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Partial observability
• The agent does not observe the full state of the environment.

▶

−2

▶ ... ▶

+20

• Instead, its perception is limited to a partial observation.

▶ ▶ ▶ ▶ ▶
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Past and future
• We need to remember the state of things from the past.

▶ ▶ ▶ ▶ ▶

• We need to learn the impact of our actions on the future.

▶

−2

▶ ... ▶

+20
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Intelligent behaviors

▶ Policy ▶

▶ Policy ▶

▶ Policy ▶
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Learning intelligent behaviors
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Learning curves
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Sufficient memory

▼ ▼ ▼ ▼ ▼ ▼
▶ ▶ ▶ ▶ ▶

▼ ▼ ▼ ▼ ▼ ▼
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Sufficient memory
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Reinforcement Learning under
Partial Observability



Partially observable Markov decision process

A POMDP is described by a model 𝒫 = (𝒮,𝒜,𝒪, 𝑇 ,𝑅,𝑂, 𝑃 , 𝛾).

• States 𝑠𝑡 ∈ 𝒮,
• Actions 𝑎𝑡 ∈ 𝒜,
• Observations 𝑜𝑡 ∈ 𝒪,
• Discount 𝛾 ∈ [0, 1),

• Transition 𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡),
• Reward 𝑟𝑡 ∼ 𝑅(· | 𝑠𝑡, 𝑎𝑡),
• Perception 𝑂(𝑜𝑡 | 𝑠𝑡),
• Initialisation 𝑃(𝑠0).
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History-dependent policies

The history at time 𝑡 is ℎ𝑡 = (𝑜0, 𝑎0,…, 𝑜𝑡) ∈ ℋ.

Definition 1: History-dependent policy.
A history-dependent policy 𝜂 ∈ Η = ℋ→ Δ(𝒜) is a mapping from histo-
ries to distributions over the actions, with density 𝜂(𝑎 | ℎ).
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History-dependent policies
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Optimal control under partial observability

The problem of RL in POMDP is to find an optimal history-dependent policy,

𝜂∗ ∈ argmax
𝜂∈Η

𝔼𝜂[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡]

⏟⏟⏟⏟⏟⏟⏟
𝐽(𝜂)

,

from samples (𝑜0, 𝑎0, 𝑟0,…, 𝑜𝑡−1, 𝑎𝑡−1, 𝑟𝑡−1, 𝑜𝑡).
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Q-function of a policy

Definition 2: Q-function of a policy.
The Q-function of a policy 𝜂 ∈ Η, or critic, is defined as,

𝑄𝜂(ℎ, 𝑎) = 𝔼𝜂[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡 |𝐻0 = ℎ,𝐴0 = 𝑎].

▶ Q-function 𝑄𝜂 ▶ +10

−2

+8

−2

NB: 𝐽(𝜂) = 𝔼[𝑄𝜂(𝐻0, 𝐴0)].
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Q-function

Definition 3: Q-function.
The optimal Q-function, or simply Q-function, is defined as,

𝑄(ℎ, 𝑎) = max
𝜂∈Η

𝑄𝜂(ℎ, 𝑎)(= 𝑄𝜂∗(ℎ, 𝑎)).

▶ Q-function 𝑄 ▶ +12

0

+8

0

NB: Supp(𝜂∗(· | ℎ)) ⊆ argmax𝑎∈𝒜𝑄(ℎ, 𝑎).
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History-dependent reinforcement learning

We use function approximators for the policy or Q-function estimation.
• Sliding window, transformer, recurrent networks, etc.

Fig. 1: Policy approximator.

Fig. 2: Q-function approximator.
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Reinforcement learning techniques

In this thesis, we considered three main reinforcement learning techniques:

1. Policy-gradient (and actor-critic) methods:

∇𝜓𝐽(𝜂𝜓) ≈ 𝔼𝑑
𝜂𝜓[𝑄𝜂𝜓

𝜑 (𝐻,𝐴)∇𝜓 log 𝜂𝜓(𝐴 |𝐻)]

2. Value-based methods (Q-learning):

𝑄𝜑(ℎ, 𝑎) ≈ 𝔼[𝑅 + 𝛾 max
𝑎′∈𝒜

𝑄𝜑(𝐻′, 𝑎′) |𝐻 = ℎ,𝐴 = 𝑎]

