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Partial Observability



A matter of perception
Intelligence is usually understood as the ability to make decisions, based on
perception, in order to achieve an objective (McCarthy, 1998).

⇒ Intelligence is about (i) perceiving and abstracting past information about
the world for (ii) acting on its future execution to achieve an objective.

In RL, we model these aspects as:
• Perception: past observations.
• Decision: current action.
• Objective: future rewards.

Unfortunately, RL overlooked (i) to focus on (ii), by assuming full observability.
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Partially observable Markov decision process

A POMDP is described by a model 𝒫 = (𝒮,𝒜,𝒪, 𝑇 ,𝑅,𝑂, 𝑃 , 𝛾).

• States 𝑠𝑡 ∈ 𝒮,
• Actions 𝑎𝑡 ∈ 𝒜,
• Observations 𝑜𝑡 ∈ 𝒪,
• Discount 𝛾 ∈ [0, 1),

• Transition 𝑇(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡),
• Reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1),
• Perception 𝑂(𝑜𝑡|𝑠𝑡),
• Initialisation 𝑃(𝑠0).
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History-dependent policies

The history at time 𝑡 is ℎ𝑡 = (𝑜0, 𝑎0,…, 𝑜𝑡) ∈ ℋ.

Definition 1: History-dependent policy.
A history-dependent policy 𝜂 ∈ Η = ℋ→ Δ(𝒜) is a mapping from histo-
ries to distributions over the actions, with density 𝜂(𝑎|ℎ).
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History-dependent policies (ii)

NB: POMDP ≈ MDP whose state is the history: the “history MDP”.
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Optimal control under partial observability

The problem of RL in POMDP is to find an optimal history-dependent policy,

𝜂∗ ∈ argmax
𝜂∈Η

𝔼𝜂[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡]

⏟⏟⏟⏟⏟⏟⏟
𝐽(𝜂)

,

from samples (𝑜0, 𝑎0, 𝑟0,…, 𝑜𝑛).
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Structure of the optimal policy
Definition 2: Belief of a history.
The belief 𝑏 = 𝑓(ℎ) of a history ℎ ∈ ℋ is defined as,

𝑏(𝑠) = Pr(𝑠|ℎ).

Theorem 1: Belief recurrence.
𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′).

Theorem 2: Belief sufficiency.
𝑄(ℎ, 𝑎) = 𝑄′(𝑓(ℎ), 𝑎).

⇒ If the belief is known, we can discard the history. But it is usually unknown.
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History-dependent reinforcement learning
We use function approximators for the policy or Q-function estimation.
• Feedforward network, transformer, recurrent networks, etc.

Fig. 1: Policy approximator.

Fig. 2: Q-function approximator.
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History-dependent reinforcement learning (ii)
We use function approximators for the policy or Q-function estimation.
• Feedforward network, transformer, recurrent networks, etc.

Fig. 1: Policy approximator.

Fig. 2: Q-function approximator.
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History-dependent reinforcement learning (iii)
We use function approximators for the policy or Q-function estimation.
• Feedforward network, transformer, recurrent networks, etc.

Fig. 1: Policy approximator.

Fig. 2: Q-function approximator.
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Agent-states
Learning from histories is infeasible, even with function approximators:

• Feedforward networks use a fixed window size (no extrapolation),
• Transformers use a fixed context size (𝑂(𝑡) extrapolation),
• Recurrent networks use BPTT truncation (𝑂(1) extrapolation).

Will a history-dependent approximator generalize in extrapolation? Not sure.

⇒ Agent state that is fixed 𝑧 = 𝑓(ℎ) and recurrent 𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′).
• Sliding window, last observation, Bayes/Kalman filter, etc.

Now, we thus focus on learning an agent-state policy 𝜋(𝑎|𝑧), which form the
history-dependent policy 𝜂(𝑎|ℎ) = 𝜋(𝑎|𝑓(ℎ)).

NB: We can learn a Transformer or RNN on top of an agent state.
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Aliasing
Let us consider the “Aliased Tiger” POMDP, with 𝑧 = 𝑜. Let us look at 𝑉 (𝑧)¹
versus 𝑉 (𝑧) the fixed point of the aliased Bellman equations.

• We have 𝑉 (𝑧 = Left) = 𝛾
1−𝛾  and 𝑉 (𝑧 = Right) = 𝛾2

1−𝛾 .
• But we have 𝑉 (𝑧 = Left) = 𝑉 (𝑧 = Right) = 𝛾

2(1−𝛾) .

