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A Matter of Perception



A cat story

2/49



A cat story

2/49



A cat story

What should the robot do?
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Partial observability

+ The agent does not observe the full state of the environment.
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« Instead, its perception is limited to a partial observation.

b & 3]

=8

6%
=
=8

+20

3/49



Past and future

+ We need to remember the state of things from the past.
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» We need to learn the impact of our actions on the future.
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Intelligent behaviors

Policy

=0

=5

Policy =5 f%;

Policy

-8
=00

5/49



Learning intelligent behaviors
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Learning curves
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Sufficient memory
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Sufficient memory
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Reinforcement Learning under
Partial Observability



Partially observable Markov decision process

P T

training

o] |
O 606 060 Oo0

execution

A POMDP is described by a model # = (8, A4,0,T,R,O, P,~).

. States s, € 8, « Transition T'(s,,, | s;,a,),
+ Actions a, € A, « Reward r, ~ R(- | s;,a,),
+ Observations o, € 0, + Perception O(o, | s,),

+ Discount v € [0, 1), + Initialisation P(s).
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History-dependent policies

P T
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training

The history at time ¢ is h, = (0, a, ..., 0,) € H.
Definition 1: History-dependent policy.

A history-dependent policy n € H = 7 — A(A) is a mapping from histo-
ries to distributions over the actions, with density n(a | h).
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History-dependent policies

P T
e\ =e\ -0
/ / traini ng
| T
o
Q e e @ Q eeeee tion

10/49



Optimal control under partial observability

P T

training
N |
O
° e e @ execution
The problem of RL in POMDP is to find an optimal history-dependent policy,

)

n* € argmax E" Z’tht
neH t=0

J(n)

from samples (0(, Qg, Ty oo 041, Qs 15 T4_1504)-
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Q-function of a policy

Definition 2: Q-function of a policy.
The Q-function of a policy 7 € H, or critic, is defined as,

Q"(h,a) = ]En [Z ’tht HO S h’AO =al.
t=0
&
Q-function Q" +8 (%‘j +10

=5

NB: J(n) = E[Q"(H,, Ay)]-
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Q-function

Definition 3: Q-function.

The optimal Q-function, or simply Q-function, is defined as,

Q(ha a) = If?lea’é( Qn(hv a’) (Z Qﬂ* (hv a))

Q-function ) +8 f%g +12

=5

NB: Supp(n*(- | h)) C argmax,. 4 Q(h,a).
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History-dependent reinforcement learning

We use function approximators for the policy or Q-function estimation.

« Sliding window, transformer, recurrent networks, etc.

Function approximator —»@

Fig. 1: Policy approximator.
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Function approximator —»@

Fig. 2: Q-function approximator.
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History-dependent reinforcement learning

We use function approximators for the policy or Q-function estimation.
« Sliding window, transformer, recurrent networks, etc.
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History-dependent reinforcement learning

We use function approximators for the policy or Q-function estimation.

« Sliding window, transformer, recurrent networks, etc.
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Fig. 1: Policy approximator.
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Reinforcement learning techniques
In this thesis, we considered three main reinforcement learning techniques:
1. Policy-gradient (and actor-critic) methods:

V() ~ESY QI (H, A)V,, logn, (A| H)]

2. Value-based methods (Q-learning):

Qy(h,a) ~ IE[R—i—*ymaXQw(H/’a/)

a’€A

H:h,A:a]

3. Model-based methods (supervised learning):

qp(r,0" | h,a) ~ Pr(r,o’ | h,a)
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I. Learning and Remembering



I.1. Learning for Remembering

Published in Transactions on Machine Learning Research (08/2022)

Recurrent networks, hidden states and beliefs in partially
observable environments

Gaspard Lambrechts

Montefiore Institute, University of Lidge

Adrien Bolland

Montefiore Institute, University of Liége

Damien Ernst

Montefiore Institute, University of Liége
LTCI, Telecom Paris, Institut Polytechnique de Paris

