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Prof. Guillaume Drion, Université de Liège, Advisor.
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Summary

Intelligence is usually understood as the ability to make decisions, based on
perception, in order to achieve objectives. In other words, intelligence is about
perceiving and abstracting past information about the world for then acting on
its future execution. This thesis focuses on reinforcement learning in partially
observable Markov decision processes for learning intelligent behaviors through
interaction. In particular, this manuscript explores and emphasizes the interplay
between perception, representations, memory, predictions and decisions. After
introducing the theoretical foundations, the core contributions of the thesis are
presented across three thematic parts.

The first part, “Learning and Remembering,” investigates how learning intelli-
gent behaviors improves memory and vice versa. To begin with, it studies how
learning to act optimally results in representations of the perception history that
encode the posterior distribution over the states, known as the belief. Next, it
studies how long-term memory improves the ability to learn intelligent behav-
iors, by designing an initialization procedure for recurrent neural networks that
endows them with long-term memorization abilities.

The second part, “Leveraging Additional Information,” explores how additional
information about the world can be used to learn intelligent behaviors faster
than when learning from perception only. It starts by empirically showing that
world models predicting this additional information provide better history rep-
resentations and faster learning. Then, it provides a theoretical justification for
the improved convergence speed of a particular algorithm that leverages this
information, namely the asymmetric actor-critic algorithm.

The third part, “Entangling Predictions and Decisions,” proposes several ar-
chitectural innovations for obtaining world models that efficiently generate tra-
jectories. First, it develops new sequence models that parallelize autoregressive
generation, while being implicitly recurrent to allow resuming generation. After-
wards, it elaborates on their use as new world models that are able to generate
trajectories in parallel through specific latent policies.

Finally, this thesis concludes by summarizing how learning adequate representa-
tions of the perception history is paramount to learning to make decisions under
partial observability. In the perspective of developing general intelligence, this
thesis also motivates the shift from specialized abstractions to generalizable ab-
stractions extending across diverse environments.
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Chapter 1

A Matter of Perception

Intelligence is usually understood as the ability, and in particular the computa-
tional ability, to make decisions in order to achieve objectives [McCarthy, 1998].
This definition probably overlooks, but certainly encompasses, the operation of
processing the available information for then forming a decision. Indeed, deci-
sion making does not emerge spontaneously but is rather initiated by perception,
which serves as the stimulus and basis upon which the decision is constructed.
From the processed perception, the decision may then be derived through either
a learned computation or a planning procedure, that both seek to optimize the
outcomes for the objective at hand. We find useful to establish a permeable
distinction between the process of abstracting perception into a representation
of that information, and the computation of a decision based on this representa-
tion. This separation sheds light on very different aspects of intelligent decision
making: those concerned with the adequate processing and representation of
past information, and those concerned with the adequate computation of de-
cisions for achieving desired outcomes. In short, we frame intelligence as the
ability of perceiving and abstracting past information about the world for then
acting on its future execution, in the perspective of achieving an objective.

This thesis is interested in learning such intelligent behaviors, mapping past and
present perception of the world to immediate and future actions. To that hand,
we rely on reinforcement learning (RL) in partially observable Markov decision
processes (POMDP) for learning these behaviors through interaction. First, let
us put aside the learning process, and let us focus on the solution of the problem
of optimally controlling a POMDP. This formalization of decision processes as-
sumes an underlying Markovian state that is unobservable, but from which we
get partial observations. In other words, it assumes that the perception of the
world is partial, and that we are not provided with its full state. A consequence
of this partial perception is the need of remembering some information from
past observations, to infer relevant information about the state for making an
optimal decision. It contrasts with the usual but more restrictive notion of fully
observable Markov decision process (MDP) that assumes the state to be fully
observable. Both models assume a discrete decision scheme, where actions are
successively taken, based on the history of observations and past actions, to in-
fluence future states time step after time step. These formalizations also assume
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a reward process such that a scalar reward is provided for each action taken in
the decision process. This relies on the reward hypothesis, which states that any
desired behavior can be formulated as a reward maximization problem [Sutton
and Barto, 1998]. Given a POMDP, the decision making problem becomes that
of selecting actions to maximize rewards, based on the history of observations
and past actions. In the next two paragraphs, we review lessons from optimal
control theory, which inform us about the optimal solution to this problem, but
also about the RL methods to be applied, which are developed further below.

As far as the abstraction of perception is concerned, the objective is to process
the stream of observations to extract relevant information for acting at all fu-
ture time steps, and to discard the rest. In other words, the crucial aspect of
this perception process is to memorize relevant information for acting now, but
also for processing future observations and acting optimally in the future. The
optimal control theory clearly established the sufficiency of the posterior state
estimation, known as the belief, for optimally controlling a POMDP [Åström,
1965]. The belief is defined as the posterior distribution over the states given
the history of observations and past actions. There thus exists a statistic of the
history, called the belief, that is sufficient to be considered for acting optimally
now, and also sufficient to be memorized for processing future observations and
acting optimally at all later time steps. As a corollary, the theory states the
existence of sufficient statistics for optimal control, which may not necessarily
be the belief [Striebel, 1965]. In particular, when relaxing the POMDP model
by not assuming an underlying state, their may still exist sufficient statistics
for optimal control, which are sometimes called information states in that more
general setting [Bertsekas, 2012]. In the case of MDPs, the state is known to
be a sufficient statistic, which intuitively follows from its Markovian property,
stating that it perfectly summarizes the past to predict the future.

As far as the selection of an optimal action for the future is concerned, opti-
mal control theory studied the problem using dynamic programming [Bellman,
1952] in the case of MDP [Bellman, 1957]. Dynamic programming relies on
the principle of optimality, which applies to any MDP in the sense that the
solution has an optimal substructure. In other words, the optimal sequence of
actions can be decomposed into the problem of selecting an optimal action now,
and the problem of selecting the optimal sequence of future actions at the next
time step. Through this recursive structure, the general problem embeds the
smaller problem of optimally controlling the MDP for the remaining time. It
enables the application of dynamic programming for solving the optimal con-
trol problem of an MDP. Roughly speaking, this algorithm works backward
and computes an optimal action for maximizing the next reward, from which it
computes an optimal action for maximizing the next two rewards, and so on.
Thanks to the previously mentioned findings that established the sufficiency of
the belief for optimally controlling a POMDP, dynamic programming extends
to POMDPs. Indeed, because the belief summarizes all information from the
history for predicting the immediate reward, as well as for predicting future be-
liefs given future actions, it is the Markovian state of an equivalent MDP that
we call the belief MDP. It is however worth noting that the belief MDP is a
particular case of MDP, in the sense that its optimal solution has a particular
form, which is piecewise linear and convex in its state, the belief [Smallwood
and Sondik, 1973]. The transformation of a POMDP into an MDP through the
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belief filter once again highlights the distinction that exists between the prob-
lem of processing the past on the one hand, and the problem of planning for the
future on the other hand.

As will be explicitly developed in the next part of this thesis that covers the
mathematical background, these results from optimal control theory are insight-
ful about the structure of the solution for optimally controlling a POMDP. How-
ever, the computation of these solutions is usually computationally intractable.
First, the belief computation requires to integrate over the state space at every
time step, and to store the distribution over the state space, both of which can
become difficult when the state space is large, or impossible when it is continu-
ous. Similarly, each step of the dynamic programming computation requires to
integrate over the state space, and to store the solution for every state, which
poses the same problems with large state spaces. In particular, for a POMDP
with finite state space, the state space of the equivalent belief MDP is infinite.
Fortunately, the particular structure of the solution of the belief MDP, which
is piecewise linear and convex, still allows the execution of the dynamic pro-
gramming algorithm. However, other challenges arise from the representation
and evaluation of the solution, which grows exponentially with the number of
steps of the dynamic programming algorithm. All these considerations make
the problem of optimally controlling a POMDP challenging at best, impossible
at worse. Last, but not least, the applicability of the dynamic programming
algorithm relies on the assumption that the POMDP model is known, that is
the state space, action space, observation space, along with the exact transi-
tion distribution, observation distribution and reward distribution. While some
problems may satisfy this hypothesis, we relax this assumption and focus on
learning intelligent behaviors in any POMDP, from interaction only.

For this purpose, this thesis focuses on RL in POMDP [Spaan, 2012]. The RL
approach is appealing for solving, or approximately solving, decision making
problems, notably because it makes very few assumptions about the problem at
hand. In its purest form, the promise of an RL algorithm is to learn an optimal
behavior from interaction with an environment whose dynamics are unknown.
More formally, an RL algorithm aims at learning a policy, which is defined as
a mapping from states or histories to actions, in order to maximize the reward
signal, and that from samples obtained by interacting with an environment.
The maximization of the reward signal is usually implemented by one of the
following criteria: the maximization of the expected sum of rewards over a fi-
nite horizon, the maximization of the expected average reward over the infinite
horizon, or the maximization of the expected sum of discounted rewards over
the infinite horizon. In the following, we refer to any of these objectives as the
return. Let us review the most popular and effective RL approaches, which
were initially developed in the fully observable setting. First, policy-gradient
methods primarily work with a parametrized model of the policy, for which an
unbiased estimate of the gradient of the return can be computed from samples
of interaction [Williams, 2004]. As a results, these methods directly optimize
the return of the policy using stochastic gradient ascent on their parameters. It
is also worth mentioning the so-called actor-critic approaches, which are policy-
gradient methods that reduce the variance of the gradient estimate by jointly
learning a value function. This value function estimates the return of the policy
being optimized, which is substituted to the empirical return in the computa-
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tion of the policy gradient estimate [Sutton et al., 1999]. Second, value-based
methods primarily work with a model of the value function, which directly esti-
mates the optimal return that can be obtained from a state, from which a near-
optimal policy can be derived. This is achieved through a learning process akin
to stochastic incremental dynamic programming [Watkins, 1989], using samples
obtained from interaction. Third, model-based methods primarily work with a
model of the environment that is learned in an unsupervised learning fashion
for then deriving an optimal policy. This can be achieved in two main ways:
through the application of any of the two previously mentioned RL approaches,
or through the application of optimal control to this learned model. The latter
approach is similar the traditional pipeline of system identification and optimal
control [Åström and Eykhoff, 1971].

Despite these RL methods being initially designed for learning to optimally con-
trol a MDP from interaction, they were straightforwardly adapted to the optimal
control of a POMDP. Without any model of the decision process based on which
to compute the belief, the delineation between the problem of abstracting past
perception and the problem of computing the optimal action is blurred. This
characterizes the coupled burden of RL in POMDP, which is to jointly learn to
process the history of observations and past actions, and to produce optimal
actions for the future execution of the decision process. In practice, the RL field
has historically mostly ignored this distinction and has completely coupled these
aspects, by considering the complete history as the Markovian state of an equiv-
alent MDP that we call the history MDP. This rather crude approach, which
completely ignores the structure of the solution and the unbounded growth of
the history, has proven quite effective in practice. We identify the following
seminal works in history-dependent RL, for each of the three aforementioned
approaches. In policy-gradient approaches, history-dependent policies were pro-
posed, using recurrent neural network to process these variable-length histories
[Wierstra et al., 2007]. In value-based approaches, history-dependent value func-
tions were proposed using recurrent neural networks as well [Bakker, 2001]. In
model-based approaches, history-dependent models of the environments were
proposed, once again using recurrent neural networks [Lin and Mitchell, 1992].
These early works had paved the way for adapting to the partially observable
setting the numerous RL breakthroughs enabled by the deep learning revolu-
tion, in policy-gradient approaches [Heess et al., 2015], value-based approaches
[Hausknecht and Stone, 2015], and model-based approaches [Ha and Schmidhu-
ber, 2018]. While these methods starts from the history MDP, by noticing that
the history can be simply substituted to the state in traditional RL methods,
it is worth noting that they process the history with a recurrent neural net-
work, which compresses the history into a statistic. As a results, it becomes a
requirement for this statistic of the history to be sufficient for optimal control.

Although these methods are theoretically able to learn sufficient statistics of the
history for the optimal control of any POMDP, sufficient statistics of the history
can also be learned explicitly. Early approaches proposed to learn statistics of
the history that are predictive of future observations, which was called predic-
tive state representations [Littman and Sutton, 2001]. The idea of learning a
recurrently updatable statistic that is predictive of the observations of the de-
cision process roughly amounts to assuming and learning a generative model
for the decision process. This illustrates the strong ties that exist between the
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problem of learning to abstract past perception into representations, and the
problem of predicting future execution. In deep RL, an important line of work
has considered auxiliary representation learning objectives for the hidden state
of recurrent policies or recurrent value functions, in order to ensure the learning
of a sufficient statistic [Igl et al., 2018, Guo et al., 2018, Gregor et al., 2019].
Moreover, because these representation objectives offer a predictive model of
the environment, history-dependent model-based methods were simply devel-
oped as an effective approach for RL in POMDP, offering these representation
objectives for free [Hafner et al., 2019, Samsami et al., 2024]. In other words,
model-based RL completely encompasses usual representation learning objec-
tives for the abstraction of perception in partially observable environments.

To close this overview of RL in POMDP, we want to take a step back and re-
flect on the constraints we have imposed so far. While it is realistic to assume a
partial perception of the state of the decision process, it may be too pessimistic
to assume the same partial perception of the state while learning. It is indeed
strictly more general to assume that additional information about the state may
be available while learning, and it is certainly interesting to develop methods
that leverage this eventual additional information. This observation has resulted
in a recent line of work called asymmetric learning, or asymmetric RL, whose
name refers to the asymmetry of observability between learning and execution.
Early approaches notably proposed to imitate a privileged policy conditioned
on the state [Choudhury et al., 2018], or to use an asymmetric critic condi-
tioned on the state [Pinto et al., 2018]. These heuristic methods initially lacked
a theoretical framework, and a recent line of work has focused on proposing
theoretically grounded asymmetric learning objectives. First, imitation learn-
ing of a privileged policy was known to be suboptimal, and it was addressed
by constraining the privileged policy so that its imitation results in an opti-
mal policy for the partially observable environment [Warrington et al., 2021].
Similarly, asymmetric actor-critic approaches were proven to provide biased gra-
dients, and an unbiased actor-critic approach was proposed by introducing the
history-state value function [Baisero and Amato, 2022]. In model-based RL,
several works proposed world model objectives that are proved to provide suf-
ficient statistics of the history, by leveraging the state [Avalos et al., 2024] or
arbitrary state information [Lambrechts et al., 2024a]. Finally, asymmetric rep-
resentation learning approaches were proposed to learn sufficient statistics using
state samples [Wang et al., 2023, Sinha and Mahajan, 2023].

This thesis humbly contributes to this literature by analyzing and easing the
burden of RL in POMDP, which is to jointly learn to perceive, represent, mem-
orize, predict and decide. In Part I, we seek to understand the role of memory
when learning to act in a decision process, which we articulate around two sci-
entific papers. The first paper, “Recurrent Network, Hidden States and Beliefs
in Partially Observable Environments,” investigates the link between the mem-
ory resulting from the process of learning to act optimally, and the optimal
statistic of the history that the optimal control theory prescribes, which is the
belief. The second paper, “Warming Up Recurrent Neural Networks to Maximize
Reachable Multistability Greatly Improves Learning,” studies the importance of
a good memorization ability as a prerequisite for learning to act optimally. In
Part II, motivated by the findings of the previous papers, we seek to improve
the learning of optimal behaviors by fostering a memory which encodes a suf-
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ficient statistic, and this by leveraging eventual additional information during
learning. The first paper, “Informed POMDP: Leveraging Additional Informa-
tion in Model-Based RL,” formally relaxes the POMDP assumptions to account
for eventual additional information available during learning, and proposes a
method that leverages it to learn a sufficient statistic of the history for opti-
mal control. The second paper, “A Theoretical Justification for Asymmetric
Actor-Critic Algorithms,” aims at establishing a theoretical justification for a
class of algorithms that leverage such additional information during learning,
to better estimate the long term outcomes of the policy. In Part III, we explore
topics where the entanglement of memory, predictions and decisions might be
mutually beneficial. The short paper, “Parallelizing Autoregressive Generation
with Variational State Space Models,” proposes a new sequence modeling ar-
chitecture that combines the desirable properties of many previously proposed
architectures, which are the parallelizability of history processing, the paralleliz-
ability of history generation, but also the implicit recurrence of these processes,
so as to be able to resume generation without reprocessing all past history. In
a last chapter, we elaborate on a possible usage of such sequence models in the
context of model-based RL, where specific latent policies could unlock parallel
generation of trajectories for learning efficiently.