¹NB: The aliased value functions 𝑉 (𝑧) should be more carefully defined (timed).
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Asymmetric Observability



Asymmetric observability

Decision process Execution Training Generality

MDP Too optimistic.

POMDP Too pessimistic.

Privileged POMDP Too optimistic.

Informed POMDP Just right?

Examples: simulator state, trajectory in hindsight, additional sensors, addi-
tional viewpoints, observations of other agents, etc.
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Optimal control under partial observability

The problem of RL in POMDP is to find an optimal history-dependent policy,

𝜂∗ ∈ argmax
𝜂∈Η

𝔼𝜂[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡]

⏟⏟⏟⏟⏟⏟⏟
𝐽(𝜂)

,

from samples (𝑜0, 𝑎0, 𝑟0,…, 𝑜𝑛).
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Optimal control under asymmetric observability

The problem of RL in POMDP is to find an optimal history-dependent policy,

𝜂∗ ∈ argmax
𝜂∈Η

𝔼𝜂[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡]

⏟⏟⏟⏟⏟⏟⏟
𝐽(𝜂)

,

from samples (𝑖0, 𝑜0, 𝑎0, 𝑟0,…, 𝑖𝑛, 𝑜𝑛).

18/36



Asymmetric reinforcement learning
Asymmetric RL leverages 𝑖 (usually 𝑠) to learn a policy 𝜋(𝑎|𝑓(ℎ)) faster.

1. Imitation learning approaches:
• Learn a fully observable policy 𝜋(𝑎|𝑠), imitate the policy 𝜋(𝑎|𝑧) ≈ 𝜋(𝑎|𝑠).

2. Asymmetric actor-critic approaches:
• Use additional state information as input to the critic 𝑄(𝑠, 𝑧, 𝑎).

3. Model-based approaches:
• Learn to predict the next state 𝑞(𝑟, 𝑠′|𝑧, 𝑎).

4. Representation learning approaches:
• Learn to predict the belief 𝑞(𝑠|𝑧) as an auxiliary loss.

While initial methods were heuristic, a recent line of work has proposed
theoretically grounded asymmetric learning objectives (Baisero & Amato,
2022; Lambrechts et al., 2024; Wang et al., 2023; Warrington et al., 2021).
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Asymmetric actor-critic is successful
• Magnetic Control of Tokamak Plasma through Deep RL (Degrave et al., 2022).
• Champion-Level Drone Racing using Deep RL (Kaufmann et al., 2023).
• A Super-Human Vision-Based RL Agent in Gran Turismo (Vasco et al., 2024).

Image credits: first, second, third.
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Theoretical Justifications



Asymmetric actor-critic algorithm
Actor-critic algorithms are policy-gradient methods with a critic 𝑄𝜋𝜓𝜑 ≈ 𝑄𝜋𝜓 .

• The critic is only used for estimating the policy-gradient.
• It can be informed with additional information: 𝑄𝜋𝜓(𝑧, 𝑎) → 𝑄𝜋𝜓(𝑖, 𝑧, 𝑎).

𝑖

𝑧

𝑄𝜋𝜓(𝑖, 𝑧, ·)

𝜋𝜓(· |𝑧)
log 𝜋𝜓(𝑎|𝑧)𝑄𝜋𝜓(𝑖, 𝑧, 𝑎)

This policy gradient was proved valid for any 𝐼(· |𝑠) for history-dependent
policies (Ebi et al., 2025).

⇒ Effective, but no theoretical justification for its benefits until recently.
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Aliasing and asymmetric observability
In addition to aliased 𝑧 (𝑉 (𝑧) ≠ 𝑉 (𝑧)), we also have aliased 𝑠 (𝑉 (𝑠) ≠ 𝑉 (𝑠)).

Indeed, while the state is sufficient for the environment execution, it is not for
the agent execution: 𝑎 ∼ 𝜂(· |𝑧) is not conditionally independent on 𝑧 given 𝑠.

Instead, the environment-agent state (𝑠, 𝑧) is sufficient for the execution of
the environment and agent.

⇒ POMDP (with 𝑧) ≈ MDP whose state is (𝑠, 𝑧): the “environment-agent MDP”.