Reviewed on OpenReview: https: // openreview. net/ forun? id=dkHfV3uB2lL

1

Latest advances in reinforcement learning (RL) rely heavily on the ability to appros
(., state or state-action value function)

T

Abstract

Reinforcement learning aims to learn optimal policies from interaction with environments
whose dynamics are unknown. Many methods rely on the approximation of a value fnction
to derive near-optimal policies. m partially observable enviromments, these functions de-
pend on the complete sequence of observations and past actions, called the history. In this
work, we show empirically hat securrent neral etttk eained to dppmxmmu. such value
functions internally filter the posterior probability distribution of the current state given the
history, called the belief. More precisely, we show that, as a recurrent neural network learns
the Q-function, its hidden states become more and more correlated with the beliefs of state
variables that are relevant to optimal control. This correlation is measured through their
mutual information. In addition, we show that the expected return of an agent increases
with the ability of its recurrent architecture to reach a high mutual information between its
hidden states and the beliefs. Finally, we show that the mutual information between the
hidden states and the beliefs of variables that are irrelevant for optimal control decreases
through the learning process. In summary, this work shows that in its hidden states, a re-
current neural network approximating the Q-function of a partially observable environment
reproduces a sufficient statistic from the history that is correlated to the relevant part of
the belief for taking optimal actions,

Introduction

e

iate a value func
Modern RL algorithms have been shown to be able to produce

gaspard.lambrechts @uliege. be

adrien.bolland @uliege.be

dernst@ulicge.be

n
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Belief sufficiency

Definition 4: Belief of a history.
The belief b = f(h) of a history h € H is defined as,
b(s) = Pr(s|h).

Theorem 1: Belief recurrence.

f(h,) = U(f(h), a, O,>'

Theorem 2: Belief sufficiency.

Q(h7 a) - Q/(f(h)’ a)'
o 0 0 0 o

= If the belief is known, we can discard the history. But it is usually not known.
19/49



Recurrent reinforcement learning

In recurrent Q-learning, a recurrent approximator learns the Q-function.
+ The RNN state z = fy(h) is a statistic of the history (memory).

.

© -0
Fig. 3: RNN state and Q-function.
o b -0 -0

Fig. 4: Belief and Q-function.

= Should RNN states encode the belief?
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Recurrent reinforcement learning

We showed that beliefs emerge in RNN states during model-free recurrent Q-
learning (LSTM, GRU, BRC, NBRC, MGU).
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Fig. 5: Return and mutual information throughout training.

We estimate 1(0) ~ I(z, b) under stationary distribution p" (k).
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Recurrent reinforcement learning

The belief of irrelevant state variable is not encoded in RNN states (

Return 7(6.)
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Return §(6,)

MI 1(6,) [bit]
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Fig. 6: Return and mutual information (relevant or irrelevant belief).
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We estimate [(0) ~ I(z, b) under stationary distribution p" (k).

22/49



The statistic of the history encodes the
belief of relevant state variables.



I.2. Remembering for Learning

Neural Networks 166 (2023) 645-669

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Warming up recurrent neural networks to maximise reachable
multistability greatly improves learning

Gaspard Lambrechts "', Florent De Geeter ™', Nicolas Vecoven *', Damien Ernst >,
Guillaume Drion*

* Mantefore Instiute, University of Liége, 10 alée de la découvert, Lidge, 4000, Belgium

€I, Telecom Pars, Institut Polytechnigue de Pars, 19 place Marguerie Perey, Paliseau, 91120, France.
ARTICLE INFO ABSTRACT

At history: Training recurrent neural networks is known to be difficult when time dependencies become long. In
Received 27 July 2022 this work, we show that most standard cells only have one and that
Recelved infevisd orm 12 une 2023 learning on tasks with long time dependencies generally occurs once the number of network stable