The conclusions offered by this research project are plural. Most importantly, we
think that this thesis establishes a clear motivation for the particular attention
that should be given to the problem of learning to abstract perception into use-
ful representations. It notably highlights the limits of disregarding the structure
of the solution with the history MDP, and motivates the consideration of that
structure with representation learning. More precisely, this thesis motivates
to learn abstractions of the world that are predictive of its future execution,
as a representation learning method that offers good representations for deci-
sion making. We think that such approaches correctly considers the distinction
between the two different aspects of decision making, processing the past and
planning for the future, while not separating them. Indeed, history-dependent
RL with representation learning makes a permeable distinction that allows these
tasks to inform each other, and interact in a mutually beneficial way. Finally, we
also want to reflect on the fact that in this introduction we have presented RL
as a method for solving decision making in POMDP, or more precisely, in any
POMDP taken separately. Many researchers like to see RL as a problem rather
than a method, the problem of learning to make decisions, generally speaking.
In other words, the RL problem is to learn to act optimally and generalize over
a distribution of POMDPs. Magnificently, the problem of learning to generalize
over a distribution of POMDPs can be framed as a POMDP. As a future work,
this thesis thus also motivates the consideration of RL in POMDP to solve the
RL problem, which is to develop generalizable intelligence.
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Chapter 2

Reinforcement Learning
under Partial Observability

2.1 Notations and Conventions

This manuscript makes use of the notations detailed in Table 2.1. We notably
denote random variables with uppercase letters and their realizations with low-
ercase letters. We also index these random variables and their realizations with
time to denote random processes and their realizations. For brevity, we some-
times denote a random variable from a random process at an arbitrary time by
omitting its time index, and we denote a random variable from the same random
process at the next time step with prime. We denote the set of real numbers,
integer numbers, and natural numbers with their usual symbols. Finally, given
a discrete space X , we denote by 2X the discrete σ-algebra, or power set, and we
use ∆(X ) to denote the set of probability measures over the measurable space
(X , 2X ). Given a continuous space X , we denote with BX the Borel σ-algebra,
and we use ∆(X ) to denote the set of probability measures over the measurable
space (X ,BX ). Finally, we denote by δc the Dirac measure centered at c.

Depending on the context, we may denote the expectation of a random variable
X with sample space X and probability measure P of density p, with any the
following notations,

E[X] = EP [X] = E
p(x)

[x] = E
x∼p(·)

[x] = E
x∼P

[x] =
∫

X
xp(x) dx =

∫
X
xdP. (2.1)

Following the reinforcement learning literature, we denote the expectation of a
random variable at a time step t under the distribution induced by a policy π
with Eπ[Xt]. Similarly, we denote the expectation of a random variable under
the discounted visitation measure dπ,γ induced by a policy π with Ed

π,γ

[X].
These mathematical objects are clearly defined in the next sections.
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Notation Meaning
X Set.
X Random variable.
x Realization of a random variable.
Xt Random variable from a given random process at time step t.
xt Realization of a random variable from a given random process

at time step t.
Xk:t Sequence of random variables from a given random process from

time step k to time step t, both inclusive.
xk:t Sequence of realizations of random variables from a given random

process from time step k to time step t, both inclusive.
X,X ′ Random variables from a given random process at arbitrary time

steps t and t+ 1.
x, x′ Realizations of random variables from a given random process at

arbitrary time steps t and t+ 1.
R Set of real numbers.
Z Set of integer numbers.
N Set of natural numbers.
N0 Set of natural numbers and zero.
2X Power set over the discrete space X .
BX Borel set over the continuous space X .
∆(X ) Set of probability measures over (X , 2X ) or (X ,BX ).
δc(x) Dirac distribution centered at c.

Table 2.1: Notations and conventions in this manuscript.

2.2 Markov Decision Processes
Sequential decision making under full observability can be modeled as a Markov
decision process (MDP). Formally, an MDP is defined as a tupleM = (S,A, T,
R, P, γ) where,

• S is the state space,

• A is the action space,

• T : S ×A → ∆(S) is the transition distribution,

• R : S ×A → ∆(R) is the reward distribution,

• P ∈ ∆(S) is the initial distribution,

• γ ∈ [0, 1) is the discount factor.

The initial state distribution P gives the probability P (s0) of s0 ∈ S being
the initial state of the decision process. The dynamics are described by the
transition distribution T that gives the probability T (st+1|st, at) of st+1 ∈ S
being the state resulting from taking action at ∈ A in state st ∈ S. The reward
distribution R gives the probability density R(rt|st, at) of the immediate reward
rt ∈ R after taking action at ∈ A in state st ∈ S.1 We also define the expected

1Some of the papers presented in this thesis will instead assume a deterministic reward
function of the form rt = R(st, at, st+1). These formalizations can be shown to be equivalent.
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immediate reward as r̄t = R(st, at) = E[Rt|St = st, At = at]. Finally, the
discount factor γ ∈ [0, 1) weighs the relative importance of future rewards. The
key assumption of an MDP is that states satisfy the Markov property,

Pr(st+1|s0, a0, . . . , st, at) = Pr(st+1|ht, at) = Pr(st+1|st, at) = T (st+1|st, at).
(2.2)

Taking a sequence of t actions in an MDP conditions its execution and provides
the observable history ht = (s0, a0, . . . , st) ∈ Ht ⊂ H, where Ht = (S ×A)t×S
is the set of histories of size t, andH =

⋃∞
t=0Ht is the set of histories of arbitrary

length. At any time t ≥ 0, the current history ht includes all information that
is available to select action at ∈ A. We define a history-dependent policy η ∈ H
as a mapping from histories to probability distributions over actions, where
H = H → ∆(A) is the set of all history-dependent policies. We use η(a|h) to
denote the probability of selecting action a ∈ A in history h ∈ H. Finally, we
define the return J(η) of a history-dependent policy η ∈ H as the expected sum
of discounted rewards,

J(η) = Eη
[ ∞∑
t=0

γtRt

]
. (2.3)

A history-dependent policy η∗ ∈ H is said to be an optimal history-dependent
policy when it maximizes the return,

η∗ ∈ arg max
η∈H

J(η). (2.4)

Let us finally define a stationary Markov policy π ∈ Π as a mapping from
states to probability distributions over actions, with Π = S → ∆(A) the set of
all stationary Markov policies. We also define the return J(π) of a stationary
Markov policy π ∈ Π as the expected sum of discounted rewards,

J(π) = Eπ
[ ∞∑
t=0

γtRt

]
. (2.5)

A stationary Markov policy π∗ ∈ Π is said to be an optimal stationary Markov
policy when it maximizes the return,

π∗ ∈ arg max
π∈Π

J(π). (2.6)

It was proven that stationary Markov policies are sufficient for optimally control-
ling an MDP [Puterman, 1994]. In other words, an optimal stationary Markov
policy π∗ ∈ Π performs as well as an optimal history-dependent policy η∗ ∈ H,

max
π∈Π

J(π) = max
η∈H

J(η). (2.7)

This results stems from the Markov property of MDPs, which states that future
states of the MDP are independent of past states given the current state.
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Finally, we define the value function V π : S → R of a policy π ∈ Π as the return
starting from a state s ∈ S,

V π(s) = Eπ
[ ∞∑
t=0

γtRt

∣∣∣∣∣S0 = s

]
. (2.8)

We note that J(π) = E[V π(S0)]. We also define the Q-function Qπ : S ×A → R
of a policy π ∈ Π as the return starting from a state s ∈ S and an action a ∈ A,

Qπ(s, a) = Eπ
[ ∞∑
t=0

γtRt

∣∣∣∣∣S0 = s,A0 = a

]
. (2.9)

It is interesting to note that V π(s) = Eπ[Qπ(S,A)|S = s].

2.3 Optimal Control in Markov Decision Pro-
cesses

Let us define the optimal Q-function as the Q-function of an optimal policy,

Q(s, a) = max
π∈Π

Qπ(s, a) = Qπ
∗
(s, a). (2.10)

The optimal Q-function is the unique fixed point of the following Bellman op-
erator [Bellman, 1957],

Q(s, a) = E
[
R+ γmax

a′∈A
Q(S′, a′)

∣∣∣∣S = s,A = a

]
(2.11)

= R(s, a) + γE
[
max
a′∈A

Q(S′, a′)
∣∣∣∣S = s,A = a

]
. (2.12)

The solution of this nonlinear system of |S|×|A| equations can be approximated
to an arbitrary precision using dynamic programming, assuming that we know
the expected immediate reward R(s, a) for any state s ∈ S and action a ∈ A.
The dynamic programming algorithm, known as Q-iteration in that case, itera-
tively computes Q-functions with a growing finite-time horizon. More precisely,
the algorithm starts from the Q-function Q0 with a horizon of zero, which is
Q0(s, a) = 0, ∀s ∈ S, ∀a ∈ A. Then, it successively computes for k > 0,

Qk(s, a) = R(s, a) + γE
[
max
a′∈A

Qk−1(S′, a′)
∣∣∣∣S = s,A = a,

]
. (2.13)

The Bellman operator being γ-contractive with the optimal Q-function as its
unique fixed point, this sequence of Q-functions converges towards the optimal
Q-function [Banach, 1922]. In order to store the solution for every state and
action pair, and in order to compute the expectation, the dynamic programming
algorithm requires discrete state and action spaces.

2.4 Partially Observable Markov Decision Pro-
cesses

While assuming the existence of an underlying state for a decision process may
seem reasonable, assuming that it will be fully observable is not. In the general

14



case, decision making problems only offer a partial observation of the under-
lying state of the decision process. Sequential decision making under partial
observability can be modeled as a partially observable Markov decision process
(POMDP). Formally, a POMDP is a tuple P = (S,A,O, T,R,O, P, γ) where,

• M = (S,A, T,R, P, γ) is an MDP whose states are not observable,

• O is the observation space,

• O : S → ∆(O) is the observation distribution.

The observation distribution O gives the probability O(ot|st) to get observation
ot ∈ O in state st ∈ S. Interestingly, observations in a POMDP do not satisfy
any Markov property in the general case,

Pr(ot+1|o0, a0, . . . , ot, at) = Pr(ot+1|ht, at) ̸= Pr(ot+1|ot, at). (2.14)

Taking a sequence of t actions in a POMDP conditions its execution and provides
the observable history ht = (o0, a0, . . . , ot) ∈ Ht ⊂ H, where Ht = (O×A)t×O
is the set of histories of size t, and H =

⋃∞
t=0Ht is the set of histories of

arbitrary length. Note that for discrete state space S, discrete action space A
and discrete observation space O, the history space H is countable. Similarly
to MDPs, we define a history-dependent policy η ∈ H as a mapping from
histories to probability distributions over actions, where H = H → ∆(A) is
the set of all history-dependent policies. We also define the return J(η) of a
history-dependent policy η ∈ H as the expected sum of discounted rewards,

J(η) = Eη
[ ∞∑
t=0

γtRt

]
. (2.15)

A history-dependent policy η∗ ∈ H is said to be an optimal history-dependent
policy when it maximizes the return,

η∗ ∈ arg max
η∈H

J(η). (2.16)

Because we do not have the Markov property in POMDPs, stationary Markov
policies that would be conditioned on the current observation only are not suf-
ficient for optimal control [Littman et al., 1995]. As a result, we must rely on
history-dependent policies for optimally controlling POMDPs.

We now define the value function V η : H → R of a history-dependent policy
η ∈ H as the return starting from a history h,

V η(h) = Eη
[ ∞∑
t=0

γtRt

∣∣∣∣∣H0 = h

]
. (2.17)

We note that J(η) = E[V η(H0)]. Let us also define the Q-function Qη : H×A →
R of a policy η ∈ H as the return starting from a history h and action a,

Qη(h, a) = Eη
[ ∞∑
t=0

γtRt

∣∣∣∣∣H0 = h,A0 = a

]
. (2.18)

It is interesting to note that V η(h) = Eη[Qη(H,A)|H = h].
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2.5 Belief Markov Decision Processes
Given a POMDP P = (S,A,O, T,R,O, P, γ), we define the belief b ∈ B ⊊ ∆(S)
of a history h ∈ H as the posterior distribution over the states given the history,
where B is the set of all attainable beliefs. Formally, the belief b = f(h) is,

b(s) = Pr(s|h), (2.19)

where f : H → B is called the belief filter. Using Bayes’ rule, the initial belief
b0 = f(h0) is given by,

b0(s0) = Pr(s0|h0) = Pr(s0|o0) (2.20)

= P (s0)O(o0|s0)∑
s0∈S P (s0)O(o0|s0) . (2.21)

At all later time steps, the belief filter admits a recursive form bt+1 = f(ht+1) =
u(bt, at, ot+1) = u(f(ht), at, ot+1) where the update u is given by,

bt+1(st+1) = Pr(st+1|ht+1) = Pr(st+1|ht, at, ot+1) (2.22)

=
O(ot+1|st+1)

∑
st
T (st+1|st, at)bt(st)∑

st+1∈S O(ot+1|st+1)
∑
st
T (st+1|st, at)bt(st)

. (2.23)

The proof, which we attribute to Ho and Lee [1964] and which is a consequence
of Bayes’ rule [Bayes, 1763], is given in Appendix A.

Note that for discrete state space S, discrete action space A and discrete ob-
servation space O, the history space H is countable and, as a consequence, the
belief space B is also countable.

Given a POMDP P = (S,A,O, T,R,O, P, γ), it is possible to define an equiv-
alent MDP, which is called the belief MDP. The belief MDP M′ is given by
M′ = (S ′,A, T ′, R′, P ′, γ) where,

• S ′ = B is the belief space,

• T ′ : B ×A → ∆(B) is the belief transition distribution,

• R′ : B ×A → ∆(R) is the belief reward distribution,

• P ′ ∈ ∆(B) is the initial belief distribution.

The initial belief distribution P ′ over the countable set of beliefs is given by,

P ′(b0) =
∑
o0∈O

δf(h0)(b0)
∑
s0∈S

O(o0|s0)P (s0). (2.24)

The transition distribution T ′ is given by,

T ′(bt+1|bt, at) =
∑

ot+1∈O
δu(bt,at,ot+1)(bt+1)

∑
st+1∈S

O(ot+1|st+1)
∑
st∈S

T (st+1|st, at)bt(st).

(2.25)

The reward distribution R′ is defined as,

R′(rt|bt, at) =
∑
st∈S

R(rt|st, at)bt(st). (2.26)
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We also define the expected immediate reward in the belief MDP as r̄t =
R′(bt, at) = E[Rt|Bt = b, At = a]. The proof for the expression of the initial
belief distribution, belief transition distribution and belief reward distribution
of the belief MDP, which we attribute to Åström [1965], is given in Appendix B.

