𝑤𝑡,𝑛.

4. Update parameters 𝜃𝑡+1 = 𝜃𝑡 + 𝜂𝑤̄𝑡.
2. Return final policy 𝜋𝑇 = 𝜋𝜃𝑇 .
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Previous finite-time bounds
Based on previous bounds for TD learning and NAC algorithms:
• Convergence of linear TD learning in MDP (Tsitsiklis & Van Roy, 1996).
• Finite-time analysis of linear TD learning in MDP (Bhandari et al., 2021).
• Finite-time analysis of log-linear NAC in MDP (Agarwal et al., 2021).

We adapt existing bounds for TD and NAC in POMDP (Cayci et al., 2024):
• It does not assume a stationary distribution nor full rank feature matrices.
• It does assume to sample i.i.d. from the discounted visitation measure.

These adaptations resulted in the following contributions:
• Fixing a few typos and errors in the original proofs.
• Adapting it to 𝑧𝑡 ∼ 𝑓(· |ℎ𝑡) instead of 𝑧𝑡 ∼ 𝑓(· |ℎ𝑡−1, 𝑎𝑡−1).
• Generalizing these bounds to the asymmetric learning setting.

We define the belief 𝑏(𝑠|ℎ) = Pr(𝑠|ℎ) and approximate belief ̂𝑏(𝑠|𝑧) = Pr(𝑠|𝑧).
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Finite-time bound for the critics
Theorem 1: Finite-time bound for symmetric and asymmetric Q-functions.
For any 𝜋 ∈ Πℳ, and any 𝑚 ∈ ℕ, we have for Algorithm 1 with 𝛼 = 1

𝐾 ,

√𝔼[‖𝒬𝜋 −𝒬𝜋‖
2

𝑑𝜋
] ≤ 𝜀td + 𝜀app + 𝜀shift

√𝔼[‖𝑄𝜋 −𝑄𝜋‖
2

𝑑𝜋
] ≤ 𝜀td + 𝜀app + 𝜀shift + 𝜀alias.

𝜀td =
√

√√
√
4𝐵2 + ( 11−𝛾 + 2𝐵)

2

2
√
𝐾(1 − 𝛾𝑚)

𝜀app =
1 + 𝛾𝑚

1 − 𝛾𝑚
min
𝑓∈ℱ𝐵𝜑

‖𝑓 − 𝑄𝜋‖𝑑𝜋

𝜀shift = (𝐵 +
1
1 − 𝛾

)√ 2𝛾𝑚
1 − 𝛾𝑚√

‖𝑑𝜋𝑚 ⊗ 𝜋 − 𝑑𝜋 ⊗ 𝜋‖TV

𝜀alias =
2
1 − 𝛾

‖𝔼𝜋[∑
∞

𝑘=0
𝛾𝑘𝑚‖𝑏̂𝑘,𝑚 − 𝑏𝑘,𝑚‖TV | 𝑍0 = ·,𝐴0 = ·]‖

𝑑𝜋

.
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Sketch of the critic proof
We can easily show that for any 𝑙 ∈ ℝ,

√𝔼[‖𝑄 −𝑄‖2𝑑] ≤ ‖𝑄 − 𝑄̃‖2𝑑 +

√

√√
√√
√√
√√

1
𝐾
∑
𝐾−1

𝑘=0

(
((
((
((
((
𝔼[√‖𝑄̃ − 𝑄̂𝑘‖

2

𝑑
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Δ𝑘

− 𝑙

)
))
))
))
))
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(∗)

+ 𝑙.

We bound (∗) for 𝑙 = 1+𝛾
𝑚

1−𝛾𝑚(‖𝑄̂∗ −𝑄‖𝑑 + ‖𝑄− 𝑄̃‖𝑑) by bounding the drift,

𝔼[‖𝛽∗ − 𝛽𝑘+1‖
2
𝑑
− ‖𝛽∗ − 𝛽𝑘‖

2
𝑑] ≤ −(…)(Δ𝑘 − 𝑙)

2 + (…)𝑙2 + (…).

By summing all Lyapounov drifts and rearranging,

1
𝐾
∑
𝐾−1

𝑘=0
(Δ𝑘 − 𝑙)

2 ≤ − 1
𝐾(…)

𝔼[‖𝛽∗ − 𝛽𝐾‖
2
𝑑 − ‖𝛽∗ − 𝛽0‖

2
𝑑] + (…)𝑙

2 + (…).