Accepted 14 July
e onine 7 August 2023

ibria increases; a property known as multistability. Multistability is often not easily attained by
initially monostable networks, making learning of long time dependencies between inputs and outputs

r—————— difficult. This insight leads to the design of a novel way to initialise any recurrent cell connectivity
Recurrent neural network through a procedure called “warmup” to improve it capability to learn arbitrarily long time depen-
Multsta dencies, This initialisation procedure is designed to maximise network reachable multistability. ie.,the
Iniialisation procedure number of equilibria within the network that can be reached through relevant input trajectories, in few
Longterm memory gradient steps. We show on several information restitution. sequence classification, and reinforcement

learning benchmarks that warming up greatly improves learning speed and performance, for multiple
recurrent cells, but sometimes impedes precision. We therefore introduce a double-layer architecture
initialised with a partial warmup that is shown to greatly improve learning of long time dependencies
‘while maintaining high levels of precision. This approach provides a general framework for improving
learning abilities of any recurrent cell when long time dependencies are present. We also show
empirically that other initialisation and pretraining procedures from the literature implicitly foster
reachable multistability of recurrent cells.

Long time dependencies

©2023 Elsevier Ltd. All ights reserved.

1. Introduction 2013). This line of work has argued that locating such fixed
points efficiently could provide insights into RNN dynamics and

espite their performances and widespread use, recurrent
neural networks (RNNs) are known to be blackbox models with
extremely complex internal dynamics. A growing body of work
has focused on understanding the internal dynamics of trained
RNNs (Ceni. Ashwin, & Livi, 2020: Maheswaranathan, Wiliams.
Golub, Ganguli, & Sussillo, 2019; Sussillo & Barak, 2013), pr

viding invaluable intuition into the RNN prediction pmcess This
viewpoint has already been used to understand the difficulties
for RNNs to capture longer time dependencies (Bengio, Frasconi,

input-output properties. Here, we build upon this line of work by
studying the impact of the number of reachable fixed points in an
RNN on the ability to learn long time dependencies. Moreover, we
highlight how maximising the number of reachable fixed points
at initialisation can improve RNN learning, in particular in the
presence of arbitrarily long dependencies.

More precisely, we introduce a fast-to-compute measure of
the multistability of a network called variability amongst attrac-
tors (VAA). This measure gives the number of reachable attractors
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II.1. Sufficiency through Additional Information

RLJ | RLC 2024

Informed POMDP: Leveraging Additional
Information in Model-Based RL

Gaspard Lambrechts Adrien Bolland
gaspard. lambrechtsCuliege . be adrien.bollandCuliege.be
Montefiore Institute, University of Liége Montefiore Institute, University of Liége

Damien Ernst

dernst@uliege.be

Montefiore Institute, University of Liege

LTCI, Télécom Paris, Tnstitut Polytechnique de Paris

Abstract

In this work, we generalize the problem of learning through interaction in a POMDP
by accounting for eventual additional information available at training time. First, we
introduce the informed POMDP, a new learning paradigm offering a clear distinction
between the information at training and the observation at execution. Next, we
propose an objective that leverages this information for learning a sufficient statistic
of the history for the optimal control. We then adapt this informed objective to
learn a world model able to sample latent trajectories. Finally, we empirically
show a learning speed improvement in several environments using this informed
world model in the Dreamer algorithm. These results and the simplicity of the
proposed adaptation advoeate for a systematic consideration of eventual additional
information when learning in 2 POMDP using model-based RL.

