

Partial Observability and Asymmetric Observability

BeNeRL Workshop - July 4th, 2025

Gaspard Lambrechts

Outline

Partial Observability	3
Asymmetric Observability	
Theoretical Justifications	
Future Directions	
Conclusion	

Adrien Bolland **ULiège**

Edward Hu **UPenn**

Daniel Ebi **KIT**

Aditya Mahajan **McGill**

Damien Ernst **ULiège**

Partial Observability

A matter of perception

Intelligence is usually understood as the ability to make **decisions**, *based on perception*, in order to achieve an **objective** (McCarthy, 1998).

 \Rightarrow Intelligence is about (i) perceiving and abstracting past information about the world for (ii) acting on its future execution to achieve an objective.

In RL, we model these aspects as:

- **Perception**: past observations.
- **Decision**: current action.
- **Objective**: future rewards.

Unfortunately, RL overlooked (i) to focus on (ii), by assuming full observability.

Partially observable Markov decision process

A **POMDP** is described by a model $\mathcal{P} = (\mathcal{S}, \mathcal{A}, \mathcal{O}, T, R, O, P, \gamma)$.

- States $s_t \in \mathcal{S}$,
- Actions $a_t \in \mathcal{A}$,
- Observations $o_t \in \mathcal{O}$,
- Discount $\gamma \in [0, 1)$,

- Transition $T(s_{t+1}|s_t, a_t)$,
- + Reward $r_t = R(s_t, a_t, s_{t+1}),$
- + Perception $O(o_t | s_t),$
- Initialisation $P(s_0)$.

History-dependent policies

The **history** at time t is $h_t = (o_0, a_0, ..., o_t) \in \mathcal{H}.$

Definition 1: History-dependent policy.

A history-dependent policy $\eta \in \mathbf{H} = \mathcal{H} \to \Delta(\mathcal{A})$ is a mapping from histories to distributions over the actions, with density $\eta(a|h)$.

History-dependent policies (ii)

NB: POMDP \approx MDP whose state is the history: the "history MDP".

Optimal control under partial observability

The problem of RL in POMDP is to find an optimal history-dependent policy,

$$\eta^* \in \operatorname*{argmax}_{\eta \in \mathcal{H}} \underbrace{\mathbb{E}^{\eta} \left[\sum_{t=0}^{\infty} \gamma^t R_t \right]}_{J(\eta)},$$

from samples $(o_0, a_0, r_0, ..., o_n)$.

Structure of the optimal policy

Definition 2: Belief of a history. The belief b = f(h) of a history $h \in \mathcal{H}$ is defined as, $b(s) = \Pr(s|h).$

Theorem 1: Belief recurrence.

$$f(h^\prime)=u(f(h),a,o^\prime).$$

Theorem 2: Belief sufficiency.

$$Q(h,a) = Q'(f(h),a).$$

 \Rightarrow If the belief is known, we can discard the history. But it is **usually unknown**.

History-dependent reinforcement learning

We use **function approximators** for the **policy** or **Q-function** estimation.

• Feedforward network, transformer, recurrent networks, etc.

Fig. 2: Q-function approximator.

History-dependent reinforcement learning (ii)

We use **function approximators** for the **policy** or **Q-function** estimation.

• Feedforward network, transformer, recurrent networks, etc.

Fig. 2: Q-function approximator.

History-dependent reinforcement learning (iii)

We use function approximators for the policy or Q-function estimation.

• Feedforward network, transformer, recurrent networks, etc.

Fig. 2: Q-function approximator.

Agent-states

Learning from histories is infeasible, even with function approximators:

- Feedforward networks use a fixed window size (no extrapolation),
- Transformers use a fixed context size (O(t) extrapolation),
- **Recurrent networks** use BPTT truncation (O(1) extrapolation).

Will a history-dependent approximator generalize in extrapolation? Not sure.

 \Rightarrow Agent state that is fixed z=f(h) and recurrent f(h')=u(f(h),a,o').

• Sliding window, last observation, Bayes/Kalman filter, etc.

Now, we thus focus on learning an **agent-state policy** $\pi(a|z)$, which form the **history-dependent policy** $\eta(a|h) = \pi(a|f(h))$.