2.6 Optimal Control in Belief Markov Decision
Processes

Given the existence of an equivalent belief MDP M′ for any POMDP P, we
study the solution for this particular MDP. We know that a stationary Markov
policy exists for this MDP. We thus define a belief policy π′ ∈ Π′ as a mapping
from belief to distribution over actions, where Π′ = B → ∆(A) is the set of all
belief policies. We define the optimal belief Q-function as,

Q′(b, a) = max
π′∈Π′

Qπ
′
(b, a), (2.27)

where Qπ′(b, a) is defined as the belief Q-function of a belief policy π′,

Qπ
′
(b, a) = Eπ′

[ ∞∑
t=0

γtRt

∣∣∣∣∣B0 = b, A0 = a

]
. (2.28)

As for classical MDPs, it can be shown that the belief Q-function is the unique
fixed point of the following Bellman operator [Sondik, 1978],

Q(b, a) = E
[
R+ γmax

a′∈A
Q(B′, a′)

∣∣∣∣B = b, A = a

]
(2.29)

= R′(b, a) + γE
[
max
a′∈A

Q(B′, a′)
∣∣∣∣B = b, A = a

]
. (2.30)

Because the belief space is infinite, it seems a priori impossible to represent the
Q-function or to compute the expectation over the belief space, which would
render dynamic programming infeasible. However, the particular structure of
the belief MDP makes dynamic programming applicable.

Let us first note that any piecewise linear and convex function can be represented
by the epigraph of a finite number of linear functions, and that any linear
function in Rd can be represented by a vector of size d. As a result, any piecewise
linear and convex function fpwlc can be represented with a finite set A of vectors,
which we called α-vectors,

fpwlc(x) = max
α∈A

d∑
i=1

αixi, (2.31)

where x ∈ Rd and α ∈ Rd are vectors of size d. It can be demonstrated by
induction that the Q-function with a finite-time horizon is piecewise linear and
convex in the belief vector. Indeed, the Q-function with a finite-time horizon of
zero Q0(b, a) = 0, ∀b ∈ B, ∀a ∈ A is trivially linear, which is piecewise linear
and convex. Then, it can be shown that for any Q-function QN with finite-time
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horizon N that is piecewise linear and convex in the belief vector, the Q-function
with finite-time horizon N + 1,

QN+1(b, a) = R′(b, a) + γE
[
max
a′∈A

QN (B′, a′)
∣∣∣∣B = b, A = a

]
. (2.32)

is also piecewise linear and convex in the belief vector. The proof, that we
attribute to Smallwood and Sondik [1973] and that also provides the practical
procedure for updating the set of α-vectors, is given in Appendix C. It is worth
noting that this proof only proves the convexity of the optimal Q-function,
to which the sequence of Q-function converges. The piecewise linearity of the
optimal Q-function is nevertheless not guaranteed in the general case, since the
number of α-vectors tends to infinity as the horizon N tends to infinity.

2.7 Reinforcement Learning under Partial Ob-
servability

As discussed in the introduction of this thesis, both the computation of the
belief and the application of dynamic programming can become intractable for
large state spaces, or even impossible for continuous state spaces. Moreover, this
algorithm requires the model of the POMDP to be known, which can be unre-
alistic in many applications. As a result, we want to learn optimal policies from
samples of interaction only, which is the focus of the field of reinforcement learn-
ing (RL). Since the belief is not computable without the model of the POMDP,
we leave the belief MDP aside, and directly work with history-dependent poli-
cies and Q-functions. More precisely, the objective of RL in POMDP is to find
a near-optimal policy η ∈ H from samples {hk, ak, rk, ok+1}K−1

k=0 obtained by
interacting with the POMDP.

Let us define the optimal Q-function, or simply Q-function, as the Q-function
of an optimal policy,

Q(h, a) = max
η∈H

Qη(h, a) = Qη
∗
(h, a). (2.33)

Given the existence of the equivalent belief MDP, the history Q-function can
also be defined as the composition of the belief filter and the belief Q-function,

Q(h, a) = Q′(f(h), a), ∀h ∈ H, ∀a ∈ A, (2.34)

As a consequence, the history Q-function is also the unique fixed point of a
Bellman operator,

Q(h, a) = E
[
R+ γmax

a′∈A
Q(H ′, a′)

∣∣∣∣H = h,A = a

]
(2.35)

= R(h, a) + γE
[
max
a′∈A

Q(H ′, a′)
∣∣∣∣H = h,A = a

]
, (2.36)

where the expected immediate reward is defined as R(h, a) = R′(f(h), a). This
observation motivates the consideration of standard RL techniques for MDPs,
by simply substituting the history to the state. Since the space of histories
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is infinite, these method consider function approximators for processing these
variable-length sequences, usually recurrent neural networks. In the follow-
ing, we review the simplest adaptations of the main RL approaches to history-
dependent models using differentiable parametric function approximators, also
known as neural networks.

Given a POMDP P from which we can obtain samples, history-dependent Q-
learning suggests to update a parametrized approximation Qθ(h, a) of the opti-
mal Q-function. More precisely, based on a transition (hk, ak, rk, ok+1) obtained
by interacting with the environment, history-dependent Q-learning use the fol-
lowing parametric Q-learning update,

θk+1 = θk + αk

(
rk + γmax

a′∈A
Qθk(hk+1, a

′)−Qθk(hk, ak)
)
∇θQθk(hk, ak),

(2.37)

where hk+1 = (hk, ak, ok+1) and where αk is the learning rate.

Similarly, given a POMDP P from which we can obtain samples, the history-
dependent policy-gradient approach updates a parametrized policy ηψ(a|h). Let
us first define the discounted history-action visitation measure as follows,

dη,γ(h, a) = (1− γ)
∞∑
t=0

γt Pr(Ht = h,At = a). (2.38)

Based on a transition (hi, ai, ri, oi+1) sampled from the discounted history-
action visitation measure dηψi ,γ of the current policy ηψi , the history-dependent
policy-gradient approach use the following update,

ψi+1 = ψi + ζiQ
ηψi (hi, ai)∇ψ log ηψi(ai|hi), (2.39)

where Qηψi is the Q-function of the history-dependent policy ηψi , and ζi is the
learning rate. In practice, the Q-function of the policy can be estimated using
the empirical return, or using a history-dependent critic Qηψiθ that is updated
using temporal difference learning,

θk+1 = θk + αk
(
rk + γV

ηψi
θk

(hk+1)−Qηψiθk
(hk, ak)

)
∇θQθk(hk, ak), (2.40)

where V ηψiθk
(hk+1) =

∑
a′∈A ηψi(a′|hk+1)Qηψiθk

(hk+1, a
′).

Finally, for any POMDP P, a history-dependent model of the environment can
simply be learned as a model qϕ(r, o′|h, a) of the history-dependent transition
function Pr(r, o′|h, a). In practice, it can be learned from samples of the en-
vironment (hk, ak, rk, ok+1) using any supervised learning method to minimize,
for example, the following negative log likelihood loss,

L(hk, ak, rk, ok+1) = − log qϕ(rk, ok+1|hk, ak). (2.41)

Compared to standard methods for MDPs, the only challenge is to use ade-
quate history-dependent function approximators such as recurrent neural net-
works or Transformers. Usually, histories are first compressed into representa-
tions z = fθ(h) where fθ : H → Z is the sequence function approximator. It
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can be written Qθ(h, a) = gθ(fθ(h), a) for the history-dependent Q-function
approximator, ηψ(h|a) = gψ(a|fψ(h)) for the history-dependent policy, and
qϕ(r, o′|h, a) = gϕ(r, o′|fϕ(h), a) for the history-dependent world model.

As a result of this compression of the history, we have to make sure to learn a
statistic z = fθ(h) of the history h that is sufficient for predicting the Q-function,
for optimal control, or for predicting the transition, respectively. This is the
concern of this thesis, which will notably investigate the representations that are
learned by these methods, develop methods to learn sufficient representations,
and study the impact of insufficient representations.
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Part I

Learning and Remembering
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Learning and Remembering

In this part, we question the interplay between memory and learning. First,
we study the internal representations that are learn by recurrent model-free
reinforcement learning in partially observable Markov decision processes. We
empirically verify that the hidden states of recurrent reinforcement learning
agent naturally encodes the posterior distribution over the states, known as the
belief. Second, we study a new initialization procedure for recurrent neural
networks that endows them with a long lasting memory. More precisely, we
empirically show that maximizing their number of attractors results in a better
memory and a better learning ability.
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Chapter 3

Learning for Remembering

Recurrent Networks, Hidden States and Beliefs in Partially Observable Envi-
ronments. Gaspard Lambrechts, Adrien Bolland and Damien Ernst.

From the paper published in the Transactions on Machine Learning Research.

Abstract
Reinforcement learning aims to learn optimal policies from interaction with
environments whose dynamics are unknown. Many methods rely on the ap-
proximation of a value function to derive near-optimal policies. In partially
observable environments, these functions depend on the complete sequence of
observations and past actions, called the history. In this work, we empirically
show that recurrent neural networks trained to approximate such value func-
tions internally filter the posterior probability distribution of the current state
given the history, called the belief. More precisely, we show that, as a recurrent
neural network learns the Q-function, its hidden states become more and more
correlated with the beliefs of state variables that are relevant to optimal control.
This correlation is measured through their mutual information. In addition, we
show that the expected return of an agent increases with the ability of its recur-
rent architecture to reach a high mutual information between its hidden states
and the beliefs. Finally, we show that the mutual information between the hid-
den states and the beliefs of variables that are irrelevant for optimal control
decreases through the learning process. In summary, this work shows that in
its hidden states, a recurrent neural network approximating the Q-function of a
partially observable environment learns a sufficient statistic of the history that
is correlated to the relevant part of the belief for taking optimal actions.
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3.1 Introduction
Latest advances in reinforcement learning (RL) rely heavily on the ability to
approximate a value function (i.e., state or state-action value function). Modern
RL algorithms have been shown to be able to produce approximations of the
value functions of Markov decision processes (MDP) from which high-quality
policies can be derived, even in the case of continuous and high-dimensional
state and action spaces [Mnih et al., 2015, Lillicrap et al., 2015, Mnih et al., 2016,
Haarnoja et al., 2018, Hessel et al., 2018]. The adaptation of these techniques
to partially observable MDPs (POMDP) is not straightforward. Indeed, in such
environments, the agent only receives partial observations of the underlying
state of the environment. Unlike MDPs where the value functions are written
as functions of the current state, in POMDPs the value functions are written
as functions of the complete sequence of observations and past actions, called
the history. Moreover, the value functions of a history can equivalently be
written as functions of the posterior probability distribution over the current
state given this history [Åström, 1965]. This posterior probability distribution
is called the belief and is said to be a sufficient statistic of the history for the
value functions of the POMDP [Striebel, 1965]. However, the computation of the
belief requires the POMDP model to be known and is generally intractable with
large or continuous state spaces. For these two reasons, practical RL algorithms
rely on the definition of the value functions as functions of the complete history
(i.e., history or history-action value function), while the definition of the value
functions as functions of the belief (i.e., belief or belief-action value function) is
more of theoretical interest.

Approximating the value functions as functions of the histories requires one
to use function approximators that are able to process sequences of arbitrary
length. In practice, RNNs are good candidates for such approximators [Bakker,
2001, Wierstra et al., 2007, Hausknecht and Stone, 2015, Heess et al., 2015].
RNNs are parametric approximators that process sequences, time step by time
step, exhibiting memory through a hidden state that is passed recurrently over
time. The RNN is thus tasked with outputting the value directly from the his-
tory. We focus on the approximation of the history-action value function, or
Q-function, using a parametric recurrent Q-learning (PRQL) algorithm. More
precisely, RNNs are trained with the deep recurrent Q-network (DRQN) algo-
rithm [Hausknecht and Stone, 2015, Zhu et al., 2017].

Since we know that the belief is a sufficient statistic of the history for the Q-
function of this history [Åström, 1965], we investigate whether RNNs, once
trained, reproduce the belief filter when processing a history. This investigation
is conducted in this work by studying the performance of the different agents
with regard to the mutual information (MI) between their hidden states and
the belief. We focus on POMDPs for which the models are known. The bench-
marks chosen are the T-Maze environments [Bakker, 2001] and the Mountain
Hike environments [Igl et al., 2018]. The first ones present a discrete state space,
allowing one to compute the belief using Bayes’ rule, and representing this dis-
tribution over the states in a vector whose dimension is equal to the number
of states. The second ones present a continuous state space, making the belief
update intractable. We thus rely on particle filtering in order to approximate
the belief by a set of states, called particles, distributed according to the belief
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distribution. The MI between the hidden states and the beliefs is periodically es-
timated during training, using the mutual information neural estimator (MINE)
algorithm [Belghazi et al., 2018]. The MINE estimator is extended with the deep
set architecture [Zaheer et al., 2017] in order to process sets of particles in the
case of POMDPs with continuous state-spaces. This methodology allows one
to measure the ability and tendency of recurrent architecture to reproduce the
belief filter when trained to approximate the Q-function.

In [Mikulik et al., 2020], a similar study is performed in the meta-learning
setting. In this setting, an MDP is drawn from a distribution of MDPs at each
episode. This problem can be equivalently modeled as a particular subclass of
POMDP [Ghosh et al., 2021]. The authors show empirically, among others, that
the hidden state of an RNN-based policy and the statistic of the optimal policy
can be mapped one into the other with a low dissimilarity measure. In contrast,
we consider arbitrary POMDPs and show empirically that information about
the belief, a statistic known to be sufficient for optimal control, is encoded in
the hidden states.

In Section 3.2, we formalize the problem of optimal control in POMDPs, we
present the PRQL algorithm for deriving near-optimal policies and we explain
the MINE algorithm for estimating the MI. In Section 3.3, the beliefs and hidden
states are defined as random variables whose MI is measured. Section 3.4 gives
the results obtained for the considered POMDPs. Finally, Section 3.5 concludes
and proposes several future works and algorithms motivated by our results.

3.2 Background
In Subsection 3.2.1, POMDPs are introduced, along with the belief, policy, and
Q-functions associated with such decision processes. In Subsection 3.2.2, we
introduce the DRQN algorithm that is used in our experiments. This algorithm
is a particular instance of the PRQL class of algorithms that allows to approx-
imate the Q-function for deriving a near-optimal policy in a POMDP. Finally,
in Subsection 3.2.3, we present the MINE algorithm that is used for estimating
the MI between the hidden states and beliefs in our experiments.

3.2.1 Partially Observable Markov Decision Processes
In this work, the environments are modeled as POMDPs. Formally, a POMDP
P is a tuple P = (S,A,O, T,R,O, P, γ) where S is the state space, A is the
action space, and O is the observation space. The initial state distribution P
gives the probability P (s0) of s0 ∈ S being the initial state of the decision
process. The dynamics are described by the transition distribution T that gives
the probability T (st+1|st, at) of st+1 ∈ S being the state resulting from action
at ∈ A in state st ∈ S. The reward function R gives the immediate reward
rt = R(st, at, st+1) obtained after each transition. The observation distribution
O gives the probability O(ot|st) to get observation ot ∈ O in state st ∈ S.
Finally, the discount factor γ ∈ [0, 1) weights the relative importance of future
rewards.

Taking a sequence of t actions (a0:t−1) in the POMDP conditions its execution
and provides a sequence of t + 1 observations (o0:t). Together, they compose
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the history ht = (o0, a0, . . . , ot) ∈ Ht until time step t, where Ht is the set of
such histories. Let h ∈ H denote a history of arbitrary length sampled in the
POMDP, with H =

⋃∞
t=0Ht the set of histories of arbitrary length.

In the following, we denote with uppercase letters the random variables St, At,
Ot, Ht, Rt, and with lowercase letters their realizations st, at ot, ht and rt.