1 Introduction

Reinforcement learning (RL) aims to learn to act optimally through interaction with environments
whose dynamics are unknown. A major challenge in this field is partial observability, where only a
partial observation o of the Markovian state of the environment s is available for taking action a.
Such an environment can be formalized as a partially observable Markov decision process (POMDP).
In this context, an optimal policy y(alh) generally depends on the history A of all observations
and previous actions, which grows linearly with time. Fortunately, it is theoretically possible to
find a statistic f(h) of the history h that is updated recurrently and that summarizes all relevant
information to act optimally. Such a statistic is said to be recurrent and sufficient for the optimal
control. Formally, a statistic f(h) is recurrent when it is updated according to f(r') = u(f(h), a, o) 25/49
each time an action a is taken and a new observation o is received, with I’ = (h,a,0'). And a statistic
(k) is sufficient for the optimal control when there exists an optimal policy 7(alh) = g(al f(h))
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A story of partial observability

Decision process Execution  Training Generality
MDP e e Too optimistic.
POMDP Q e Too pessimistic.
Privileged POMDP Q e Too optimistic.

Informed POMDP (0] Just right?
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Classical POMDP

training

e execution

The problem of RL in POMDP is to find an optimal history-dependent policy

o0
n* € argmax E" nyth
ned t=0

from samples (0y, ag, 7, .-, 04 ).
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Informed POMDP

Ko7
6

training

execution

The problem of RL in POMDP is to find an optimal history-dependent policy

o0
n* € argmax E" nyth
ned t=0

from samples (i, 0y, Gy, Tq, -y 11, Of)-
29/49



Sufficiency for optimal control

f g
®© 06 06 O o0 o 0

Fig. 7: Statistic z = f(h) of the history h.

The history h is compressed into a statistic z by a function f.
= It should summarize all relevant information to act optimally.

Definition 5: Sufficiency for optimal control.
A statistic f : /{ — 2 is sufficient for optimal control if, and only if,
max J(go f) = max J(n).
g n

For example, the belief is a sufficient statistic.
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Sufficiency in an informed POMDP

Theorem 3: Sufficiency of recurrent predictive statistics.

A statistic f : /£ — Z is sufficient for optimal control if it is,
(i) recurrent: f(h') = u(f(h),a,0"),
(ii) predictive: p(r,i"|h,a) = p(r,i"| f(h),a).

It motivates the informed world model ¢(r,7" | f(h), a) objective:

max K r,i' | f(h),a).
12 p(r,mh,a>Q( | f(Rh),a)

Fig. 8: Statistic z = f(h) of the history h encoding the transition distribution.
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Informed world model

The Informed Dreamer uses a variational recurrent neural network.
+ Prior é ~ ¢°(- | z,a)
« Information i ~ ¢'(- | z, &)

» Instead of observation 6 ~ ¢°(- | z, é)

Reward 7 ~ ¢" (- | 2, é)
+ Encoder e ~ ¢°(- | z,a,0")

Update 2" = u(z,a,e)

32/49



Learning in imagination

From the learned world model, we can learn a latent policy g,, : £ — A(A).

i s

Fig. 9: Imagining trajectories with the Informed Dreamer and latent policy g,,.
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Informed Dreamer

—— Uninformed Informed
Position, North Position, Random Position, Random, i = (x,¢) and 6//0, = €&
~504 =501 -207
-100 -~ 100 - 401
T T T 60
Altitude, North Altitude, Random _804
_50 1
-501 -100
-1004 - 1009 -~ 120
T T T T T T T T T T
0 1 0 1 0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (M) Environment steps (M)

Fig. 10: Varying Mountain Hike
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Informed Dreamer

—— Uninformed ~— Informed
Acrobot Swingup Cartpole Balance Cartpole Balance Sparse Cartpole Swingup Cartpole Swingup Sparse Cheetah Run
500 1 1
100 4 300 100 4
e d ] 2004
250 20 200 _Aﬁ
100 4
07 T T T T T T T 05 T 04 T
Cup Catch Finger Spin Finger Turn Easy Finger Turn Hard Hopper Hop Hopper Stand
500 oo 1004
250 Pp 250 250
017 T 017 T 01, T 017 T 017 T 017 T
Pendulum Swingup Reacher Easy Reacher Hard Walker Run Walker Stand Walker Walk
500 500
400
200 2001 2504
200
07 T 04 T 017 T 04 T T T 04 T
0 1 0 1 0 1 0 1 0 1 0 1

