

Informed POMDP: Leveraging Additional Information in MBRL

Reinforcement Learning Conference - August 12th, 2024

Gaspard Lambrechts, Adrien Bolland and Damien Ernst

Informed POMDP

A story of partial observability

Decision process	Execution	Training	Generality
MDP	8	8	Too optimistic.
POMDP	0	0	Too pessimistic.
Asymmetric POMDP	0	8	Too optimistic.
Informed POMDP	0	i	Just right?

Classical POMDP

Fig. 1: Bayesian graph of a POMDP.

Informed POMDP

Fig. 2: Bayesian graph of an informed POMDP.

Informed Dreamer

Sufficiency for optimal control

- The history h is compressed into a statistic z by a function f.
 - RNN, Transformer, SSM, etc.
- It should summarize all relevant information to act optimally.

Definition 1: Sufficiency for optimal control.

A statistic $f:\mathcal{H}\to\mathcal{Z}$ is sufficient for optimal control if, and only if, $\max_g J(g\circ f) = \max_\eta J(\eta).$

Sufficiency in an informed POMDP

Theorem 1: Sufficiency of recurrent predictive statistics.

In an **informed POMDP**, a statistic $f : \mathcal{H} \to \mathcal{Z}$ is **sufficient** for optimal control if it is,

- (i) **recurrent**: $f(h') = u(f(h), a, o'), \forall h' = (h, a, o'),$
- (ii) **predictive**: $p(r, i'|h, a) = p(r, i'|f(h), a), \forall (h, a, r, o').$

Fig. 4: Statistic z = f(h) of the history h encoding the transition distribution.

A simple view of the Informed Dreamer

The **informed world model** q(r, i'|f(h), a) is learned through likelihood maximization:

$$\max \underbrace{\mathbb{E}_{\substack{p(r,i'|h,a)}} q(r,i'|f(h),a)}_{L}.$$

• The statistic z = f(h) is **recurrent**.

• At optimum, the statistic is **predictive**.

Fig. 5: Sufficiency objective *L* and reinforcement objective *J*.

Informed Dreamer

- Prior $\hat{e} \sim q^e(\cdot | z, a)$
- Information $\hat{i} \sim q^i(\cdot \left| z, \hat{e} \right)$
 - Instead of observation $\hat{o} \sim q^o(\cdot \left| z, \hat{e} \right)$
- + Reward $\hat{r} \sim q^r(\cdot \left| z, \hat{e} \right)$
- Encoder $e \sim q^e(\cdot \, | z, a, o')$
- Update z' = u(z, a, e).

Fig. 6: Informed Dreamer

Results

Fig. 7: Varying Mountain Hike

Results (ii)

Fig. 8: Velocity DeepMind Control

Results (iii)

Fig. 9: Pop Gym

Don't make the problem harder than it is.

Consider all available information at training.