NB: We can learn a Transformer or RNN on top of an agent state.

Aliasing

Let us consider the "Aliased Tiger" POMDP, with z = o. Let us look at $V(z)^1$ versus $\tilde{V}(z)$ the fixed point of the aliased Bellman equations.

- We have $V(z = \text{Left}) = \frac{\gamma}{1-\gamma}$ and $V(z = \text{Right}) = \frac{\gamma^2}{1-\gamma}$.
- But we have $\tilde{V}(z = \text{Left}) = \tilde{V}(z = \text{Right}) = \frac{\gamma}{2(1-\gamma)}$.

¹**NB:** The aliased value functions V(z) should be more carefully defined (timed).

Asymmetric Observability

Asymmetric observability

Decision process	Execution	Training	Generality
MDP	8	8	Too optimistic.
POMDP	0	0	Too pessimistic.
Privileged POMDP	0	8	Too optimistic.
Informed POMDP	0	i	Just right?

Examples: simulator state, trajectory in hindsight, additional sensors, additional viewpoints, observations of other agents, etc.

Optimal control under partial observability

The problem of RL in POMDP is to find an optimal history-dependent policy,

$$\eta^* \in \operatorname*{argmax}_{\eta \in \mathcal{H}} \underbrace{\mathbb{E}^{\eta} \left[\sum_{t=0}^{\infty} \gamma^t R_t \right]}_{J(\eta)},$$

from samples $(o_0, a_0, r_0, ..., o_n)$.

17/36

Optimal control under asymmetric observability

The problem of RL in POMDP is to find an optimal history-dependent policy,

$$\eta^* \in \operatorname*{argmax}_{\eta \in \mathcal{H}} \underbrace{\mathbb{E}^{\eta} \left[\sum_{t=0}^{\infty} \gamma^t R_t \right]}_{J(\eta)},$$

from samples $(\mathbf{i_0}, o_0, a_0, r_0, ..., \mathbf{i_n}, o_n)$.

Asymmetric reinforcement learning

Asymmetric RL leverages i (usually s) to learn a policy $\pi(a|f(h))$ faster.

- 1. Imitation learning approaches:
 - Learn a fully observable policy $\pi(a|s),$ imitate the policy $\pi(a|z)\approx\pi(a|s).$
- 2. Asymmetric actor-critic approaches:
 - Use additional state information as input to the critic Q(s, z, a).
- 3. Model-based approaches:
 - Learn to predict the next state $q(r,s^\prime|z,a).$
- 4. Representation learning approaches:
 - Learn to predict the belief $q(\boldsymbol{s}|\boldsymbol{z})$ as an auxiliary loss.

While initial methods were **heuristic**, a recent line of work has proposed **theoretically grounded** asymmetric learning objectives (Baisero & Amato, 2022; Lambrechts et al., 2024; Wang et al., 2023; Warrington et al., 2021).

Asymmetric actor-critic is successful

- Magnetic Control of Tokamak Plasma through Deep RL (Degrave et al., 2022).
- Champion-Level Drone Racing using Deep RL (Kaufmann et al., 2023).
- A Super-Human Vision-Based RL Agent in Gran Turismo (Vasco et al., 2024).

Image credits: first, second, third.

Theoretical Justifications

Asymmetric actor-critic algorithm

Actor-critic algorithms are policy-gradient methods with a critic $Q_{\varphi}^{\pi_{\psi}} \approx Q^{\pi_{\psi}}$.

- The critic is **only used** for estimating the policy-gradient.
- It can be **informed** with additional information: $Q^{\pi_{\psi}}(z, a) \rightarrow Q^{\pi_{\psi}}(i, z, a)$.

$$\begin{array}{cccc} i & \longrightarrow & Q^{\pi_{\psi}}(i,z,\cdot) \\ z & \longrightarrow & \pi_{\psi}(\cdot \mid z) \end{array} \longrightarrow & \log \pi_{\psi}(a \mid z) Q^{\pi_{\psi}}(i,z,a) \end{array}$$

This policy gradient was proved valid for any $I(\cdot | s)$ for history-dependent policies (Ebi et al., 2025).

 \Rightarrow Effective, but **no theoretical justification for its benefits** until recently.