3. Model-based methods (supervised learning):

𝑞𝜃(𝑟, 𝑜′ | ℎ, 𝑎) ≈ Pr(𝑟, 𝑜′ | ℎ, 𝑎)
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Outline

I. Learning and Remembering
• Learning for Remembering
• Remembering for Learning

II. Leveraging Additional Information
• Sufficiency through Additional Information
• Learning Faster with Additional Information

III. Entangling Predictions and Decisions
• Rolling the Dice First
• Just Looking at the Dice
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I. Learning and Remembering



I.1. Learning for Remembering

)))
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I.1. Learning for Remembering
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Belief sufficiency
Definition 4: Belief of a history.
The belief 𝑏 = 𝑓(ℎ) of a history ℎ ∈ ℋ is defined as,

𝑏(𝑠) = Pr(𝑠 | ℎ).

Theorem 1: Belief recurrence.

𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′).

Theorem 2: Belief sufficiency.

𝑄(ℎ, 𝑎) = 𝑄′(𝑓(ℎ), 𝑎).

⇒ If the belief is known, we can discard the history. But it is usually not known.
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Recurrent reinforcement learning

In recurrent Q-learning, a recurrent approximator learns the Q-function.
• The RNN state 𝑧 = 𝑓𝜃(ℎ) is a statistic of the history (memory).

Fig. 3: RNN state and Q-function.

Fig. 4: Belief and Q-function.

⇒ Should RNN states encode the belief?
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Recurrent reinforcement learning

We showed that beliefs emerge in RNN states during model-free recurrent Q-
learning (LSTM, GRU, BRC, NBRC, MGU).
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Fig. 5: Return and mutual information throughout training.

We estimate 𝐼(𝜃) ≈ 𝐼(𝑧, 𝑏) under stationary distribution 𝑝𝜂𝜃(ℎ).
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Recurrent reinforcement learning

The belief of irrelevant state variable is not encoded in RNN states (GRU).
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We estimate 𝐼(𝜃) ≈ 𝐼(𝑧, 𝑏) under stationary distribution 𝑝𝜂𝜃(ℎ).
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The statistic of the history encodes the
belief of relevant state variables.



I.2. Remembering for Learning

)))
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I.2. Remembering for Learning
−2

▼ ▼ ▼ ▼ ▼ ▼
▶ ▶ ▶ ▶ ▶

▲
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II. Leveraging Additional Information



II.1. Sufficiency through Additional Information
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II.1. Sufficiency through Additional Information
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A story of partial observability

Decision process Execution Training Generality

MDP Too optimistic.

POMDP Too pessimistic.

Privileged POMDP Too optimistic.

Informed POMDP Just right?
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Classical POMDP

The problem of RL in POMDP is to find an optimal history-dependent policy

𝜂∗ ∈ argmax
𝜂∈Η

𝔼𝜂[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡]

from samples (𝑜0, 𝑎0, 𝑟0,…, 𝑜𝑡).
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Informed POMDP

The problem of RL in POMDP is to find an optimal history-dependent policy

𝜂∗ ∈ argmax
𝜂∈Η

𝔼𝜂[∑
∞

𝑡=0
𝛾𝑡𝑅𝑡]

from samples (𝑖0, 𝑜0, 𝑎0, 𝑟0,…, 𝑖𝑡, 𝑜𝑡).
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Sufficiency for optimal control

Fig. 7: Statistic 𝑧 = 𝑓(ℎ) of the history ℎ.

The history ℎ is compressed into a statistic 𝑧 by a function 𝑓 .
⇒ It should summarize all relevant information to act optimally.

Definition 5: Sufficiency for optimal control.
A statistic 𝑓 : ℋ → 𝒵 is sufficient for optimal control if, and only if,

max
𝑔

𝐽(𝑔 ∘ 𝑓) = max
𝜂

𝐽(𝜂).

For example, the belief is a sufficient statistic.
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Sufficiency in an informed POMDP
Theorem 3: Sufficiency of recurrent predictive statistics.
A statistic 𝑓 : ℋ → 𝒵 is sufficient for optimal control if it is,
(i) recurrent: 𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′),

(ii) predictive: 𝑝(𝑟, 𝑖′ | ℎ, 𝑎) = 𝑝(𝑟, 𝑖′ | 𝑓(ℎ), 𝑎).