A policy η ∈ H in a POMDP is a mapping from histories to actions, where
H = H → A is the set of such mappings. A policy η∗ ∈ H is said to be optimal
when it maximizes the expected discounted sum of future rewards starting from
any history h ∈ H,

η∗ ∈ arg max
η∈H

Eη
[ ∞∑
t=0

γtRt

∣∣∣∣∣ H0 = h

]
, ∀h ∈ H. (3.1)

The history-action value function, or Q-function, is defined as the maximal
expected discounted reward that can be gathered, starting from a history h ∈ H
and an action a ∈ A,

Q(h, a) = max
η∈H

Eη
[ ∞∑
t=0

γtRt

∣∣∣∣∣ H0 = h,A0 = a

]
, (3.2)

The Q-function is also the unique solution of the Bellman equation [Smallwood
and Sondik, 1973, Kaelbling et al., 1998, Porta et al., 2006],

Q(h, a) = E
[
R+ γmax

a′∈A
Q(H ′, A′)

∣∣∣∣ H = h,A = a

]
, (3.3)

where H ′ = (H,A,O′) and R is the immediate reward obtained when taking ac-
tion A in history H. From equation (3.1) and equation (3.2), it can be observed
that any optimal policy satisfies,

η∗(h) ∈ arg max
a∈A

Q(h, a), ∀h ∈ H. (3.4)

Let ∆(S) be the set of probability measures over the state space S. The belief
b ∈ ∆(S) of a history h ∈ H is defined as the posterior probability distribution
over the states given the history, such that b(s) = p(s|h), ∀s ∈ S [Thrun,
2002]. The belief filter f is defined as the function that maps a history h to its
corresponding belief b,

f(h) = b, ∀h ∈ H. (3.5)

Formally, for an initial observation h = (o), the belief b = f(h) is defined by,

b(s) = P (s)O(o|s)∫
S P (s′)O(o|s′) ds′ , ∀s ∈ S (3.6)

and for a history h′ = (h, a, o′), the belief b′ = f(h′) is recursively defined by,

b′(s′) =
O(o′|s′)

∫
S T (s′|s, a) b(s) ds∫

S O(o′|s′)
∫

S T (s′|s, a) b(s) dsds′ , ∀s
′ ∈ S. (3.7)
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where b = f(h). Equation (3.7) provides a way to update the belief b to b′

through a filter step f once observing new information (a, o′),

b′ = u(b; a, o′). (3.8)

A statistic of the history is defined as any function of the history. The belief
is known to be a sufficient statistic of the history in order to act optimally
[Bertsekas, 2012]. It means that the Q-function only depends on the history
through the belief computed from this same history. It implies in particular
that the Q-function takes the following form,

Q(h, a) = Q′(f(h), a), ∀h ∈ H, ∀a ∈ A (3.9)

where Q′ : ∆(S)×A → R is called the belief-action value function, or belief Q-
function. This function gives the maximal expected discounted reward starting
from a belief b ∈ ∆(S) and an action a ∈ A, where the belief b = f(h) results
from an arbitrary history h ∈ H. Although the exact belief filter is often
unknown or intractable, this factorization of the Q-function still motivates the
compression of the history in a statistic related to the belief, when processing
the history for predicting the Q-function.

3.2.2 Parametric Recurrent Q-learning
We call PRQL the family of algorithms that aim at learning an approximation
of the Q-function with a recurrent architecture Qθ, where θ ∈ Rdθ is the pa-
rameter vector. These algorithms are motivated by equation (3.4) that shows
that an optimal policy can be derived from the Q-function. The strategy con-
sists of minimising, with respect to θ, for all (h, a), the distance between the
estimation Qθ(h, a) of the LHS of equation (3.3), and the estimation of the ex-
pectation E[r+γmaxa′∈A Qθ(h′, a′)] of the RHS of equation (3.3). This is done
by using transitions (h, a, r, o′, h′) sampled in the POMDP, with h′ = (h, a, o′).
In its simplest form, given such a transition, the PRQL algorithm updates the
parameters θ ∈ Rdθ of the function approximator according to,

θ ← θ + α

(
r + γmax

a′∈A
{Qθ(h′, a′)} −Qθ(h, a)

)
∇θQθ(h, a). (3.10)

This update corresponds to a gradient step in the direction that minimizes,
with respect to θ the squared distance between Qθ(h, a) and the target r +
γmaxa′∈A {Qθ(h′, a′)} considered independent of θ. It can be noted that, in
practice, such algorithms introduce a truncation horizon H such that the histo-
ries generated in the POMDP have a maximum length of H. From the approx-
imation Qθ, the policy ηθ is given by ηθ(h) = arg maxa∈A Qθ(h, a). Equation
(3.4) guarantees the optimality of this policy if Qθ = Q. Even though it will
alter the performance of the algorithm, any policy can be used to sample the
transitions (h, a, r, o′, h′).

The function approximator Qθ of PRQL algorithms should be able to process
inputs h ∈ H of arbitrary length, making RNN approximators a suitable choice.
Indeed, RNNs process the inputs sequentially, exhibiting memory through hid-
den states that are outputted after each time step, and processed at the next
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time step along with the following input. More formally, let x0:t = [x0, . . . , xt]
with t ∈ N0 be an input sequence. At any step k ∈ {0, . . . , t}, RNNs maintain
an internal memory state zk through the update function (3.11) and output a
value yk through the output function (3.12). The initial state z−1 is given by
the initialization function (3.13).

zk = uθ(zk−1, xk), ∀k ∈ N0, (3.11)
yk = oθ(zk), ∀k ∈ N0, (3.12)
z−1 = iθ. (3.13)

These networks are trained based on backpropagation through time where gra-
dients are computed in a backward pass through the complete sequence via the
hidden states [Werbos, 1990]. The following recurrent architectures are used
in the experiments: the long short-term memory (LSTM) by Hochreiter and
Schmidhuber [1997], the gated recurrent unit (GRU) by Chung et al. [2014], the
bistable recurrent cell (BRC) and recurrently neuromodulated bistable recur-
rent cell (nBRC) by Vecoven et al. [2021], and the minimal gated unit (MGU)
by Zhou et al. [2016].

In the experiments, we use the DRQN algorithm [Hausknecht and Stone, 2015,
Zhu et al., 2017] to learn policies. This algorithm is a PRQL algorithm that
shows good convergence even for high-dimensional problems. The DRQN algo-
rithm is detailed in Algorithm 3.1 of Appendix 3.B. In this algorithm, for a given
history ht of arbitrary length t, the inputs of the RNN are xk = (ak−1, ok), k =
1, . . . , t and x0 = (0, o0), and the output of the RNN at the last time step
yt = oθ(zt) ∈ R|A| gives yatt = Qθ(ht, at), for any at ∈ A. We also define the
composition fθ : H → Rdz of equation (3.13) and equation (3.11) applied on the
complete history, such that,

zt = fθ(ht) =
{
uθ(fθ(ht−1), xt), t ≥ 1
uθ(iθ, xt), t = 0

(3.14)

3.2.3 Mutual Information Neural Estimator
In this work, we are interested in establishing whether a recurrent function ap-
proximator reproduces the belief filter during PRQL. Formally, this is performed
by estimating the MI between the beliefs and the hidden states of the RNN ap-
proximator Qθ. In this subsection, we recall the concept of MI and how it can
be estimated in practice.

The MI is theoretically able to measure any kind of dependency between random
variables [Kraskov et al., 2004]. The MI between two jointly continuous random
variables X and Y is defined as,

I(X;Y ) =
∫

X

∫
Y
p(x, y) log p(x, y)

pX(x) pY (y) dxdy (3.15)

where X and Y are the support of the random variables X and Y respectively,
p is the joint probability density function of X and Y , and pX and pY are the
marginal probability density functions of X and Y , respectively. It is worth
noting that the MI can be defined in terms of the Kulback-Leibler (KL) diver-
gence between the joint p and the product of the marginals q = pX ⊗ pY , over
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the joint space Z = X × Y,

I(X;Y ) = DKL(p ∥ q) =
∫

Z
p(z) log

(
p(z)
q(z)

)
dz (3.16)

In order to estimate the MI between random variables X and Y from a dataset
{(xi, yi)}Ni=1, we rely on the MINE algorithm [Belghazi et al., 2018]. This tech-
nique is a parametric approach where a neural network outputs a lower bound
on the MI, that is maximized by gradient ascent. The lower bound is derived
from the Donsker-Varhadan representation of the KL-divergence [Donsker and
Varadhan, 1975],

DKL(p ∥ q) = sup
T : Z→R

Ez∼p [T (z)]− log
(
Ez∼q

[
eT (z)

])
(3.17)

where the supremum is taken over all functions T such that the two expectations
are finite. The lower bound IΦ(X;Y ) on the true MI I(X;Y ) is obtained by
replacing T by a parameterized function Tϕ : Z → R with ϕ ∈ Φ, and taking the
supremum over the parameter space Φ of this function. If Φ corresponds to the
parameter space of a neural network, then this lower bound can be approached
by gradient ascent using empirical means as estimators of the expectations.
The resulting procedure for estimating the MI is given in Algorithm 3.3 in
Appendix 3.D.

3.3 Measuring the Correlation Between Hidden
States and Beliefs

In this work, we study if PRQL implicitly approximates the belief filter by
reaching a high MI between the RNN’s hidden states and the beliefs, that are
both generated from random histories. In this section, we first explain the
intuition behind this hypothesis, then we define the joint probability distribution
over the hidden states and beliefs that defines the MI.

As explained in Section 3.2, the belief filter is generally intractable. As a conse-
quence, PRQL algorithms use approximators Qθ that directly take the histories
as input. In the DRQN algorithm, these histories are processed recurrently ac-
cording to equation (3.11), producing a new hidden state zt after each input
xt = (at−1, ot),

zt = uθ(zt−1; (at−1, ot)). (3.18)
These hidden states should thus summarize all relevant information from past
inputs in order to predict the Q-function at all later time steps. The belief
is known to be a sufficient statistic of the history for these predictions (3.9).
Moreover, the belief bt is also updated recurrently, according to equation (3.8)
after each transition (at−1, ot),

bt = u(bt−1; at−1, ot). (3.19)

The parallel between equation (3.18) and equation (3.19), knowing the suffi-
ciency of the belief (3.9), justifies the appropriateness of the belief update u as
the update function uθ of the RNN approximator Qθ. It motivates the study of
the reconstruction of the belief filter by the RNN.
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This is done through the estimation of the MI between the hidden state zt and
the belief bt at any time step t ∈ N0. Formally, for a given history length
t ∈ N0, the policy ηθ of the learning algorithm, as defined in Subsection 3.2.2,
induces a distribution pηθ (h|t) over histories h ∈ H. This conditional probability
distribution is zero for all history of length t′ ̸= t. Given a distribution p(t) over
trajectory lengths, the joint distribution p(z, b) is given by,

p(z, b) =
∞∑
t=0

p(t)
∫

H
p(z, b|h) pηθ (h|t) dh (3.20)

where p(z, b|h) is a Dirac distribution for z = fθ(h) and b = f(h) given by
equation (3.14) and equation (3.5), respectively. In the following, we estimate
the MI between z and b under their joint distribution (3.20).

3.4 Experiments
In this section, the experimental protocol and environments are described and
the results are given. More specifically, in Subsection 3.4.1, we describe the
estimates that are reported in the figures. The results are reported for four
different POMDPs: the T-Maze and Stochastic T-Maze in Subsection 3.4.2,
and the Mountain Hike and Varying Mountain Hike in Subsection 3.4.3. After-
wards, in Subsection 3.4.4, irrelevant state variables and observations are added
to the decision processes, and the MI is measured separately between the hid-
den states and the belief of the relevant and irrelevant variables. Finally, in
Subsection 3.4.5, we discuss the results obtained in this section, and propose an
additional protocol to study their generalization.

3.4.1 Experimental Protocol
As explained in Subsection 3.2.2, the parameters θ of the approximation Qθ are
optimized with the DRQN algorithm. After e episodes of interaction with the
POMDP, the DRQN algorithm gives the policy ηθe(h) = arg maxa∈A Qθe(h, a).
In the experiments, the empirical return Ĵ(θe) of the policy ηθe is reported,
along with the estimated MI Î(θe) between the random variables z and b under
the distribution (3.20) implied by ηθe . Each estimate is reported averaged over
four training sessions. In addition, confidence intervals show the minimum and
maximum of these estimates.

The empirical return is defined as Ĵ(θe) = 1
I

∑I−1
i=0

∑H−1
t=0 γtrit, where I is the

number of Monte Carlo rollouts, H the truncation horizon of the DRQN algo-
rithm, and rit is the reward obtained at time step t of Monte Carlo rollout i. As
far as the estimation of the MI is concerned, we sample time steps with equal
probability p(t) = 1/H, t ∈ {0, . . . ,H−1}, where H is the truncation horizon of
the DRQN algorithm. The uniform distribution over time steps and the current
policy ηθe define the probability distribution (3.20) over the hidden states and
beliefs. The MI is estimated from samples of this distribution using the MINE
estimator Î(θe) (see Subappendix 3.D.1 for details). The hyperparameters of
the DRQN and MINE algorithms are given in Appendix 3.E.

For POMDPs with continuous state spaces, the computation of the belief b is
intractable. However, a set of state particles S that follows the belief distribution
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f(h) can be sampled, using particle filtering (see Appendix 3.C). This set of
particles could be used to construct an approximation of the belief in order to
estimate the MI. This density estimation procedure is nonetheless unnecessary
as the MINE network can directly process the set of particles by producing a
permutation-invariant embedding of the belief using the deep set architecture
[Zaheer et al., 2017], see Subappendix 3.D.2 for details.

3.4.2 Deterministic and Stochastic T-Mazes

Up

Down

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) . . . (L, 0)

(L, 1)

(L,−1)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) . . . (L, 0)

(L, 1)

(L,−1)

Figure 3.1: T-Maze state space.

The T-Maze is a POMDP where the agent is tasked with finding the treasure
in a T-shaped maze (see Figure 3.1). The state is given by the position of the
agent in the maze and the maze layout that indicates whether the treasure lies
up or down after the crossroads. The initial state determines the maze layout,
and it never changes afterwards. The initial observation made by the agent
indicates the layout. Navigating in the maze provides zero reward, except when
bouncing onto a wall, in which case a reward of −0.1 is received. Finding the
treasure provides a reward of 4. Beyond the crossroads, the states are always
terminal. The optimal policy thus consists of going through the maze, while
remembering the initial observation in order to take the correct direction at the
crossroads. This POMDP is parameterized by the corridor length L ∈ N and
stochasticity rate λ ∈ [0, 1] that gives the probability of moving in a random
direction at any time step. The Deterministic T-Maze (λ = 0) was originally
proposed in [Bakker, 2001]. The discount factor is γ = 0.98. This POMDP is
formally defined in Subappendix 3.A.2.

As explained in Subsection 3.2.2, the histories can be sampled with an arbitrary
policy in PRQL algorithms. In practice, the DRQN algorithm uses an ε-greedy
stochastic policy that selects its action according to the current policy with
probability 1−ε, and according to the exploration policy E(A) with probability
ε. Usually, the exploration policy is chosen to be the uniform distribution U(A)
over the action. However, for the T-Maze, the exploration policy E(A) is tailored
to this POMDP to alleviate the exploration problem, that is independent of the
study of this work. The exploration policy forces one to walk through the
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right of the corridor with E(Right) = 1/2 and E(Other) = 1/6 where Other ∈
{Up,Left,Down}.
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Figure 3.2: Deterministic T-Maze (L = 50). Evolution of the return Ĵ(θe) and
the mutual information Î(θe) after e episodes (left), and the return Ĵ(θe) with
respect to the mutual information Î(θe) (right). The maximal expected return
is given by the dotted line.