The agent simply ignores 𝑠. As in any MDP, 𝑉 (𝑠, 𝑧) = 𝑉 (𝑠, 𝑧).
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Agent-state asymmetric actor-critic algorithm
We provide a theoretical justification by comparing the finite-time bound for
an asymmetric actor-critic algorithm (Lambrechts et al., 2025) and for its sym-
metric counterpart (Cayci et al., 2024).

• State-informed:
‣ We study the case where 𝑖 = 𝑠.

• Fixed agent state:
‣ Fixed update 𝑧′ ∼ 𝑈(· |𝑧, 𝑎, 𝑜′), and policy 𝑎 ∼ 𝜋(· |𝑧).

• Finite state Q-functions:
‣ Asymmetric 𝒬𝜋(𝑠, 𝑧, 𝑎) and symmetric 𝑄𝜋(𝑧, 𝑎).

• Linear approximations:
‣ 𝒬𝜋𝛽(𝑠, 𝑧, 𝑎) = ⟨𝛽, 𝜑(𝑠, 𝑧, 𝑎)⟩ and �̂�𝜋𝛽(𝑧, 𝑎) = ⟨𝛽, 𝜒(𝑧, 𝑎)⟩.
‣ 𝜋𝜃(𝑎|𝑧) ∝ exp(⟨𝜃, 𝜓(𝑧, 𝑎)⟩).
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Actor-critic algorithm
Algorithm 1: Asymmetric and symmetric actor-critic.
1. Initialize policy parameters 𝜓0.
2. For 𝑡 = 1…𝑇

1. Estimate 𝒬𝜋𝜑 ≈ 𝒬𝜋𝜓  or �̂�𝜋𝜒 ≈ 𝑄𝜋𝜓  (TD learning).
2. Estimate 𝑔𝑡−1 ≈ ∇𝜓𝐽(𝜋𝜓𝑡−1) using 𝒬𝜑 or 𝑄𝜒 (NPG estimation).
3. Update policy 𝜓𝑡 = 𝜓𝑡−1 + 𝜂𝑔𝑡−1.

3. Return 𝜋𝜓𝑇

From the belief 𝑏(𝑠|ℎ) = Pr(𝑠|ℎ) and approximate belief ̂𝑏(𝑠|𝑧) = Pr(𝑠|𝑧), we
introduce a measure of the aliasing of the agent state 𝑧.

Aliasing measure.

𝜀alias ∝ 𝔼[‖𝑏(· |ℎ) − �̂�(· |𝑧)‖].
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Finite-time bound for the critics
Theorem 3: Finite-time bound for asymmetric and symmetric Q-functions.
For any 𝜋 ∈ Πℳ, and any 𝑚 ∈ ℕ, we have for TD learning with 𝛼 = 1

𝐾 ,

√𝔼[‖𝒬𝜋 −𝒬𝜋‖
2

𝑑𝜋
] ≤ 𝜀td + 𝜀app + 𝜀shift

√𝔼[‖𝑄𝜋 −𝑄𝜋‖
2

𝑑𝜋
] ≤ 𝜀td + 𝜀app + 𝜀shift + 𝜀alias.

𝜀td =
√

√√
√
4𝐵2 + ( 1

1−𝛾 + 2𝐵)
2

2
√
𝐾(1 − 𝛾𝑚)

𝜀app =
1 + 𝛾𝑚

1 − 𝛾𝑚
min
𝑓∈ℱ𝐵

𝜑

‖𝑓 − 𝑄𝜋‖𝑑𝜋

𝜀shift = (𝐵 +
1

1 − 𝛾
)√ 2𝛾𝑚

1 − 𝛾𝑚√
‖𝑑𝜋𝑚 ⊗ 𝜋 − 𝑑𝜋 ⊗ 𝜋‖TV

𝜀alias =
2

1 − 𝛾
‖𝔼𝜋[∑

∞

𝑘=0
𝛾𝑘𝑚‖�̂�𝑘𝑚 − 𝑏𝑘𝑚‖TV | 𝑍0 = ·,𝐴0 = ·]‖

𝑑𝜋

.
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Finite-time bound for the actors
Theorem 4: Finite-time bound for asymmetric and symmetric NAC.
For any (𝒵, 𝑈), we have for NAC with 𝛼 = 1