Environment steps (M)

Fig. 11: Velocity DeepMind Control
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Informed Dreamer

—— Uninformed ~—— Informed
Concentration Count Recall Higher Lower Mine Sweeper Noisy Position Cart Pole
0.0 -0.50 00 0.4
0.25 1 ) WW
- 4 0.2
s 0.75 0.00
T T T T T 7 -05+, T T T
Noisy Position Pendulum Position Cart Pole Position Pendulum Repeat First Repeat Previous
0.75 9 0.5
0-50 0.50 0.50 1 057
0.01 0.0
0.251 0.25 4 0.25 4
-0.5 1 051

T T T T T T T T T

0 1 0 1 0 1

Environment steps (M)

o
-
o

Fig. 12: Pop Gym
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Informed world models provide faster
policy learning than observational ones.



A Theoretical Justification for Asymmetric Actor-Critic Algorithms

Gaspard Lambrechts'* Damien Ernst' Aditya Mahajan?

Abstract
In reinforcement leaming for partially observ-
able environments, many successful algorithms
were developed within the asymmetric learning
paradigm. This paradigm leverages additional
state information available at training time for
faster leaming. Although the proposed learning
objectives are usually theoretically sound, these
methods still lack a theoretical justification for
their potential benefits. We propose such a jus-
tification for asymmetric actor-critic algorithms.
with linear function by adapting

history-dependent policies, usually using a recurrent neural
network to process histories (Bakker, 2001; Wierstra et al.,
2010; Hausknecht & Stone, 2015; Heess et al., 2015; Zhang
etal, 2016; Zhu et al,, 2017). Given the difficulty of learn-
ing effective history-dependent policies, various auxiliary
representation learning objectives have been proposed to
compress the history into useful representations (Ig! et al.,
2018; Buesing et al., 2018; Guo et al., 2018; Gregor et al.,
2019; Han et al,, 2019; Hafner et al,, 2019; Guo et ., 2020;
Lee et al., 2020; Subramanian et al., 2022; Ni et al., 2024).

While these methods are lhenrcucally able to learn optimal

4 finite-time convergence analysis to this setting
“The resulting finite-time bound reveals that the.
asymmeric critic eliminates an error term arising
from aliasing in the agent state.

1. Introduction

Reinforcement learning (RL) is an appealing framework
for solving decision making problems, notably because it
makes very few assumptions about the problem at hand.
In its purest form, the promise of an RL algorithm is to
Tearn an optimal behavior from interaction with an envi-
ronment whose dynamics are unknown. More formally,
an RL algorithm aims at learning a policy (i.e.. a mapping
from observations to actions) in order to maximize a re-
ward signal from samples obtained by interacting with an
environment. While RL has offered empirical successes
for a plethora of challenging problems ranging from games
to robotics (Mnih et al., 2015; Schrittwieser et al., 2020;
Levine et al,, 2015; Akkaya et al., 2019), most of these
achievements have assumed full observability. A more real-
istic assumption is partial observability, where only a parti
observation of the state of the environment is available for

policies, they learn solely the partial state
observations, which can be too restrctive. Indeed, assuming
the same partial observability at training time and execu-
tion time can be oo pessimistic for many environments,
notably for those that are simulated. This motivated the
asymmetric learning paradigm, where additional state in-
formation available at training time is leveraged during the
learning process of the history-dependent policy. Although
the optimal policies obtained by asymmetric learning are
theoretically equivalent to those Iearned by symmeic learn-

approaches notably proposed to imitate a privileged pol-
icy conditioned on the state (Choudhury et al., 2018), or
to use an asymmetric critic conditioned on the state (Pinto
etal,, 2018). These heuristic methods initially lacked a the-
oretical framework, and a recent line of work has focused
on proposing lhcorem.a]ly grounded asymmetric learning
objectives. imitation learning of a privileged policy
was known to be aubopumal, and it was addressed by con-
straining the privileged policy so that its imitation results in
an optimal policy for the partially observable environment
(Warrington et al., 2021). Similarly, asymmetric actor-critic
appm:mhe: ‘were proven to provide biased gradients, and an