On the left in Figure 3.2, the expected return is shown along with the MI
between the hidden states and the belief as a function of the number of episodes,
for a T-Maze of length L = 50. In order to better disambiguate between high-
quality policies, the empirical return is displayed with an exponential scale in
the following graphs. Both the performance of the policy and the MI increase
during training. We also observe that, at any given episode, RNNs that have a
higher return, such as the nBRC or the BRC, correspond to cells that have a
higher MI between their hidden states and the belief. Furthermore, the LSTM
that struggles to achieve a high return has a significantly lower MI than the
other cells. Finally, we can see that the evolution of the MI and the return are
correlated, which is highlighted on the right in Figure 3.2. Indeed, the return
increases with the MI, with a linear correlation coefficient of 0.8233 and a rank
correlation coefficient of 0.6419. These correlations coefficients are also detailed
for each cell separately in Appendix 3.G. It can also be noted that no RNN
with less than 5 bits of MI reaches the maximal return.

In Figure 3.3, we can see that all previous observations also hold for a T-Maze
of length L = 100. On the left, we can see that the lower the MI, the lower
the return of the policy. For this length, in addition to the LSTM, the GRU
struggles to achieve the maximal return, which is reflected in the evolution of its
MI that increases more slowly than for the other RNNs. It is also interesting to
notice that, on average, the MGU overtake the BRC in term of return after 2000
episodes, which is also the case for the MI. Here, the linear correlation coefficient
between the MI and the return is 0.5347 and the rank correlation coefficient is
0.6666. Once again, we observe that a minimum amount of MI between the
hidden states and the belief is required for the policy to be optimal. Here, at
least 5.0 bits of MI is necessary.

In Figure 3.4, the results are shown for the Stochastic T-Maze with L = 50
and λ = 0.3. On the contrary to the Deterministic T-Maze, where the belief
is a Dirac distribution over the states, there is uncertainty on the true state
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Figure 3.3: Deterministic T-Maze (L = 100). Evolution of the return Ĵ(θe) and
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Figure 3.4: Stochastic T-Maze (L = 50, λ = 0.3). Evolution of the return Ĵ(θe)
and the mutual information Î(θe) after e episodes (left), and the return Ĵ(θe)
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in this environment. We can nevertheless observe that previous observations
hold for this environment too. The MI and the expected return are indeed both
increasing throughout the training process, and the best performing RNNs, such
as the BRC and nBRC, have a MI that increases faster and stays higher, while
the LSTM struggles to reach both a high return and a high MI. Here, the linear
correlation coefficient between the MI and the return is 0.5460 and the rank
correlation coefficient is 0.6403. It can also be noticed on the right that the best
performing policies have a MI of at least 4.5 bits in practice.

In the Deterministic T-Maze, it can be observed that the estimated lower bounds
Iϕ(z, b) on the MI that are obtained by the MINE estimator are tight. Indeed,
in this environment, the hidden state and belief are discrete random variables
and their mutual information is thus upper bounded by the entropy of the
belief. Moreover, the belief is a Dirac distribution that gives the actual state
with probability one. Under the optimal policy, each state is visited with equal
probability, such that the entropy of the belief is given by log2(102) = 6.6724
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for the Deterministic T-Maze of length L = 50, where 102 is the number of
non terminal states. As can be seen in Figure 3.2, the optimal policies reach an
estimated MI around 6.5 at maximum, which nearly equals the upper bound.
The same results is obtained for the Deterministic T-Maze of length L = 100,
where the entropy of the belief is given by log2(202) = 7.658 and the optimal
policies reach an estimated MI around 7.0 at maximum, as can be seen in
Figure 3.3. We expect this result to generalize to other environments even if
this would be difficult to verify in practice for random variables with large or
continuous spaces.

3.4.3 Mountain Hike and Varying Mountain Hike
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Figure 3.5: Mountain Hike altitude function.

The Mountain Hike environment is a POMDP modeling an agent walking through
a mountainous terrain. The agent has a position on a two-dimensional map and
can take actions to move in four directions relative to its initial orientation: For-
ward, Backward, Right and Left. First, we consider that its initial orientation
is always North. Taking an action results in a noisy translation in the corre-
sponding direction. The translation noise is Gaussian with a standard deviation
of σT = 0.05. The only observation available is a noisy measure of its relative
altitude to the mountain top, that is always negative. The observation noise
is Gaussian with a standard deviation of σO = 0.1. The reward is also given
by this relative altitude, such that the goal of this POMDP is to to obtain the
highest possible cumulative altitude. Around the mountain top, the states are
terminal. The optimal policy thus consists of going as fast as possible towards
those terminal states while staying on the crests in order to get less negative
rewards than in the valleys. This environment is represented in Figure 3.5. This
POMDP is inspired by the Mountain Hike environment described in [Igl et al.,
2018]. The discount factor is γ = 0.99. We also consider the Varying Mountain
Hike in the experiments, a more difficult version of the Mountain Hike where
the agent randomly faces one of the four cardinal directions (i.e., North, West,
South, East) depending on the initial state. The agent does not observe its
orientation. As a consequence, the agent needs to maintain a belief about its
orientation given the observations in order to act optimally. This POMDP is
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formally defined in Subappendix 3.A.3.
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Î

(θ
e)

[b
it

]

0 1 2 3 4 5

MI Î(θe) [bit]

−60

−50

−40

−30

−20

−10

R
et

u
rn
Ĵ

(θ
e)

LSTM

GRU

BRC

NBRC

MGU

Figure 3.6: Mountain Hike. Evolution of the return Ĵ(θe) and the mutual
information Î(θe) after e episodes (left), and the return Ĵ(θe) with respect to
the mutual information Î(θe) (right).

Figure 3.6 shows on the left the expected return and the MI during training
for the Mountain Hike environment. It is clear that the DRQN algorithm pro-
motes a high MI between the belief and the hidden states of the RNN, even
in continuous-state environments. It can also be seen that the evolution of the
MI and the evolution of the return are strongly linked throughout the training
process, for all RNNs. We can also see on the right in Figure 3.6 that the cor-
relation between MI and performances appears clearly for each RNN. For all
RNNs, the linear correlation coefficient is 0.5948 and the rank correlation coeffi-
cient is 0.2965. In particular, we see that the best policies, with a return around
−20, are clearly separated from the others and have a significantly higher MI
on average.
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Figure 3.7: Varying Mountain Hike. Evolution of the return Ĵ(θe) and the mu-
tual information Î(θe) after e episodes (left), and the return Ĵ(θe) with respect
to the mutual information Î(θe) (right).

In Figure 3.7, we can see the evolution and the correlation between the return
and the MI for the Varying Mountain Hike environment. The correlation is
even clearer than for the other environments. This may be due to the fact that
differences in term of performances are more pronounced than for the other
experiments. Again, the worse RNNs such as the LSTM and the BRC have a
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significantly lower MI compared to the other cells. In addition, the performances
of any RNN is strongly correlated to their ability to reproduce the belief filter,
as can be seen on the right, with a sharp increase in empirical return as the MI
increases from 2.5 to 4.5 bits. More precisely, the linear correlation coefficient
between the MI and the return is 0.5982 and the rank correlation coefficient is
0.6176. This increase occurs throughout the training process, as can be seen on
the left.

3.4.4 Belief of Variables Irrelevant for Optimal Control
Despite the belief being a sufficient statistic of the history in order to act op-
timally, it may be that only the belief of some state variables is necessary for
optimal control. In this subsection, we show that approximating the Q-function
with an RNN will only tend to reconstruct the necessary part, naturally filtering
away the belief of irrelevant state variables.

In order to study this phenomenon, we construct a new POMDP P ′ from a
POMDP P by adding new state variables, independent of the original ones,
and irrelevant for optimal control. More precisely, we add d irrelevant state
variables sIt that follows a Gaussian random walk. In addition, the agent acting
in the POMDP P ′ obtains partial observations oIt of the new state variables
through an unbiased Gaussian observation model. Formally, the new states and
observations are distributed according to,

p(sI0) = ϕ(sI0; 0, 1), (3.21)
p(sIt+1|sIt ) = ϕ(sIt+1; sIt , 1), ∀t ∈ N0, (3.22)
p(oIt |sIt ) = ϕ(oIt ; sIt , 1), ∀t ∈ N0, (3.23)

where ϕ(x;µ,Σ) is the probability density function of a multivariate random
variable of mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, evaluated at x ∈ Rd,
and 1 is the identity matrix.
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Figure 3.8: Deterministic T-Maze (L = 50) with d irrelevant state variables.
Evolution of the return Ĵ(θe) and the mutual information Î(θe) for the belief
of the irrelevant and relevant state variables after e episodes, for the GRU cell.
The maximal expected return is given by the dotted line.

Figure 3.8 shows the return and the MI measured for the GRU on the T-Maze
environment with L = 50. It can be observed, as for the classic T-Maze envi-
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ronment, that the MI between the hidden states and the belief of state variables
that are relevant to optimal control increases with the return. In addition, the
MI with the belief of irrelevant variables decreases during training. It can also
be seen that, for d = 4, the MI with the belief of irrelevant variables remains
higher than the MI with the belief of relevant variables, due to the high entropy
of this irrelevant process. Finally, it is interesting to note that the MI continues
to increase (resp. decrease) with the belief of relevant (resp. irrelevant) variables
long after the optimal policy is reached, suggesting that the hidden states of the
RNN still change substantially. Similar results are obtained for the other cells
(see Appendix 3.H).
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Figure 3.9: Mountain Hike with d irrelevant state variables. Evolution of the
return Ĵ(θe) and the mutual information Î(θe) for the belief of the irrelevant
and relevant state variables after e episodes, for the GRU cell.

Figure 3.9 shows the return and the MI measured for the GRU on the Mountain
Hike environment. The same conclusions as for the T-Maze can be drawn, with
a clear increase of the MI for the relevant variables throughout the training
process, and a clear decrease of the MI for the irrelevant variables. In addition,
it can be seen that the optimal policy is reached later when there are more irrel-
evant variables. It is also clear that adding more irrelevant variables increases
the entropy of the irrelevant process, which leads to a higher MI between the
hidden states and the irrelevant state variables. Similar results are obtained for
the other cells (see Appendix 3.H).

3.4.5 Discussion
As shown in the experiments, under the distribution induced by a recurrent pol-
icy trained using recurrent Q-learning, its hidden state provide a high amount
of information about the belief of relevant state variables, at any time step. The
hidden state of the RNN is thus a statistic of the history that encodes informa-
tion about the belief. In addition, at any time step, the network performs an
update of this statistic, based on the actions and observations that are observed.
The RNN thus implements a filter that provides a statistic encoding the belief.

However, it was only shown that the RNN produces such a statistic under the
distribution of histories induced by the learned policy. For the sake of robust-
ness of the policy to perturbations of histories, we might want this statistic to
also provide information about the belief under other distribution of histories.
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In Appendix 3.F, we propose an experimental protocol to study the general-
ization of the learned statistics. The results show that the MI between the
hidden states and the beliefs also increases throughout the training process,
under distributions induced by various ε-greedy policies, even the fully random
policy. We impute those results to the following reasons. First, the DRQN al-
gorithm approximates the Q-function, which generally requires a richer statistic
of the history than the optimal policy. Second, the DRQN algorithm makes use
of exploration, which allows the RNN to learn from histories that are diverse.
However, we still observe that the higher the noise, the lower the MI. From these
results, we conclude that the statistic that is learned by the network generalizes
reasonably well to other distributions of histories.

3.5 Conclusion
In this work, we have shown empirically for several POMDPs that RNNs ap-
proximating the Q-function with a recurrent Q-learning algorithm [Hausknecht
and Stone, 2015, Zhu et al., 2017] produces a statistic in their hidden states that
provide a high amount of information about the belief of state variables that are
relevant for optimal control. More precisely, we have shown that the MI between
the hidden states of the RNN and the belief of states variables that are relevant
for optimal control was increasing throughout the training process. In addition,
we have shown that the ability of a recurrent architecture to reproduce, through
a high MI, the belief filter conditions the performance of its policy. Finally, we
showed that the MI between the hidden states and the beliefs of state variables
that are irrelevant for optimal control decreases through the training process,
suggesting that RNNs only focus on the relevant part of the belief.

This work also opens up several paths for future work. First, this work suggests
that enforcing a high MI between the hidden states and the beliefs leads to an
increase in the performances of the algorithm and in the return of the resulting
policy. While other works have focused on an explicit representation of the belief
in the hidden states [Karkus et al., 2017, Igl et al., 2018], which required to design
specific recurrent architectures, we propose to implicitly embed the belief in the
hidden state of any recurrent architecture by maximising their MI. When the
belief or state particles are available, this can be done by adding an auxiliary loss
such that the RNN also maximizes the MI. In practice, this can be implemented
by backpropagating the MINE loss beyond the MINE architecture through the
unrolled RNN architecture, such that the hidden states are optimized to get a
higher MI with the beliefs.

Moreover, this work could be extended to algorithms that approximate other
functions of the histories than the Q-function. Notably, this study could be
extended to the hidden states of a recurrent policy learned by policy-gradient
algorithms or to the hidden states of the actor and the critic in actor-critic
methods. We may nevertheless expect to find similar results since the value
function of a policy tends towards the optimal value function when the policy
tends towards the optimal policy.
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3.A Environments
In this section, the class of environments that are considered in this work are
introduced. Then, the environments are formally defined.

3.A.1 Class of Environments
In the experiments, the class of POMDPs that are considered is restricted to
those where we can observe from ot if a state st is terminal. A state s ∈ S is
said to be terminal if, and only if,{

T (s′|s, a) = δs(s′), ∀s′ ∈ S,∀a ∈ A,
R(s, a, s′) = 0, ∀a ∈ A.

(3.24)
(3.25)

where δs denotes the Dirac distribution centred in s ∈ S. As can be noted,
the expected cumulative reward of any policy when starting in a terminal state
is zero. As a consequence, the Q-function of a history for which we observe a
terminal state is also zero for any initial action. The PRQL algorithm thus only
has to learn the Q-function of histories that have not yet reached a terminal
state. It implies that the histories that are generated in the POMDP can be
interrupted as soon as a terminal state is observed.

3.A.2 T-Maze Environments
The T-Maze environment is a POMDP (S,A,O, T,R,O, P, γ) parameterized
by the maze length L ∈ N and the stochasticity rate λ ∈ [0, 1]. The formal
definition of this environment is given below.

m = Up

m = Down

c = (0, 0) c = (1, 0) c = (2, 0) c = (3, 0) c = (4, 0) c = (5, 0) c = (6, 0) . . . c = (L, 0)

c = (L, 1)

c = (L,−1)

c = (0, 0) c = (1, 0) c = (2, 0) c = (3, 0) c = (4, 0) c = (5, 0) c = (6, 0) . . . c = (L, 0)

c = (L, 1)

c = (L,−1)

Figure 3.10: T-Maze state space. Initial states in blue, terminal states in grey,
and treasure states hatched.

State space. The discrete state space S is composed of the set of positions C
for the agent in each of the two maze layouts M. The maze layout determines
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the position of the treasure. Formally, we have,


S =M×C,
M = {Up,Down},
C = {(0, 0), . . . , (L, 0)} ∪ {(L, 1), (L,−1)}.

(3.26)
(3.27)
(3.28)

A state st ∈ S is thus defined by st = (mt, ct) with mt ∈ M and ct ∈ C. Let
us also define F = {st = (mt, ct) ∈ S|ct ∈ {(L, 1), (L,−1)}} the set of terminal
states, four in number.

Action space. The discrete action space A is composed of the four possible
moves that the agent can take,

A = {(1, 0), (0, 1), (−1, 0), (0,−1)}, (3.29)

that correspond to Right, Up, Left and Down, respectively.