It motivates the informed world model 𝑞(𝑟, 𝑖′ | 𝑓(ℎ), 𝑎) objective:

max
𝑓,𝑞

𝔼
𝑝(𝑟,𝑖′ | ℎ,𝑎)

𝑞(𝑟, 𝑖′ | 𝑓(ℎ), 𝑎).

Fig. 8: Statistic 𝑧 = 𝑓(ℎ) of the history ℎ encoding the transition distribution.
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Informed world model
The Informed Dreamer uses a variational recurrent neural network.
• Prior 𝑒 ∼ 𝑞𝑒(· | 𝑧, 𝑎)
• Information ̂𝑖 ∼ 𝑞𝑖(· | 𝑧, 𝑒)

‣ Instead of observation 𝑜 ∼ 𝑞𝑜(· | 𝑧, 𝑒)
• Reward 𝑟̂ ∼ 𝑞𝑟(· | 𝑧, 𝑒)
• Encoder 𝑒 ∼ 𝑞𝑒(· | 𝑧, 𝑎, 𝑜′)
• Update 𝑧′ = 𝑢(𝑧, 𝑎, 𝑒)
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Learning in imagination

From the learned world model, we can learn a latent policy 𝑔𝜑 : 𝒵 → Δ(𝒜).

Fig. 9: Imagining trajectories with the Informed Dreamer and latent policy 𝑔𝜑.
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Informed Dreamer
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Informed world models provide faster
policy learning than observational ones.



II.2. Learning Faster with Additional Information
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Asymmetric actor-critic algorithm

Actor-critic algorithms are policy-gradient methods with a critic 𝑄𝜂𝜓
𝜑 ≈ 𝑄𝜂𝜓 .

• The critic is only used for estimating the policy-gradient.
• It can be informed with additional information: 𝑄(ℎ, 𝑎) → 𝑄(ℎ, 𝑖, 𝑎).

𝑖

ℎ

𝑄𝜂𝜓(ℎ, 𝑖, ·)

𝜂𝜓(· | ℎ)
log 𝜂𝜓(𝑎 | ℎ)𝑄𝜂𝜓(ℎ, 𝑖, 𝑎)

⇒ Very effective, but no theoretical justification for its benefits.
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Asymmetric actor-critic algorithm

• State-informed:
‣ We study the case where 𝑖 = 𝑠.

• Fixed statistic:
‣ Fixed update 𝑧′ ∼ 𝑈(· | 𝑧, 𝑎, 𝑜′), and policy 𝑎 ∼ 𝜋(· | 𝑧).

• Finite state Q-functions:
‣ Asymmetric 𝒬𝜋(𝑠, 𝑧, 𝑎) and symmetric 𝑄𝜋(𝑧, 𝑎).

• Linear approximations:
‣ 𝒬𝜋𝛽(𝑠, 𝑧, 𝑎) = ⟨𝛽, 𝜑(𝑠, 𝑧, 𝑎)⟩ and 𝑄̂𝜋

𝛽(𝑧, 𝑎) = ⟨𝛽, 𝜒(𝑧, 𝑎)⟩.
‣ 𝜋𝜃(𝑎 | 𝑧) ∝ exp(⟨𝜃, 𝜓(𝑧, 𝑎)⟩).
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Actor-critic algorithm

Algorithm 1: Asymmetric and symmetric actor-critic.
1. Initialize policy parameters 𝜓0.
2. For 𝑡 = 1…𝑇

1. Estimate 𝒬𝜋𝜑 ≈ 𝒬𝜋𝜓  or 𝑄̂𝜋
𝜒 ≈ 𝑄𝜋𝜓  (TD learning).

2. Estimate 𝑔𝑡−1 ≈ ∇𝜓𝐽(𝜋𝜓𝑡−1
) using 𝒬𝜑 or 𝑄𝜒 (NPG estimation).

3. Update policy 𝜓𝑡 = 𝜓𝑡−1 + 𝜂𝑔𝑡−1.
3. Return 𝜋𝜓𝑇

From the belief 𝑏(𝑠 | ℎ) = Pr(𝑠 | ℎ) and approximate belief 𝑏̂(𝑠 | 𝑧) = Pr(𝑠 | 𝑧),
we introduce a measure of the aliasing of the agent state 𝑧.

Aliasing measure.