II.2. Learning Faster with Additional Information
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II.2. Learning Faster with Additional Information
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II.2. Learning Faster with Additional Information
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Asymmetric actor-critic algorithm

Actor-critic algorithms are policy-gradient methods with a critic QZ’” ~ QM.
« The critic is only used for estimating the policy-gradient.
+ It can be informed with additional information: Q(h,a) — Q(h, i, a).

P = QMW <h7i7 )
IOg nw(a | h)Qmp (ha i? a)
h ——  my(|h)

= Very effective, but no theoretical justification for its benefits.

39/49



Asymmetric actor-critic algorithm

State-informed:

» We study the case where i = s.

+ Fixed statistic:
» Fixed update 2z’ ~ U(- | z,a,0"), and policy a ~ 7(- | 2).

Finite state Q-functions:
» Asymmetric 97 (s, z, a) and symmetric Q™ (z, a).

« Linear approximations:

> Qg(s,z,a) = (8,¢(s,2,a)) and Qg(z,a) = (8, x(z,a)).

» my(a|z) o exp((0,¥(z,a))).

40/49



Actor-critic algorithm

Algorithm 1: Asymmetric and symmetric actor-critic.

1. Initialize policy parameters 1),.
2. Fort=1..T
1. Estimate QZ; ~ Q™ or Q; ~ Qv (TD learning).
2. Estimate g, | ~ V,,J (WwH) using 9, or ), (NPG estimation).

3. Update policy ¢, =¥, _; +1ng,_;.
3. Return T

From the belief b(s | h) = Pr(s | h) and approximate belief b(s | z) = Pr(s| z),
we introduce a measure of the aliasing of the agent state z.

Aliasing measure.

Zaos o E[[[b(- [B) =5( | 2)].

41/49



Finite-time bound for the critics

Theorem 4: Finite-time bound for asymmetric and symmetric Q-functions.
For any 7 € II,;, and any m € N, we have for TD learning with oo = %,

]E[||Q7r _ @”iﬂ] < €iq + Eapp + Eaitt

]E[HQﬂ - aﬂ-”zw] < Etd + Eapp + Eshift +

4B? + (£ +2B)’
£ e
“ 2VK(1— ™)

1+4™
Eapp 1— 'm fe g‘B

Eshift = (B + ﬁ) \/1 2_77,:,” \/”dﬁl @r—d @,
e {z e ——

o |f =@,

1*7
dfr
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Finite-time bound for the actors

Theorem 5: Finite-time bound for asymmetric and symmetric NAC.

For any (Z,U), wehaveforNACw1tha—K,C= BFV o 1) = \f’

(1 o 7) OgiilT]E[J(ﬂ-*) 7 J(ﬂ—t)} < €nac T actor T Eint T €grad T = Z 5<rm(7

t=0

B? + 2log|A]
Cnac = T o =
2vT
6 (2—7)B
Eactor — (1 - )\/N

00
— ~ — * k(|7
€infasym — 0 Cinfsym — 2E § Y ku - bk”
) TV

=2C,, sup /min (W) Egaqm = 205 sup /min L, (w)
? w

Egrad,asym
0<t<T w 0<t<T

7\'T = “T —
Eeritic,as Sym 2000\/6(5&1 + Eapp + gshift) Ceritic,sym — 2000\/6(Etd + gapp + Eshift +
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Asymmetric learning is insensitive to
aliasing in the statistic of the history.