𝐾 , 𝜁 = 𝐵
√
1−𝛾√
2𝑁

, 𝜂 = 1√
𝑇 ,

(1 − 𝛾) min
0≤𝑡<𝑇

𝔼[𝐽(𝜋∗) − 𝐽(𝜋𝑡)] ≤ 𝜀nac + 𝜀actor + 𝜀inf + 𝜀grad +
1
𝑇
∑
𝑇−1

𝑡=0
𝜀𝜋𝑡critic,

𝜀nac =
𝐵2 + 2 log|𝐴|

2
√
𝑇

𝜀actor = 𝐶∞√
(2 − 𝛾)𝐵
(1 − 𝛾)

√
𝑁

𝜀inf,asym = 0 𝜀inf,sym = 2𝔼𝜋
∗[∑

∞

𝑘=0
𝛾𝑘‖�̂�𝑘 − 𝑏𝑘‖TV]

𝜀grad,asym = 2𝐶∞ sup
0≤𝑡<𝑇

√min
𝑤
ℒ𝑡(𝑤) 𝜀grad,sym = 2𝐶∞ sup

0≤𝑡<𝑇
√min

𝑤
𝐿𝑡(𝑤)

𝜀𝜋𝑡critic,asym = 2𝐶∞
√
6(𝜀td + 𝜀app + 𝜀shift) 𝜀

𝜋𝑡
critic,sym = 2𝐶∞

√
6(𝜀td + 𝜀app + 𝜀shift + 𝜀alias)
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Some insights
When using an asymmetric actor-critic algorithm:

• The critic error has a smaller upper bound.
‣ Because the asymmetric critic is the solution of a Bellman equation.

• The actor suboptimality has a smaller upper bound.
‣ This benefit mainly comes from the smaller upper bound on the critic error.

Some limitations:

• The analysis assumes a fixed agent state process.
‣ Shed light on the effect of an aliased agent state (e.g., RNN at initialization).
‣ It can easily be extended to learnable agent state processes: 𝒜+ = 𝒜×𝒵.

• Requires samples from the discounted visitation measure.
‣ But it is still feasible without assumption on the mixing time.
‣ Reveal an interesting term 𝜀shift when not assuming stationary distribution.
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Future Directions



Other algorithms with an asymmetric critic
Asymmetric and symmetric actor-critic algorithms were both valid,²

∇𝐽(𝜋) = 𝔼𝑑𝜋 [log 𝜋(𝑎|𝑧)𝑄𝜋(𝑖, 𝑧, 𝑎)]

= 𝔼𝑑𝜋 [log 𝜋(𝑎|𝑧)𝑄𝜋(𝑧, 𝑎)]

because ∇𝐽(𝜋) is linear in 𝑄𝜋 and 𝔼[𝑄𝜋(𝐼, 𝑧, 𝑎)] = 𝑄𝜋(𝑧, 𝑎).

Other RL objectives, such as the advantage weighted regression (AWR), do not
present such properties (Hu et al., 2025).

ℒAWR(𝜋) = 𝐽(𝜋) − 𝐽(𝜇) − 𝛽 KL(𝜇 ∥ 𝜋)

= 𝔼𝑑𝜇 [log 𝜋(𝑎|𝑧) exp(𝐴𝜋(𝑠, 𝑧, 𝑎)/𝛽)]

≠ 𝔼𝑑𝜇 [log 𝜋(𝑎|𝑧) exp(𝐴𝜋(𝑧, 𝑎)/𝛽)].

This further motivate the usage of asymmetric critics for nonlinear objectives.

²NB: The aliased value functions 𝑄𝜋(𝑧, 𝑎) should be more carefully defined (timed).
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Foundations policies on partially observable tasks
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Example results

32/36

https://sites.google.com/view/rwrl-ap/home
https://sites.google.com/view/rwrl-ap/home


Example results (ii)
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Asymmetric advantage weighted regression
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Conclusion



Take-home message

Don’t make the problem harder than it is.

Consider all available information at training.

Further readings:

• Lambrechts, G., Bolland, A., & Ernst, D. (2024). Informed POMDP: Leveraging Addi-
tional Information in Model-Based RL. Reinforcement Learning Journal.

• Lambrechts, G., Ernst, D., & Mahajan, A. (2025). A Theoretical Justification for Asym-
metric Actor-Critic Algorithms. International Conference on Machine Learning.

• Others coming soon (Ebi et al., 2025; Hu et al., 2025).

Follow me on Bluesky @gsprd.be for updates.
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