Observation space. The discrete observation space O is composed of the
four partial observations of the state that the agent can perceive,

O = {Up,Down,Corridor, Junction}. (3.30)

Initial state distribution. The two possible initial states are sUp
0 = (Up, (0, 0))

and sDown
0 = (Down, (0, 0)), depending on the maze in which the agent lies. The

initial state distribution P : S → [0, 1] is thus given by,

P (s0) =


0.5 if s0 = sUp

0 ,

0.5 if s0 = sDown
0 ,

0 otherwise.
(3.31)

Transition distribution. The transition distribution function T : S × A ×
S → [0, 1] is given by,

T (st+1|st, at) =
{
δst(st+1) if st ∈ F ,
(1− λ)δf(st,at)(st+1) + λ

4
(∑

a∈A δf(st,a)(st+1)
)

otherwise,
(3.32)

where st ∈ S, at ∈ A and st+1 ∈ S, and f is given by,

f(st, at) =
{
st+1 = (mt, ct + at) if st ̸∈ F , ct + at ∈ C,
st+1 = (mt, ct) otherwise,

(3.33)

where st = (mt, ct) ∈ S and at ∈ A.
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Reward function. The reward function R : S ×A× S → R is given by,

R(st, at, st+1) =



0 if st ∈ F ,
0 if st ̸∈ F , st+1 ̸∈ F , st ̸= st+1,

−0.1 if st ̸∈ F , st+1 ̸∈ F , st = st+1,

4 if st ̸∈ F , st+1 ∈ F , ct+1 = (L, 1),mt+1 = Up,
4 if st ̸∈ F , st+1 ∈ F , ct+1 = (L,−1),mt+1 = Down,
−0.1 if st ̸∈ F , st+1 ∈ F , ct+1 = (L,−1),mt+1 = Up,
−0.1 if st ̸∈ F , st+1 ∈ F , ct+1 = (L,+1),mt+1 = Down,

(3.34)
where st = (mt, ct) ∈ S, at ∈ A and st+1 = (mt+1, ct+1) ∈ S.

Observation distribution. In the T-Maze, the observations are determinis-
tic. The observation distribution O : S ×O → [0, 1] is given by,

O(ot|st) =



1 if ot = Up, ct = (0, 0),mt = Up,
1 if ot = Down, ct = (0, 0),mt = Down,
1 if ot = Corridor, ct ∈ {(1, 0), . . . , (L− 1, 0)},
1 if ot = Junction, ct ∈ {(L, 0), (L, 1), (L,−1)},
0 otherwise,

(3.35)

where st = (mt, ct) ∈ S and ot ∈ O.

Exploration policy. The exploration policy E : A → [0, 1] is a stochastic
policy that is given by E(Right) = 1/2 and E(Other) = 1/6 where Other ∈
{Up,Left,Down}. It enforces the exploration of the right hand side of the maze
layouts. This exploration policy, tailored to the T-Maze environment, allows
one to speed up the training procedure, without interfering with the study of
this work.

Truncation horizon. The truncation horizon H of the DRQN algorithm is
chosen such that the expected displacement of an agent moving according to
the exploration policy in a T-Maze with an infinite corridor on both sides is
greater than L. Let r = E(Right) and l = E(Left). In this infinite T-Maze, the
probability of increasing its position is p = (1 − λ)r + λ 1

4 and the probability
of decreasing its position is q = (1 − λ)l + λ 1

4 . As a consequence, starting at
0, the expected displacement after one time step is x̄1 = (1 − λ)(r − l). By
independence, x̄H = Hx̄1 such that, for x̄H ≥ L, the time horizon is given by,

H =
⌈

L

(1− λ)(r − l)

⌉
. (3.36)

3.A.3 Mountain Hike Environments
The Varying Mountain Hike environment is a POMDP (S,A,O, T,R,O, P, γ)
parameterized by the sensor variance σO ∈ R and the transition variance σT ∈
R. The formal definition of this environment is given below.
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Figure 3.11: Mountain hike altitude function h in X .

State space. The state space S is the set of positions X and orientations C
that the agent can take. Formally, we have,

S = X × C,
X = [−1, 1]2,
C = {0◦, 90◦, 180◦, 270◦}.

(3.37)
(3.38)
(3.39)

The orientation c = 0◦, 90◦, 180◦ and 270◦ corresponds to facing East, North,
West and South, respectively. The set of terminal states is,

F = {s = (x, c) ∈ S|∥x− (0.8, 0.8)∥< 0.1}. (3.40)

Action space. The discrete action space A is composed of the four possible
directions in which the agent can move,

A = {(0, 0.1), (−0.1, 0), (0,−0.1), (0.1, 0)}. (3.41)

that correspond to Forward, Left, Backward and Right, respectively.

Observation space. The continuous observation space is O = R.

Initial state distribution. The initial position is always is always x =
(−0.8,−0.8) and the initial orientation is sampled uniformly in C, such that
the initial state distribution P : S → [0, 1] is given by,

P (s0) =
∑
c∈C

1
|C|
δ((−0.8,−0.8),c)(s0). (3.42)

Transition distribution. The transition distribution T : S × A× S → [0, 1]
is given by the conditional probability distribution of the random variable
(st+1|st, at) that is defined as,

st+1 =
{
st if st ∈ F ,
clampS (st +R(c) at +N (0, σT )) otherwise,

(3.43)
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where clampS(s) is the function that maps s to the point in S that minimizes
its distance with s, and,

R(c) =
(

cos c − sin c
sin c cos c

)
, (3.44)

is the two-dimensional rotation matrix for an angle c.

Reward function. The reward function R : S ×A× S → R is given by,

R(st, at, st+1) =
{

0 if st ∈ F ,
h(st+1) otherwise,

(3.45)

where st ∈ S, at ∈ A, st+1 ∈ S, and h : S → R− is the function that gives the
relative altitude to the mountain top in any state. Note that the altitude is
independent of the agent orientation.

Observation distribution. The observation distribution O : S × O → [0, 1]
is given by,

O(ot|st) = ϕ(ot;h(st), σ2
O), (3.46)

where st ∈ S and ot ∈ O, and where ϕ(·;µ, σ2) denotes the probability density
function of a univariate Gaussian random variable with mean µ and standard
deviation σ.

Mountain Hike. The Mountain Hike environment is a POMDP (S,A,O, T,
R,O, P, γ), parameterized by the sensor variance σO ∈ R and the transition
variance σT ∈ R. The formal definition of this environment is identical to that
of the Varying Mountain Hike, except that the initial orientation of the agent is
always North, which makes it an easier problem. The initial state distribution
is thus given by,

P (s0) = δ((−0.8,−0.8),90◦)(s0). (3.47)

Exploration policy. The uniform distribution U(A) over the action space A
is chosen as the exploration policy E(A).

Truncation horizon. The truncation horizon of the DRQN algorithm is cho-
sen equal to H = 80 for the Mountain Hike environment and H = 160 for the
Varying Mountain Hike environment.

3.B Deep Recurrent Q-learning
The DRQN algorithm is an instance of the PRQL algorithm that introduces
several improvements over vanilla PRQL. First, it is adapted to the online set-
ting by interleaving the generation of episodes and the update of the estimation
Qθ. In addition, in the DRQN algorithm, the episodes are generated with the
ε-greedy policy σεθ : H → ∆(A), derived from the current estimation Qθ. This
stochastic policy selects actions according to arg maxa∈A Qθ(·, a) with probabil-
ity 1− ε, and according to an exploration policy E(A) ∈ ∆(A) with probability

45



ε. In addition, a replay buffer of histories is used and the gradient is evaluated
on a batch of histories sampled from this buffer. Furthermore, the parame-
ters θ are updated with the Adam algorithm [Kingma and Ba, 2014]. Finally,
the target rt + γmaxa∈A Qθ′(ht+1, a) is computed using a past version Qθ′ of
the estimation Qθ with parameters θ′ that are updated to θ less frequently,
which eases the convergence towards the target, and ultimately towards the
Q-function. The DRQN training procedure is detailed in Algorithm 3.1.

Algorithm 3.1: Deep recurrent Q-learning.
parameters: N ∈ N the buffer capacity,

C ∈ N the target update period (in episodes),
E ∈ N the number of episodes,
H ∈ N the truncation horizon,
I ∈ N the number of gradient steps after each episode,
ε ∈ R the exploration rate,
α ∈ R the learning rate,
B ∈ N the batch size.

inputs: E(A) ∈ ∆(A) the exploration policy.
1 Initialize empty replay buffer B.
2 Initialize parameters θ randomly.
3 for e = 0, . . . , E − 1 do
4 if e mod C = 0 then
5 Update target network with θ′ = θ.
6 Draw an initial state s0 according to P and observe o0.
7 Let h0 = (o0).
8 for t = 0, . . . , H − 1 do
9 Select at ∼ E(A) with probability ε, otherwise select

at = arg maxa∈A {Qθ(ht, a)} .
10 Take action at and observe rt and ot+1.
11 Let ht+1 = (o0, a0, o1, . . . , ot+1).
12 if |B| < N then add (ht, at, rt, ot+1, ht+1) in replay buffer B
13 else replace oldest transition in replay buffer B by (ht, at, rt, ot+1, ht+1).
14 if ot+1 is terminal then
15 break
16 for i = 0, . . . , I − 1 do
17 Sample B transitions (hbt , abt , rbt , obt+1, h

b
t+1) uniformly from the replay

buffer B.
18 Compute targets

yb =
{
rbt + γmaxa∈A

{
Qθ′ (hbt+1, a)

}
if obt+1 is not terminal,

rbt otherwise.
19 Compute loss L =

∑B−1
b=0

(
yb −Qθ(hbt , abt)

)2.
20 Compute direction g using Adam optimizer.
21 Perform gradient step θ = θ + αg.

3.C Particle Filtering
As explained in Section 3.2, the belief filter becomes intractable for certain
POMDPs. In particular, POMDPs with continuous state space require one to
perform an integration over the state space. Furthermore, in these environ-
ments, the belief should be represented by a function over a continuous domain
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instead of a finite-dimensional vector. Such arbitrary beliefs cannot be repre-
sented in a digital computer.

To overcome these two difficulties, the particle filtering algorithm proposes to
represent an approximation of the belief by a finite set of samples that follows
the belief distribution. In other words, we represent bt ∈ ∆(S) by the set of M
samples,

St = {smt }
M−1
m=0 , (3.48)

where smt ∈ S, m = 0, . . . ,M − 1 are independent realizations of the belief
distribution bt.

Particle filtering is a procedure that allows one to sample a set of states St that
follow the belief distribution bt. The set is thus updated each time that a new
action at−1 is taken and a new observation ot is observed. Although this proce-
dure does not require to evaluate expression (3.8), it is necessary to be able to
sample from the initial state distribution P and from the transition distribution
T , and to be able to evaluate the observation distribution O. This process, il-
lustrated in Algorithm 3.2, guarantees that the successive sets S0, . . . , SH have
(weighted) samples following the probability distribution b0, . . . , bH defined by
equation (3.8).

Algorithm 3.2: Particle filtering.
parameters: M ∈ N the number of particles
inputs: H ∈ N the number of transitions,

hH = (o0, a0, . . . , oH−1, aH−1, oH) ∈ HH a history.
1 Sample s0

0, . . . , s
M−1
0 ∼ P .

2 Let h = 0.
3 for m = 0, . . . ,M − 1 do
4 Let wm0 = O(o0|sm0 ).
5 Let h = h+ wm0 .
6 for m = 0, . . . ,M − 1 do
7 Let wm0 = wm0 /h.
8 Let S0 = {(sm0 , wm0 )}M−1

m=0 .
9 for t = 1, . . . , H do

10 Let h = 0.
11 for m = 0, . . . ,M − 1 do
12 Sample l ∈ {0, . . . ,M − 1} according to p(l) = wlt−1.
13 Sample smt ∼ T (·|slt−1, at−1).
14 Let wmt = O(ot|smt ).
15 Let h = h+ wmt .
16 for m = 0, . . . ,M − 1 do
17 Let wmt = wmt /h.
18 Let St = {(smt , wmt )}M−1

m=0 .
19 return successive particles S0, . . . , SH .

Algorithm 3.2 starts from N samples from the initial distribution P . These
samples are initially weighted by their likelihood O(o0|sn0 ). Then, we have three
steps that are repeated at each time step. First, the samples are resampled
according to their weights. Then, given the action, the samples are updated
by sampling from T (·|snt , at). Finally, these new samples are weighted by their
likelihoodO(ot+1|snt+1) given the new observation ot+1, as for the initial samples.
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As stated above, this method ensures that the (weighted) samples follow the
distribution of the successive beliefs.

3.D Mutual Information Neural Estimator
In Subappendix 3.D.1, the MI estimator that is used in the experiments is for-
mally defined, and the algorithm that is used to derive this estimator is detailed.
In Subappendix 3.D.2, we formalize the extension of the MINE algorithm with
the deep set architecture.

3.D.1 Mutual Information Estimation
As explained in Subsection 3.2.3, the ideal MI neural estimator, for a parameter
space Φ, is given by,

IΦ(X;Y ) = sup
ϕ∈Φ

iϕ(X;Y ), (3.49)

iϕ(X;Y ) = Ez∼p [Tϕ(z)]− log
(
Ez∼q

[
eTϕ(z)

])
. (3.50)

However, both the estimation of the expectations and the computation of the
supremum are intractable. In practice, the expectations are thus estimated with
the empirical means over the set of samples {(xn, yn)}N−1

n=0 drawn from the joint
distribution p and the set of samples {(xn, ỹn)}N−1

n=0 obtained by permuting the
samples from Y , such that the pairs follow the product of marginal distributions
q = pX⊗pY . In order to estimate the supremum over the parameter space Φ, the
MINE algorithm proposes to maximize iϕ(X;Y ) by stochastic gradient ascent
over batches from the two sets of samples, as detailed in Algorithm 3.3. The final
parameters ϕ∗ obtained by this maximization procedure define the estimator,

Î = 1
N

N−1∑
n=0

Tϕ∗(xn, yn)− log
(

1
N

N−1∑
n=0

eTϕ∗ (xn,ỹn)

)
, (3.51)

that is used in the experiments. This algorithm was initially proposed in [Bel-
ghazi et al., 2018].

3.D.2 Deep Sets
As explained in Subsection 3.4.1, the belief computation is intractable for envi-
ronments with continuous state spaces. In the experiments, the belief of such
environments is approximated by a set of particles S = {sm}Mm=1 that are guar-
anteed to follow the belief distribution, such that sm ∼ b, ∀sm ∈ S (see Ap-
pendix 3.C). Those particles could be used for constructing an approximation of
the belief distribution, a problem known as density estimation. We nonetheless
do not need an explicit estimate of this distribution. Instead, the particles can
be directly consumed by the MINE network. In this case, the two sets of input
samples of the MINE algorithm take the form,

{(xn, yn)}N−1
n=0 = {(zn, Sn)}N−1

n=0 (3.52)

=
{

(zn, {sn,m}Mm=1)
}N−1

n=0
. (3.53)
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Algorithm 3.3: Mutual information neural estimator optimization.
parameters: E ∈ N the number of episodes,

B ∈ N the batch size,
α ∈ R the learning rate.

inputs: N ∈ N the number of samples,
D = {(xn, yn)}N−1

n=0 the set of samples from the joint distribution.
1 Initialize parameters ϕ randomly.
2 for e = 0, . . . , E − 1 do
3 Let p a random permutation of {0, . . . , N − 1}.
4 Let p̃1 a random permutation of {0, . . . , N − 1}.
5 Let p̃2 a random permutation of {0, . . . , N − 1}.
6 while i = 0, . . . ,

⌊
N
B

⌋
do

7 Let S =
{

(xp(k), yp(k))
}(i+1)B−1
k=iB

a batch of samples from the joint
distribution.