𝜀alias ∝ 𝔼[‖𝑏(· | ℎ) − 𝑏̂(· | 𝑧)‖].
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Finite-time bound for the critics
Theorem 4: Finite-time bound for asymmetric and symmetric Q-functions.
For any 𝜋 ∈ Πℳ, and any 𝑚 ∈ ℕ, we have for TD learning with 𝛼 = 1

𝐾 ,

√𝔼[‖𝒬𝜋 −𝒬𝜋‖
2

𝑑𝜋
] ≤ 𝜀td + 𝜀app + 𝜀shift

√𝔼[‖𝑄𝜋 −𝑄𝜋‖
2

𝑑𝜋
] ≤ 𝜀td + 𝜀app + 𝜀shift + 𝜀alias.

𝜀td =
√

√√
√
4𝐵2 + ( 1

1−𝛾 + 2𝐵)
2

2
√
𝐾(1 − 𝛾𝑚)

𝜀app =
1 + 𝛾𝑚

1 − 𝛾𝑚
min
𝑓∈ℱ𝐵

𝜑

‖𝑓 − 𝑄𝜋‖𝑑𝜋

𝜀shift = (𝐵 + 1
1 − 𝛾

)√ 2𝛾𝑚
1 − 𝛾𝑚√

‖𝑑𝜋𝑚 ⊗ 𝜋 − 𝑑𝜋 ⊗ 𝜋‖TV

𝜀alias =
2

1 − 𝛾
‖𝔼𝜋[∑

∞

𝑘=0
𝛾𝑘𝑚‖𝑏̂𝑘𝑚 − 𝑏𝑘𝑚‖TV | 𝑍0 = ·,𝐴0 = ·]‖

𝑑𝜋

.
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Finite-time bound for the actors
Theorem 5: Finite-time bound for asymmetric and symmetric NAC.
For any (𝒵, 𝑈), we have for NAC with 𝛼 = 1

𝐾 , 𝜁 = 𝐵
√
1−𝛾√
2𝑁

, 𝜂 = 1√
𝑇 ,

(1 − 𝛾) min
0≤𝑡<𝑇

𝔼[𝐽(𝜋∗) − 𝐽(𝜋𝑡)] ≤ 𝜀nac + 𝜀actor + 𝜀inf + 𝜀grad +
1
𝑇
∑
𝑇−1

𝑡=0
𝜀𝜋𝑡critic,

𝜀nac =
𝐵2 + 2 log|𝐴|

2
√
𝑇

𝜀actor = 𝐶∞√
(2 − 𝛾)𝐵
(1 − 𝛾)

√
𝑁

𝜀inf,asym = 0 𝜀inf,sym = 2𝔼𝜋∗[∑
∞

𝑘=0
𝛾𝑘‖𝑏̂𝑘 − 𝑏𝑘‖TV]

𝜀grad,asym = 2𝐶∞ sup
0≤𝑡<𝑇

√min
𝑤

ℒ𝑡(𝑤) 𝜀grad,sym = 2𝐶∞ sup
0≤𝑡<𝑇

√min
𝑤

𝐿𝑡(𝑤)

𝜀𝜋𝑡critic,asym = 2𝐶∞
√
6(𝜀td + 𝜀app + 𝜀shift) 𝜀𝜋𝑡critic,sym = 2𝐶∞

√
6(𝜀td + 𝜀app + 𝜀shift + 𝜀alias)

43/49



Asymmetric learning is insensitive to
aliasing in the statistic of the history.



III. Entangling Predictions and
Decisions



III.1. Rolling the Dice First
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III.1. Rolling the Dice First
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III.2. Just Looking at the Dice

)))

WORK IN PROGRESS
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III.2. Just Looking at the Dice
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//
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A Matter of Abstractions



Conclusion

Instead of the history MDP, we should consider the structure of the solution,
focusing on recurrent approximators that are predictive of the future.

I. Good initial memory learning to focus on the relevant belief,
II. Predictive of the state, or can be augmented with state at training,

III. Learned as predictive latent of the future, sampled and decoded in parallel.
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Future perspectives
We developed techniques to learn an optimal behavior for any given task.
→ Could we instead learn a behavior that optimally generalize to all tasks?

Generalization is equivalent to optimal control under partial observability!

−1

−1

−1

10% 50% 40%
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