Aliasing and asymmetric observability

In addition to aliased z ($\tilde{V}(z) \neq V(z)$), we also have aliased s ($\tilde{V}(s) \neq V(s)$). Indeed, while the state is sufficient for the environment execution, it is not for the agent execution: $a \sim \eta(\cdot | z)$ is not conditionally independent on z given s.

Instead, the **environment-agent state** (s, z) is sufficient for the execution of the environment and agent.

 \Rightarrow POMDP (with z) \approx MDP whose state is (s, z): the "environment-agent MDP". The agent simply ignores s. As in any MDP, $\tilde{V}(s, z) = V(s, z)$.

Agent-state asymmetric actor-critic algorithm

We provide a theoretical justification by comparing the finite-time bound for an asymmetric actor-critic algorithm (Lambrechts et al., 2025) and for its symmetric counterpart (Cayci et al., 2024).

- State-informed:
 - We study the case where i = s.
- Fixed agent state:
 - Fixed update $z' \sim U(\cdot \, | z, a, o'),$ and policy $a \sim \pi(\cdot \, | z).$
- Finite state Q-functions:
 - Asymmetric $\mathcal{Q}^{\pi}(s,z,a)$ and symmetric $Q^{\pi}(z,a).$
- Linear approximations:
 - $\bullet \ \hat{Q}^{\pi}_{\beta}(s,z,a) = \langle \beta, \varphi(s,z,a) \rangle \text{ and } \hat{Q}^{\pi}_{\beta}(z,a) = \langle \beta, \chi(z,a) \rangle.$
 - $\label{eq:phi} \bullet \ \pi_{\theta}(a|z) \propto \exp(\langle \theta, \psi(z,a) \rangle).$

Actor-critic algorithm

Algorithm 1: Asymmetric and symmetric actor-critic.

- 1. Initialize policy parameters $\psi_0.$
- 2. For t = 1...T
 - 1. Estimate $\hat{\mathcal{Q}}^{\pi}_{\varphi} \approx \mathcal{Q}^{\pi_{\psi}}$ or $\hat{Q}^{\pi}_{\chi} \approx Q^{\pi_{\psi}}$ (**TD learning**).
 - 2. Estimate $g_{t-1} \approx \nabla_{\psi} J(\pi_{\psi_{t-1}})$ using \mathcal{Q}_{φ} or Q_{χ} (NPG estimation).
 - 3. Update policy $\psi_t = \psi_{t-1} + \eta g_{t-1}$.
- 3. Return π_{ψ_T}

From the belief $b(s|h) = \Pr(s|h)$ and approximate belief $\hat{b}(s|z) = \Pr(s|z)$, we introduce a **measure of the aliasing** of the agent state z.

Aliasing measure.

$$\varepsilon_{\rm alias} \propto \mathbb{E} \big[\big\| b(\cdot \, |h) - \hat{b}(\cdot \, |z) \big\| \big].$$

Finite-time bound for the critics

Theorem 3: Finite-time bound for asymmetric and symmetric Q-functions. For any $\pi \in \Pi_{\mathcal{M}}$, and any $m \in \mathbb{N}$, we have for TD learning with $\alpha = \frac{1}{K}$,

$$\begin{split} &\sqrt{\mathbb{E}\Big[\left\|\mathcal{Q}^{\pi}-\overline{\mathcal{Q}}^{\pi}\right\|_{d^{\pi}}^{2}\Big]} \leq \varepsilon_{\mathrm{td}}+\varepsilon_{\mathrm{app}}+\varepsilon_{\mathrm{shift}} \\ &\sqrt{\mathbb{E}\Big[\left\|\mathcal{Q}^{\pi}-\overline{\mathcal{Q}}^{\pi}\right\|_{d^{\pi}}^{2}\Big]} \leq \varepsilon_{\mathrm{td}}+\varepsilon_{\mathrm{app}}+\varepsilon_{\mathrm{shift}}+\varepsilon_{\mathrm{alia}} \end{split}$$