Substituting and setting 𝛼 = 1
𝐾 , we obtain the bound.
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Finite-time bound for the actors
Theorem 2: Finite-time bound for symmetric and asymmetric NAC.
For any (𝒵, 𝑈), we have for Algorithm 2 with 𝛼 = 1

𝐾 , 𝜁 = 𝑅
√
1−𝛾√
2𝑁

, 𝜂 = 1√
𝑇 ,

(1 − 𝛾) min
0≤𝑡<𝑇

𝔼[𝐽(𝜋∗) − 𝐽(𝜋𝑡)] ≤ 𝜀nac + 𝜀inf +𝐶∞(𝜀actor + 2𝜀grad + 2
√
6 1
𝑇
∑
𝑇−1

𝑡=0
𝜀𝜋𝑡critic),

𝜀nac =
𝑅2 + 2 log|𝐴|
2
√
𝑇

𝜀inf = 2𝔼𝜋
∗[∑
∞

𝑘=0
𝛾𝑘‖𝑏̂𝑘 − 𝑏𝑘‖TV]

𝜀actor = √
(2 − 𝛾)𝑅
(1 − 𝛾)

√
𝑁

𝜀grad,asym = sup
0≤𝑡<𝑇

√min
𝑤
ℒ𝑡(𝑤)𝜀grad,sym = sup

0≤𝑡<𝑇
√min

𝑤
𝐿𝑡(𝑤)

The term 𝜀𝜋𝑡critic is given by Theorem 1, and sup0≤𝑡<𝑇 𝔼[
𝑑𝜋∗(𝑍,𝐴)
𝑑𝜋𝑡(𝑍,𝐴)] ≤ 𝐶∞.
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Sketch of the actor proof
Let us first give the following performance difference lemma (Cayci et al., 2024),

𝑉 𝜋∗(𝑧) − 𝑉 𝜋(𝑧) ≤ 1
1 − 𝛾

𝔼𝑑𝜋
∗
[𝐴𝜋(𝑍,𝐴) | 𝑍0 = 𝑧] +

2
1 − 𝛾

𝜀𝜋∗inf(𝑧).

We start from the Lyapounov function Λ(𝜋) = ∑𝑧 𝑑
𝜋∗(𝑧) KL(𝜋∗(· |𝑧) ‖ 𝜋(·

|𝑧)), for which we can show, given than log-linear policies are 1-smooth,

Λ(𝜋𝑡+1) − Λ(𝜋𝑡) ≤
𝜂2

2
𝑅2 − 𝜂∑

𝑧,𝑎
𝑑𝜋∗(𝑧, 𝑎)𝐴𝜋(𝑧, 𝑎) + 𝜂∑

𝑧,𝑎
𝑑𝜋∗(𝑧, 𝑎)√𝐿(𝑤̄𝑡, 𝑧, 𝑎)

After a few manipulation on 𝐿(𝑤̄𝑡, 𝑧, 𝑎) by bounding ‖𝑤̄ − 𝑤∗‖2 using SGD
results for convex functions, we have using the lemma,

Λ(𝜋𝑡+1) − Λ(𝜋𝑡) ≤
𝜂2

2
𝑅2 − 𝜂(1 − 𝛾)𝔼[𝐽(𝜋∗) − 𝐽(𝜋𝑡)] + 2𝜂𝜀𝜋

∗

inf(𝑃 )

+𝜂𝐶∞(
√
2𝜀actor + 2𝜀

𝜋𝑡
grad + 2

√
6𝜀𝜋𝑡critic)

By summing all Lyapounov drifts, rearranging, noting that Λ(𝜋0) ≤ log|𝒜|, and
setting 𝜂 = 1√

𝑇 , we obtain the bound.
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Some insights
When using an asymmetric actor-critic algorithm:

• The critic error has a smaller upper bound.
‣ Because the asymmetric critic is the solution of a Bellman equation.

• The actor suboptimality has a smaller upper bound.
‣ This benefit comes from the smaller upper bound on the critic error.

Some limitations:

• The analysis assumes a fixed agent state process.
‣ Shed light on the effect of an aliased agent state (e.g., RNN at initialization).
‣ It can easily be extended to learnable agent state processes: 𝒜+ = 𝒜×𝒵.

• Requires samples from the discounted visitation measure.
‣ But it is still feasible without assumption on the mixing time.
‣ Reveal an interesting term 𝜀shift when not assuming stationary distribution.
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Conclusion



Take-home message

Don’t make the problem harder than it is.

Consider all available information at training.

Bonus: we start to see some theoretical justifications in the literature.
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