8 Let S̃ =
{

(xp̃1(k), yp̃2(k))
}(i+1)B−1
k=iB

a batch of samples from the product of
marginal distributions.

9 Evaluate the lower bound,

L(ϕ) = 1
B

∑
(x,y)∈S

Tϕ(x, y)− log

 1
B

∑
(x̃,ỹ)∈S̃

eTϕ(x̃,ỹ)

.
10 Evaluate bias corrected gradients G(ϕ) = ∇̃ϕL(ϕ).
11 Update network parameters with ϕ = ϕ+ αG(ϕ).

In order to process particles from sets Sn as input of the neural network Tϕ,
we choose an architecture that guarantees its invariance to permutations of the
particles. The deep set architecture [Zaheer et al., 2017], that is written as
ρϕ
(∑

s∈S ψϕ(s)
)
, provides such guarantees. Moreover, this architecture is theo-

retically able to represent any function on sets, under the assumption of having
representative enough mappings ρϕ and ψϕ and the additional assumption of
using finite sets S when particles come from an uncountable set as in this work.
The function Tϕ is thus given by,

Tϕ(z, S) = µϕ

(
z, ρϕ

(∑
s∈S

ψϕ(s)
))

, (3.54)

when the belief is approximated by a set of particles.

3.E Hyperparameters
The hyperparameters of the DRQN algorithm are given in Table 3.1 and the
hyperparameters of the MINE algorithm are given in Table 3.2. The value
of those hyperparameters have been chosen a priori, except for the number
of episodes of the DRQN algorithm and the number of epochs of the MINE
algorithm. These were chosen so as to ensure convergence of the policy return
and the MINE lower bound, respectively. The parameters of the Mountain Hike
and Varying Mountain Hike environments are given in Table 3.3.
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Name Value Description

S 2 Number of RNN layers
D 1 Number of linear layers (no activation function)
H 32 Hidden state size
N 8192 Replay buffer capacity
C 10 Target update period in term of episodes
I 10 Number of gradient steps after each episode
ε 0.2 Exploration rate
B 32 Batch size
α 1× 10−3 Adam learning rate

Table 3.1: Deep recurrent Q-network architecture and training hyperparame-
ters.

Name Value Description

L 2 Number of hidden layers
H 256 Hidden layer size
N 10 000 Training set size
E 200 Number of epochs
B 1024 Batch size
α 1× 10−3 Adam learning rate
R 16 Representation size for the deep set architecture
α 0.01 EMA rate for the bias corrected gradient

Table 3.2: Mutual information neural estimator architecture and training hy-
perparameters.

Name Value Description

σO 0.1 Standard deviation of the observation noise
σT 0.05 Standard deviation of the transition noise

Table 3.3: Mountain Hike and Varying Mountain Hike parameters.

3.F Generalization to Other Distributions of His-
tories

In this section, we study if the hidden state still provides information about the
belief under other distributions of histories than the one induced by the learned
policy (3.20). This generalization to other distributions is desirable for building
policies that are more robust to perturbations of the histories.

We propose to study the evolution of the MI between the hidden state and the
belief when adding noise to the policy used to sample the histories. Formally,
instead of sampling the hidden states and beliefs according to (3.20), we propose
to sample those according to,

pε(z, b) =
∞∑
t=0

p(t)
∫

H
p(z, b|h) pσε

θ
(h|t) dh, (3.55)

where p(t) is once again chosen to the uniform distribution over the time steps
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p(t) = 1/H, t ∈ {0, . . . ,H − 1}, σεθ is the ε-greedy policy as defined in Ap-
pendix 3.B, and pσε

θ
(h|t) gives the conditional probability distribution induced

by the policy σεθ over histories h ∈ H given that their length is t ∈ N0. Note
that the training procedure remains unchanged.
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Figure 3.12: Evolution of the return Ĵ(θe) and the mutual information Î(θe)
after e episodes, under distributions of histories induced by several ε-greedy
policies, for the GRU cell. The maximal expected return is given by the dotted
line.
The results of this additional study can be found in Figure 3.12, for ε ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. It can be noted that p0.0 is the distribution of hidden
states and beliefs induced by the learned policy (3.20), and p1.0 is the distribu-
tion of hidden states and beliefs induced by a fully random policy. For reasons
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of computational capacity, this analysis was carried out for the GRU cell only.
This cell was chosen for being a standard cell that performs well in all environ-
ments in terms of return, unlike the LSTM. As can be seen in Figure 3.12, the
MI between the hidden states and the beliefs increases throughout the training
process, under all considered policies, even the fully random policy. We conclude
that the correlation between the hidden states and beliefs generalizes reason-
ably well to other distributions. In other words, the hidden states still capture
information about the beliefs even under other distributions of histories.

3.G Correlation Between Return and Mutual
Information

The correlation between the empirical return and the estimated MI are com-
puted with the Pearson’s linear correlation coefficient and the Spearman’s rank
correlation coefficient. These coefficients are reported for all environments and
all cells in Table 3.4 and Table 3.5. The columns named all give the correlation
coefficients measured over all samples of Î and Ĵ from all cells.

Environment All LSTM GRU BRC nBRC MGU

T-Maze (L = 50, λ = 0.0) 0.8233 0.7329 0.8500 0.8747 0.9314 0.9178
T-Maze (L = 100, λ = 0.0) 0.5347 0.3624 0.6162 0.6855 0.6504 0.6299
T-Maze (L = 50, λ = 0.3) 0.5460 0.2882 0.8008 0.7229 0.7424 0.6159

Mountain Hike 0.5948 0.7352 0.6177 0.4338 0.5857 0.5485
Varying Mountain Hike 0.5982 0.6712 0.4530 0.4446 0.3669 0.3006

Table 3.4: Pearson’s linear correlation coefficients.

Environment All LSTM GRU BRC nBRC MGU

T-Maze (L = 50, λ = 0.0) 0.6419 0.7815 0.5963 0.5403 0.4009 0.5002
T-Maze (L = 100, λ = 0.0) 0.6666 0.5969 0.7108 0.5058 0.4605 0.5534
T-Maze (L = 50, λ = 0.3) 0.6403 0.3730 0.6600 0.5090 0.4706 0.6497

Mountain Hike 0.2965 0.5933 0.1443 0.2762 0.4337 0.2630
Varying Mountain Hike 0.6176 0.6869 0.3677 0.4355 0.2955 0.2266

Table 3.5: Spearman’s rank correlation coefficients.

3.H Belief of Variables Irrelevant for Optimal
Control

In this section, we report the evolution of the return and the MI between the
hidden states and the belief of both the relevant and irrelevant variables for the
LSTM, BRC, nBRC and MGU architectures. It completes the results obtained
for the GRU cell in Subsection 3.4.4.

Figure 3.13, Figure 3.14, Figure 3.15, and Figure 3.16 show the evolution of the
return and the MI for a T-Maze of length L = 50 with d ∈ {1, 4} irrelevant state
variables added to the process for these cells. These results are reported for the
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Figure 3.13: Deterministic T-Maze (L = 50) with d irrelevant state variables.
Evolution of the return Ĵ(θe) and the mutual information Î(θe) for the belief of
the irrelevant and relevant state variables after e episodes, for the LSTM cell.
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Figure 3.14: Deterministic T-Maze (L = 50) with d irrelevant state variables.
Evolution of the return Ĵ(θe) and the mutual information Î(θe) for the belief of
the irrelevant and relevant state variables after e episodes, for the BRC cell.

GRU cell in Figure 3.8 (see Subsection 3.4.2). As can be seen from these figures,
the return generally increases with the MI between the hidden states and the
belief of state variables that are relevant for optimal control. Moreover, as for
the GRU cell, the MI between the hidden states and the belief of irrelevant state
variables generally decreases throughout the learning process.

Additionally, it can be observed that the LSTM and BRC cells fail in achieving a
near-optimal return when d = 4. As far as the LSTM is concerned, it is reflected
in its MI that reaches a lower value than the other RNNs. Likewise, the BRC
cell does not reach a high return, and the MI does not increase at all. For this
cell, it can be seen that the MI with the belief of irrelevant state variables is
not decreasing, even with d = 1. The inability of the BRC cell to increase its
MI with the belief of relevant variables and to decrease its MI with the belief of
irrelevant variables might explain its bad performance in this environment.

As far as the Mountain Hike is concerned, Figure 3.17, Figure 3.18, Figure 3.19
and Figure 3.20 show that all previous observations also hold for this environ-
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ment with the LSTM, BRC, nBRC and MGU cells. These results are reported
for the GRU cell in Figure 3.9 (see Subsection 3.4.2). As can be seen from these
figures, the return clearly increases with the MI between the hidden states and
the belief of relevant state variables, for all cells. In contrast, the MI with the
belief of irrelevant state variables decreases throughout the learning process.
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Figure 3.15: Deterministic T-Maze (L = 50) with d irrelevant state variables.
Evolution of the return Ĵ(θe) and the mutual information Î(θe) for the belief of
the irrelevant and relevant state variables after e episodes, for the nBRC cell.
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Figure 3.16: Deterministic T-Maze (L = 50) with d irrelevant state variables.
Evolution of the return Ĵ(θe) and the mutual information Î(θe) for the belief of
the irrelevant and relevant state variables after e episodes, for the MGU cell.
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Figure 3.17: Mountain Hike with with d irrelevant state variables. Evolution of
the return Ĵ(θe) and the mutual information Î(θe) for the belief of the irrelevant
and relevant state variables after e episodes, for the LSTM cell.
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Figure 3.18: Mountain Hike with with d irrelevant state variables. Evolution of
the return Ĵ(θe) and the mutual information Î(θe) for the belief of the irrelevant
and relevant state variables after e episodes, for the BRC cell.
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Figure 3.19: Mountain Hike with with d irrelevant state variables. Evolution of
the return Ĵ(θe) and the mutual information Î(θe) for the belief of the irrelevant
and relevant state variables after e episodes, for the nBRC cell.
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Figure 3.20: Mountain Hike with with d irrelevant state variables. Evolution of
the return Ĵ(θe) and the mutual information Î(θe) for the belief of the irrelevant
and relevant state variables after e episodes, for the MGU cell.
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Chapter 4

Remembering for Learning

Warming Up Recurrent Neural Networks to Maximize Reachable Multistability
Greatly Improves Learning. Gaspard Lambrechts, Florent De Geeter, Nicolas
Vecoven, Guillaume Drion and Damien Ernst.

From the paper published in the Neural Network journal.

Abstract
Training recurrent neural networks is known to be difficult when time depen-
dencies become long. In this work, we show that most standard cells only have
one stable equilibrium at initialization, and that learning on tasks with long
time dependencies generally occurs once the number of network stable equilib-
ria increases, a property known as multistability. Multistability is often not
easily attained by initially monostable networks, making learning of long time
dependencies between inputs and outputs difficult. This insight leads to the
design of a novel way to initialize any recurrent cell connectivity through a pro-
cedure called “warmup” to improve its capability to learn arbitrarily long time
dependencies. This initialization procedure is designed to maximize network
reachable multistability, which we define as the number of equilibria within the
network that can be reached through relevant input trajectories, in few gradient
steps. We show on several information restitution, sequence classification, and
reinforcement learning benchmarks that warming up greatly improves learning
speed and performance, for multiple recurrent cells, but sometimes impedes
precision. We therefore introduce a double-layer architecture initialized with
a partial warmup that is shown to greatly improve learning of long time de-
pendencies while maintaining high levels of precision. This approach provides
a general framework for improving learning abilities of any recurrent cell when
long time dependencies are present. We also show empirically that other initial-
ization and pretraining procedures from the literature implicitly foster reachable
multistability of recurrent cells.
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4.1 Introduction

Despite their performances and widespread use, recurrent neural networks (RNN)
are known to be blackbox models with extremely complex internal dynamics.
A growing body of work has focused on understanding the internal dynamics
of trained RNNs [Sussillo and Barak, 2013, Ceni et al., 2020, Maheswaranathan
et al., 2019], providing invaluable intuition into the RNN prediction process.
This viewpoint has already been used to understand the difficulties for RNNs
to capture longer time dependencies [Bengio et al., 1993, Doya, 1993]. In par-
ticular, recent work has highlighted the important role played by fixed points
in RNN state spaces, that are defined as hidden states that updates to themself
for a given input [Sussillo and Barak, 2013, Katz and Reggia, 2017]. This line of
work has argued that locating such fixed points efficiently could provide insights
into RNN dynamics and input-output properties. Here, we build upon this line
of work by studying the impact of the number of reachable fixed points in an
RNN on the ability to learn long time dependencies. Moreover, we highlight how
maximizing the number of reachable fixed points at initialization can improve
RNN learning, in particular in the presence of arbitrarily long dependencies.

More precisely, we introduce a fast-to-compute measure of the multistability of
a network called variability amongst attractors (VAA). This measure gives the
number of reachable attractors for a set of initial states. We show that loss de-
crease during learning in tasks with long time dependencies is highly correlated
with an increase in VAA, highlighting both the relevance of the measure and
the importance of multistability for efficient learning. Second, we use stochastic
gradient ascent on a differentiable proxy of the VAA, called VAA*, as a way of
maximizing the number of reachable attractors within the network at initial-
ization. We show that this technique strongly improves performance on long
time dependencies benchmarks, at the cost of precision, the latter relying on the
richness of network transient dynamics. Third, we propose a parallel recurrent
network structure with a partial warmup that enables one to combine long-term
memory through multistability with precision through rich transient dynamics.
Finally, we show empirically that other methods from the literature such as the
chrono initialization and the bistable recurrent cells implicitly achieve the same
goal of maximising the number of reachable attractors.

In Section 4.3, RNNs are introduced as dynamical systems and the concept of
multistability is introduced for those systems. In Section 4.4, the supervised
learning and reinforcement learning benchmarks are introduced. In Section 4.5,
the VAA is introduced along with the estimation procedure of the multistability
of an RNN for a set of initial states. The correlation between multistability and
learning is shown empirically on the benchmarks with long time dependencies.
In Section 4.6, the VAA* is introduced along with the warmup procedure that
fosters multistability at initialization. The benefits of warmup are shown empiri-
cally on benchmarks with long time dependencies. In addition, the double-layer
architecture is introduced and shown to achieve a better performance on all
benchmarks. Finally, Section 4.7 concludes and proposes several future works.
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4.2 Related Works
Training RNNs is known to be difficult when time dependencies become too long
[Pascanu et al., 2013]. Indeed, the most used algorithm to train RNNs is the
backpropagation through time (BPTT) algorithm [Werbos, 1990], which unrolls
the RNN to see it as a feedforward neural network with shared weights before
applying the backpropagation. However, the longer the sequence, the deeper the
corresponding feedforward neural network is. Backpropagating through such
deep networks often leads to vanishing or exploding gradients, and different
methods have been proposed to tackle this issue. These methods usually act on
one of three different levels: the training, the initialization/pretraining and the
network architecture.

Training These methods modify the training of RNNs. For instance, clipping
the gradients [Pascanu et al., 2013] prevents the gradients from exploding. An-
other example is the truncated variant of BPTT [Williams and Zipser, 2013],
which does not propagate gradients through the whole sequences, but rather
through parts of these sequences, leading to gradients that vanish or explode
less often. It is likely that truncating the BPTT prevents from learning long
time dependencies efficiently. Finally, Trinh et al. [2018] propose adding auxil-
iary losses at some time steps, to avoid having only one loss computed at the
end of the sequences. These losses are computed in an unsupervised fashion:
either a decoder has to reconstruct a part of the sequence (reconstruction loss),
or a network has to predict the next input (prediction loss). This method can
also be used as a pretraining to first train the RNN to encode correctly the
sequences. This work achieved good results on very long sequences.