$$\begin{split} \varepsilon_{\mathrm{td}} &= \sqrt{\frac{4B^2 + \left(\frac{1}{1-\gamma} + 2B\right)^2}{2\sqrt{K}(1-\gamma^m)}} \\ \varepsilon_{\mathrm{app}} &= \frac{1+\gamma^m}{1-\gamma^m} \min_{f \in \mathcal{F}_{\varphi}^{B}} \|f - Q^{\pi}\|_{d^{\pi}} \\ \varepsilon_{\mathrm{shift}} &= \left(B + \frac{1}{1-\gamma}\right) \sqrt{\frac{2\gamma^m}{1-\gamma^m} \sqrt{\|d_m^{\pi} \otimes \pi - d^{\pi} \otimes \pi\|}_{\mathrm{TV}}} \\ \varepsilon_{\mathrm{alias}} &= \frac{2}{1-\gamma} \left\| \mathbb{E}^{\pi} \left[\sum_{k=0}^{\infty} \gamma^{km} \|\hat{b}_{km} - b_{km}\|_{\mathrm{TV}} \mid Z_0 = \cdot, A_0 = \cdot \right] \right\|_{d^{\pi}}. \end{split}$$

Finite-time bound for the actors

Theorem 4: Finite-time bound for asymmetric and symmetric NAC. For any (\mathcal{Z}, U) , we have for NAC with $\alpha = \frac{1}{K}$, $\zeta = \frac{B\sqrt{1-\gamma}}{\sqrt{2N}}$, $\eta = \frac{1}{\sqrt{T}}$, $(1-\gamma)\min_{0 \le t < T} \mathbb{E}[J(\pi^*) - J(\pi_t)] \le \varepsilon_{\text{nac}} + \varepsilon_{\text{actor}} + \varepsilon_{\text{inf}} + \varepsilon_{\text{grad}} + \frac{1}{T} \sum_{t=0}^{T-1} \varepsilon_{\text{critic}}^{\pi_t}$,

$$\begin{split} \varepsilon_{\rm nac} &= \frac{B^2 + 2 \log |A|}{2\sqrt{T}} \\ \varepsilon_{\rm actor} &= \overline{C}_{\infty} \sqrt{\frac{(2-\gamma)B}{(1-\gamma)\sqrt{N}}} \\ \varepsilon_{\rm inf,asym} &= 0 \quad \varepsilon_{\rm inf,sym} = 2\mathbb{E}^{\pi^*} \left[\sum_{k=0}^{\infty} \gamma^k \big\| \hat{b}_k - b_k \big\|_{\rm TV} \right] \\ \varepsilon_{\rm grad,asym} &= 2\overline{C}_{\infty} \sup_{0 \leq t < T} \sqrt{\min_w \mathcal{L}_t(w)} \quad \varepsilon_{\rm grad,sym} = 2\overline{C}_{\infty} \sup_{0 \leq t < T} \sqrt{\min_w L_t(w)} \\ \varepsilon_{\rm critic,asym}^{\pi_t} &= 2\overline{C}_{\infty} \sqrt{6} \big(\varepsilon_{\rm td} + \varepsilon_{\rm app} + \varepsilon_{\rm shift} \big) \quad \varepsilon_{\rm critic,sym}^{\pi_t} = 2\overline{C}_{\infty} \sqrt{6} \big(\varepsilon_{\rm td} + \varepsilon_{\rm app} + \varepsilon_{\rm shift} + \varepsilon_{\rm alias} \big) \end{split}$$

Some insights

When using an asymmetric actor-critic algorithm:

- The critic error has a smaller upper bound.
 - Because the asymmetric critic is the solution of a Bellman equation.
- The actor suboptimality has a smaller upper bound.
 - This benefit mainly comes from the smaller upper bound on the critic error.

Some limitations:

- The analysis assumes a **fixed agent state process**.
 - ▶ Shed light on the effect of an aliased agent state (e.g., RNN at initialization).
 - It can easily be extended to learnable agent state processes: $\mathcal{A}^+ = \mathcal{A} \times \mathcal{Z}$.
- Requires samples from the discounted visitation measure.
 - But it is still feasible without assumption on the mixing time.
 - + Reveal an interesting term $\varepsilon_{\rm shift}$ when not assuming stationary distribution.

