

Informed POMDP

Leveraging Additional Information in Model-Based RL

Gaspard Lambrechts, Adrien Bolland and Damien Ernst

A story of partial observability

Decision process	Execution	Training	Generality
MDP	s	s	Too optimistic.
POMDP	0	0	Too pessimistic.
Asymmetric POMDP	0	s	Too optimistic.
Informed POMDP	0	i	Just right?

Classical POMDP

Fig. 1: Bayesian graph of a POMDP.

Informed POMDP

Fig. 2: Bayesian graph of an informed POMDP.

Sufficiency for optimal control

Fig. 3: Statistic z = f(h) of the history h.

- The history h is compressed to a statistic z by a function f (e.g., RNN, Transformer).
- The statistic z should summarize all important information to act optimally.

Definition 1: Sufficiency for optimal control.

A statistic $f:\mathcal{H}\to\mathcal{Z}$ is sufficient for optimal control if, and only if

$$\max_{g} J(g \circ f) = \max_{\eta} J(\eta).$$

Sufficiency in an informed POMDP

Theorem 1: Sufficiency of recurrent predictive statistics.

In an **informed POMDP**, a statistic $f: \mathcal{H} \to \mathcal{Z}$ is **sufficient** for optimal control if it is,

- (i) **recurrent**: $f(h') = u(f(h), a, o'), \forall h' = (h, a, o'),$
- (ii) **predictive**: $p(r, i'|h, a) = p(r, i'|f(h), a), \forall (h, a, r, o').$

Fig. 4: Statistic z = f(h) of the history h encoding the transition distribution.

A simple view of the Informed Dreamer

The **informed world model** q(r, i'|f(h), a) is learned through likelihood maximization:

$$\max \underbrace{\underset{L}{\mathbb{E}}_{p(r,i'|h,a)}q(r,i'|f(h),a)}_{L}.$$

- The statistic z = f(h) is **recurrent**.
- At optimum, the statistic is **predictive**.

Fig. 5: Sufficiency objective L and reinforcement objective J.

Informed Dreamer

- Prior $\hat{e} \sim q^e(\cdot | z, a)$
- Information $\hat{i} \sim q^i(\cdot \, | z, \hat{e})$
 - Instead of observation $\hat{o} \sim q^o(\cdot \mid \! z, \hat{e})$
- Reward $\hat{r} \sim q^r(\cdot | z, \hat{e})$
- Encoder $e \sim q^e(\cdot | z, a, o')$
- Update z' = u(z, a, e).

Fig. 6: Informed Dreamer

Results

Fig. 7: Varying Mountain Hike

Results (ii)

Fig. 8: Velocity DeepMind Control

Results (iii)

Fig. 9: Pop Gym

Take-home message

Don't make the problem harder than it is.

Consider all available information at training.