III. Entangling Predictions and
Decisions



III.1. Rolling the Dice First

ICML 2024 Next Generation of Sequence Modeling Architectures Workshop

Parallelizing Autoregressive Generation with
Variational State Space Models

Gaspard Lambrechts* GASPARD.LAMBRECHTS @ULIEGE BE
Yann Claes* Y.CLAES@ULIEGE BE
Pierre Geurts P.GEURTS @ ULIEGE. BE
Damien Ernst DERNST@ ULIEGE. BE

Montefiore Institute, University of Liége

Abstract

Attention-based models such as Transformers and recurrent models like state space models (SSMs)
have emer gcd as successful methods for autoregressive sequence modeling. Although both enable
parallel training, none enable parallel generation due to their autoregressiveness. We propose the
Vaiationsl SSM (VSSM), a variational autoencoder (VAE) where both the encoder and decoder are
SSMs. Since sampling the latent variables and decoding them with the SSM can be parallelized,
both training and generation can be conducted in parallel. Moreover, the decoder recurrence allow:
‘generation to be resumed without reprocessing the whole sequence. Finally, we propose the autore-
gressive VSSM that can be conditioned on a partial realization of the sequence, as is common in
language generation tasks. Interestingly, the autoregressive VSSM still enables parallel generation.
We highlight on toy problems (MNIST, CIFAR) the empirical gains in speed-up and show that it
competes with traditional models in terms of generation quality (Transformer, Mamba SSM).

Keywords: Parallel, Autoregressive, Generation, VAE, SSM, VSSM

1. Introduction

Sequence modeling tasks, namely time-series forecasting and text generation, have gained in popu-
larity and various types of architectures were designed to tackle such problems. Transformers were
proven effective [17, 19], yet they nonetheless reprocess the complete sequence at each timestep,
making generation less efficient. Recurrent neural networks (RNN) [3, 8] update a hidden state
based on new inputs at each timestep, enabling efficient generation. SSMs [9-11, 18], a recently in-
troduced class of RNNs, enable parallel training thanks to their linear recurrence. Alternatively, sev-
eral works adapt VAEs for sequential modeling. Some architectures integrate Transformers [13, 14] 44/49
and enable parallel training, although little work [5] proposes models that can be conditioned on
partial realizations (e.g., prompts). Conversely, variational RNNs (VRNNs) [4] loose parallelizabil-
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1 Tntroduction

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aencan faucibus
pede cu ante. Praesent enim clit, rutrum at, molestic non, nomummy vel, nisl. Ut lectus eros, malesuada sit
amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor,
o lorem cgestas dui, et convalls elit crat sed nulla. Donee huctus. Curabitur et nunc. Aliquam dolor
oo, commado pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus,
egestas vel, odio. [Lambrechis et al., 2024].
Etiam cuismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id, nonummy sed,
ullamcorper eget, saplen Pracsent. pretium, magna in eleifend egestas, pede pede pretium lorem, quis
consectetuer torto n facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam
non quam.  Aliquam ponmor quam a lacus. Pracsent, vel arcu ut tortor cursus volutpat. In vitae pede
quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec,
ultricies ut, mi. Duis nee dui quis leo sagittis commodo.
n. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vi-
vamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper clit. Proin
fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia.
Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc
eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non 46/49
enim. Pracsent euismod nunc eu purus. Donee bibendum quam in tellus. Nullam cursus pulvinar lectus.
Donee et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis en massa.
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A Matter of Abstractions



Conclusion

Instead of the history MDP, we should consider the structure of the solution,
focusing on recurrent approximators that are predictive of the future.

I. Good initial memory learning to focus on the relevant belief,
II. Predictive of the state, or can be augmented with state at training,
III. Learned as predictive latent of the future, sampled and decoded in parallel.
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Future perspectives

We developed techniques to learn an optimal behavior for any given task.
— Could we instead learn a behavior that optimally generalize to all tasks?

Generalization is equivalent to optimal control under partial observability!
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