Future Directions

Other algorithms with an asymmetric critic

Asymmetric and symmetric actor-critic algorithms were both valid,²

$$\nabla J(\pi) = \mathbb{E}^{d^{\pi}} [\log \pi(a|z) Q^{\pi}(i, z, a)]$$
$$= \mathbb{E}^{d^{\pi}} [\log \pi(a|z) Q^{\pi}(z, a)]$$

because $\nabla J(\pi)$ is linear in Q^{π} and $\mathbb{E}[Q^{\pi}(I,z,a)] = Q^{\pi}(z,a).$

Other RL objectives, such as the advantage weighted regression (AWR), do not present such properties (Hu et al., 2025).

$$\begin{split} \mathcal{L}_{\mathrm{AWR}}(\pi) &= J(\pi) - J(\mu) - \beta \ \mathrm{KL}(\mu \parallel \pi) \\ &= \mathbb{E}^{d^{\mu}}[\log \pi(a|z) \exp(A^{\pi}(s,z,a)/\beta)] \\ &\neq \mathbb{E}^{d^{\mu}}[\log \pi(a|z) \exp(A^{\pi}(z,a)/\beta)]. \end{split}$$

This further motivate the usage of asymmetric critics for nonlinear objectives.

²**NB:** The aliased value functions $Q^{\pi}(z, a)$ should be more carefully defined (timed).

Foundations policies on partially observable tasks

active perception policy

Example results

Example results (ii)

Asymmetric advantage weighted regression

Bookshelf-D

Shelf-Cabinet

Complex

Conclusion

Don't make the problem harder than it is.

Consider all available information at training.

Further readings:

- Lambrechts, G., Bolland, A., & Ernst, D. (2024). Informed POMDP: Leveraging Additional Information in Model-Based RL. *Reinforcement Learning Journal*.
- Lambrechts, G., Ernst, D., & Mahajan, A. (2025). A Theoretical Justification for Asymmetric Actor-Critic Algorithms. *International Conference on Machine Learning*.
- Others coming soon (Ebi et al., 2025; Hu et al., 2025).

Follow me on Bluesky @gsprd.be for updates.

References

- Baisero, A., & Amato, C. (2022). Unbiased Asymmetric Reinforcement Learning under Partial Observability. *International Conference on Autonomous Agents and Multiagent Systems*.
- Cayci, S., He, N., & Srikant, R. (2024). Finite-Time Analysis of Natural Actor-Critic for POMDPs. *SIAM Journal on Mathematics of Data Science*.
- Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B. D., Carpanese, F., Ewalds, T., Hafner, R., Abdolmaleki, A., Las Casas, D. de, Donner, C., Fritz, L., Galperti, C., Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M., ... Riedmiller, M. A. (2022). Magnetic Control of Tokamak Plasmas through Deep Reinforcement Learning. *Nature*.
- Ebi, D., Lambrechts, G., Ernst, D., & Böhm, K. (2025). [title kept confidential during double-blind reviews]. *Under Review*.

References (ii)

- Hu, E. S., Wang, J., Yuan, X., Luo, F., Li, M., Lambrechts, G., Rybkin, O., & Jayaraman, D. (2025). [title kept confidential during double-blind reviews]. Under Review.
- Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M., Koltun, V., & Scaramuzza, D. (2023). Champion-Level Drone Racing using Deep Reinforcement Learning. *Nature*.
- Lambrechts, G., Bolland, A., & Ernst, D. (2024). Informed POMDP: Leveraging Additional Information in Model-Based RL. *Reinforcement Learning Journal*.
- Lambrechts, G., Ernst, D., & Mahajan, A. (2025). A Theoretical Justification for Asymmetric Actor-Critic Algorithms. *International Conference on Machine Learning*.

McCarthy, J. (1998). What is Artificial Intelligence.

References (iii)

- Vasco, M., Seno, T., Kawamoto, K., Subramanian, K., Wurman, P. R., & Stone, P. (2024). A Super-Human Vision-Based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo. *Reinforcement Learning Journal*.
- Wang, A., Li, A. C., Klassen, T. Q., Icarte, R. T., & McIlraith, S. A. (2023). Learning Belief Representations for Partially Observable Deep RL. *International Conference on Machine Learning*.
- Warrington, A., Lavington, J. W., Scibior, A., Schmidt, M., & Wood, F. (2021). Robust Asymmetric Learning in POMDPs. *International Conference on Machine Learning*.