Initialization/pretraining The goal of these methods is to bring the net-
work weights to a better place in the parameters space where the learning will be
better and faster. Notably, the chrono-initialization [Tallec and Ollivier, 2018,
Westhuizen and Lasenby, 2018] changes the initial biases parameters to improve
the learning of long time dependencies. Some pretraining methods rely on au-
toencoders: Pasa and Sperduti [2014] use the parameters of a linear encoder
as initial weights for the RNN, Sagheer and Kotb [2019] train a LSTM-based
stacked autoencoder layer-wise before adding a output layer and fine-tuning on
the dataset and Ong et al. [2014] introduce a dynamic pretraining of AE specif-
ically made for time-series. Pasa et al. [2015] pretrain the RNN on a smoothed
version of the dataset produced by a first-order hidden Markov model and then
fine-tunes on the original dataset. Tang et al. [2016] first train a DNN before
using it as a teacher to train the RNN. Ienco et al. [2019] focus on multi-class
sequences classification. A trained RNN is used to rank the classes by decreasing
order of complexity, then a new RNN is pretrained to predict the most complex
class, then the second one, etc. All these pretraining methods have improved
the performance of RNNs either on classification or on time-series prediction
tasks. While making the final training of the network easier and better, none
of them seems to directly promote the learning of long time dependencies.

Network architectures The most notable improvement made in the RNN
architectures is the introduction of the gates, which are used to control the flow
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of information in the network and to help the gradients to propagate through
the time. These gates have led to the development of the long-short term mem-
ory (LSTM) [Hochreiter and Schmidhuber, 1997] and the gated recurrent unit
(GRU) [Cho et al., 2014a], which are now the most used RNNs in practice. In
the experiments, we also consider the minimal gated unit (MGU) [Zhou et al.,
2016], a minimal design among gated recurrent units that only has one gate.
Other approaches include the introduction of different time-scales inside the
RNN. The segmented-memory RNN [Chen and Chaudhari, 2009] splits the se-
quences into segments and uses a two-layers RNN, where the first layer is reset
at the end of each segment, while the second one is updated when a new seg-
ment begins. The hierarchical RNN [Hihi and Bengio, 1995], the hierarchical
multiscale RNN [Chung et al., 2017] and the clockwork RNN (CW-RNN) [Kout-
nik et al., 2014] stack recurrent layers that are updated at different frequencies.
The structurally constrained recurrent network (SCRN) [Mikolov et al., 2015]
imposes some constraints on a subset of the recurrent weights, forcing some
neurons hidden states to be slowly updated. The nonlinear autoregressive with
exogenous inputs (NARX) RNN [Lin et al., 1996, Jr and Barreto, 2008] uses the
n previous hidden states as inputs, making it a nth-order RNN. Likewise, novel
recurrent cell dynamics, such as the bistable recurrent cell (BRC) and the neu-
romodulated BRC (NBRC) [Vecoven et al., 2021], have been introduced to help
tackle long time dependencies benchmarks. NBRCs were specifically designed
to maximize reachability of cellular bistability, providing a way to create never-
fading memory at the cellular level. These results highlighted how dynamics
of untrained RNNs, i.e., at initialization, can strongly impact learning perfor-
mance of RNNs. In this work, we extend this approach at the network level
by maximizing multistability of any recurrent cell type prior to learning. To
this end, we propose a novel RNN pretraining procedure called “warmup” that
is designed to maximize the number of RNN attractors that can be reached
from hidden states resulting from input sequences. Compared to pretraining
methods, this method is very efficient since it only requires a few gradient steps
before reaching a multistable regime for the RNN.

4.3 Background
In this section, RNNs are introduced as dynamical systems. The fixed points
of these systems are defined, and the notions of attractors, reachable attractors
and multistability are introduced.

4.3.1 Recurrent Neural Networks
RNNs are parametric function approximators that are often used to tackle prob-
lems with temporal structure. Indeed, RNNs process the inputs sequentially,
exhibiting memory through hidden states that are outputted after each time
step, and processed at the next time step along with the following input. These
connections allow RNNs to memorize relevant information that should be cap-
tured over multiple time steps. More formally, an RNN architecture is defined
by its update function f , its output function g and its initialization function h
that are parameterized by a parameter vector θ ∈ Rd. Let u1:T = [u1, . . . , uT ],
with T ∈ N and ut ∈ Rn, an input sequence. RNNs maintain an internal
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memory state xt through an update rule xt = f(xt−1, ut; θ) and output a value
ot = g(xt; θ), where the initial hidden state x0 = h(θ) is often chosen to be zero.
We note that often, the output of the RNN is simply its hidden state xt, i.e. g
is the identity function. RNNs can be composed of only one recurrent layer, or
they can be built with L layers that are linked sequentially through uit = oi−1

t

with u1
t = ut and ot = oLt , where oit denotes the output of layer i and uit its

input. In this case, each layer i has its own update function f i, output function
gi and initialization function hi. Backpropagation through time is used to train
these networks where gradients are computed through the complete sequence
via the hidden states [Werbos, 1990]. The following recurrent architectures are
considered in the experiments: LSTM, GRU, BRC, NBRC, MGU. The specific
update functions of those RNNs can be found in Appendix 4.A. In addition, we
consider the chrono-initialized LSTM.

4.3.2 Fixed Points in Recurrent Neural Networks
Fixed points in u. In dynamical systems, fixed points are defined as points
in the state space that map to themselves through the update function, for a
given input u. For a system f , we say that a state x∗ is a fixed point in u if and
only if,

x∗ = f(x∗, u). (4.1)

Attractors in u. Fixed points can either be fully attractive (attractors),
fully repulsive (repellors), or combine attractive and repulsive manifolds (saddle
points). For a constant input u, the set of starting states for which the system
converges to the fixed point x∗ is called basin of attraction of x∗ in u and is
written as,

Bux∗ =
{
x
∣∣∣ lim
n→∞

fn(x, u) = x∗
}
, (4.2)

with fn(x, u) =
{
f
(
fn−1(x, u), u

)
if n > 1,

f(x, u) if n = 1.
(4.3)

If the limit is not defined for some point x, then this point does not belong to
any basin of attraction in u. Mathematically, x∗ is an attractor in u if its basin
of attraction in u, Bux∗ , has a positive measure.

Reachable attractors in u. In particular, we say that an attractor x∗ in u
is reachable from some state x if, and only if x ∈ Bux∗ .

Monostability and multistability in u. Given a set of states X = {x1, . . . , xn},
a system that has a unique reachable attractor in u for all states is said to be
monostable in u for this set, whereas a system that has multiple reachable at-
tractors in u is said to be multistable in u for this set. More formally, f is said
to be monostable in u for X if, and only if, there exists a unique attractor x∗,
such that ∀x ∈ X , x ∈ Bux∗ . On the contrary, f is said to be multistable in u
is, and only if, there exists at least two attractors x∗

1 and x∗
2 such that x∗

1 ̸= x∗
2

and ∃x1, x2 ∈ X , x1 ∈ Bux∗
1
, x2 ∈ Bux∗

2
.
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Recurrent neural networks. Due to their temporal nature and update
rules, RNNs can be seen as discrete-time non-linear dynamical systems. For-
mally, given a parameter vector θ, the system f is given by the update function
of the RNN, such that f(x, u) = f(x, u; θ). Since attractors correspond to net-
work steady states, they are thought to be the allowing factor for RNNs to
retain information over a long period of time [Pascanu et al., 2013, Sussillo and
Barak, 2013, Maheswaranathan et al., 2019].

4.4 Benchmarks
In this section, the different benchmarks are introduced. First, the super-
vised learning tasks are introduced, including long-term information restitution
benchmarks in Subsection 4.4.1 and sequence classification benchmarks in Sub-
section 4.4.2. In Subsection 4.4.3, a reinforcement learning benchmark with
partially observable environment is introduced. This environment contains long
time dependencies.

4.4.1 Long-Term Information Restitution Benchmarks
The benchmarks introduced in this subsection contain long time dependencies,
and therefore require networks able to remember relevant information for a
long period. For those benchmarks, RNNs are trained on a dataset of 40 000
sample sequences and evaluated on a dataset of 40 000 sample sequences. During
training, 20% of the training set is used as a validation set.

Copy first input benchmark. In this benchmark, the network is presented
with a one-dimensional sequence of T time steps u1:T , where ut ∼ N (0, 1), t =
1, . . . , T , and is tasked at approximating the target yT = u1. This benchmark
thus consists of memorizing the initial input for T time steps. It allows one to
measure the ability of recurrent architectures to bridge long time dependencies
when the length T is large. Given the output oT of the network, we seek to
minimize the squared error L(oT , yT ) = (oT − yT )2.

Denoising benchmark. In this benchmark, the network is presented with
a two-dimensional sequence of T time steps. The first dimension is a noised
input stream u1

1:T , where u1
t ∼ N (0, 1), t = 1, . . . , T . Five time steps of this

stream should be remembered and outputted one by one by the network at
time steps {T − 4, . . . , T}. These five time steps S = {t1, t2, t3, t4, t5}, with
t1 < t2 < t3 < t4 < t5, are sampled without replacement in {1, . . . , T − N}
with N ≥ 5. N is a hyperparameter that allows one to tune how long the
network should be able to retain the information at a minimum. The five time
steps are communicated to the network through the second dimension of the
input u2

1:T , where u2
t = 1 if t ∈ S, and u2

t = 0 otherwise, for t = 1, . . . , T .
The target is thus given by yT−4:T = [ut1 , ut2 , ut3 , ut4 , ut5 ]. Given the output
sequence oT−4:T of the network, we seek to minimize the mean squared error
L(oT−4:T , yT−4:T ) =

∑T
t=T−4(ot − yt)2.
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4.4.2 Sequence Classification Benchmarks
The benchmarks introduced in this subsection are sequence classification prob-
lems and therefore require networks able to use the information received in the
sequence in order to infer the class. For those benchmarks, RNNs are trained
on datasets derived from the usual train and test sets of the original MNIST
dataset. During training, 20% of the training set is used as a validation set.

Permuted sequential MNIST. In this benchmark, the network is presented
with the MNIST images, where pixels are presented to the network one by one
as a sequence of length T = 28×28 = 784. It differs from the regular sequential
MNIST in that pixels are shuffled in a random order. Note that all images
are shuffled according to the same random order.1 The network is tasked at
outputting a probability for each possible digit that could be represented in the
initial image. This benchmark is known to be a more complex challenge than
the regular one. Given the output oT ∈ R10 of the network and the true digit
index yT ∈ {1, . . . , 10}, we seek to minimize the negative log likelihood loss
L(oT , yT ) = − log(oyTT ).

Permuted line-sequential MNIST. This benchmark is the same as the
permuted sequential MNIST benchmark, except that the pixels are fed 28 by
28, which corresponds to one line of the permuted image.1 The input dimension
is thus 28 instead of one. N black lines are added at the end of the sequence
such that the total length of the sequence is T = 28 +N . This has the effect of
a forgetting period, such that any relevant information for predicting the class
probabilities will be farther from the prediction time step T .

4.4.3 Reinforcement Learning Benchmark
In reinforcement learning, the function approximators process sequences as in-
put when considering partially observable Markov decision processes (POMDP).
Indeed, in such environments, the optimal policies, as well as the value func-
tions, are functions of the complete sequence of observations and past actions,
called the history. In this work, we focus on the approximation of the history-
action value function, or Q-function, in order to derive a near-optimal policy in
the considered POMDP. The deep recurrent Q-network (DRQN) algorithm is
used to approximate this Q-function with an RNN. From this approximation,
we derive the fully greedy policy by taking the action that maximizes the Q-
function for any given history. See Appendix 4.B for the definition of POMDPs
and their Q-functions, and see Appendix 4.C for the detailed DRQN algorithm.

The partially observable environment that is considered is the T-Maze environ-
ment [Bakker, 2001]. The T-Maze is a POMDP where the agent is tasked with
finding the treasure in a T-shaped maze (see Figure 4.1). The state is given by
the position of the agent in the maze and the maze layout that indicates whether
the goal lies up or down after the crossroads. The initial state determines the
maze layout, and it never changes afterwards. The initial observation made by
the agent indicates the layout. Navigating in the maze provides zero reward,

1The permutation is given by the following command in NumPy 1.23.2:
np.random.seed(42); np.random.permutation(28*28).
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Figure 4.1: T-Maze layout example, with the initial position of the agent in
black, the treasure in green and the cell to avoid in red.

except when bouncing onto a wall, in which case a reward of −0.1 is received.
While traveling along the maze, the agent only receives the information that
it has not yet reached the junction. Once the junction reached, the agent is
notified: it must now choose a direction depending on the past information it
remembers. Finding the treasure provides a reward of 4. Passed the cross-
roads, the states are always terminal. The optimal policy thus consists of going
through the maze, while remembering the initial observation in order to take
the correct direction at the crossroads. This POMDP is parameterized by the
corridor length L ∈ N that determines the number of time steps for which the
agent should remember the initial observation. The discount factor is γ = 0.98.
This POMDP is formally defined in [Lambrechts et al., 2022].

4.5 Correlating Multistability and Learning
This section aims at showing the correlation that exists between multistability
properties of RNNs and their ability to learn long time dependencies. To this
end, in Subsection 4.5.1 we first introduce the VAA, a measure of the number of
basins of attraction that are spanned by a set of states. In Subsection 4.5.2, we
show how to estimate the multistability of an RNN using VAA by estimating
the number of reachable attractors for a set of states resulting from the input
sequences. We then carry out a number of experiments in Subsection 4.5.3 to
show the correlation between multistability and learning with different types of
RNN on the benchmarks previously introduced.

4.5.1 Variability Amongst Attractors
One way to quantify the multistability in u of a system for a set of states X is to
count the number of different attractors that can be reached starting from those
states. We name this measure variability amongst attractors (VAA). Formally,
the VAA of a system f for a set of initial states X and an input u is defined as,

VAA(f,X , u) = 1
|X |

|X |∑
i=1

1
|X |∑
j=1

δ

(
lim sup
n→∞

∥fn(xi, u)− fn(xj , u)∥ = 0
) , (4.4)

where δ(x) is the Kronecker delta function that returns 1 when condition x is
met, and 0 otherwise. It can be noted that this definition does not exclude
limit cycles and considers states that are on the same limit cycle but far from
each others as different attractors. This is a limitation that we discuss in our
conclusion. In the following, we make the hypothesis that such limit cycles are
not encountered in practice.
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The denominator of Equation 4.4 gives the number of states in X that converge
towards the same attractor as xi. The sum of this fraction over all states that
converge towards a given attractor is thus equal to one, such that the sum of this
fraction over all states gives the number of different attractors. VAA(f,X , u)
is thus equal to the number of different attractors in u reached from the initial
states contained in X divided by the number of initial states |X |. Its maximal
value is thus 1, when all reached attractors are different, and its minimal value
is 1

|X | , when all the states have converged towards the same attractor (i.e., the
system is monostable).

In practice, since it is impossible to evaluate the limits to infinity in the VAA,
we fix a finite number of time steps M for state convergence, called the stabiliza-
tion period. As a consequence, the system may not have completely converged
towards the attractor after this period. We thus define a tolerance ε below
which two final states are considered to correspond to the same attractor. This
truncated VAA is written as,

VAAM,ε(f,X , u) = 1
|X |

|X |∑
i=1

1
|X |∑
j=1

δ (∥fM (xi, u)− fM (xj , u)∥ ≤ ε)
. (4.5)

4.5.2 Estimating the Multistability of a Recurrent Neural
Network

RNNs can exhibit a long-lasting memory through multistability in their hidden
states [Vecoven et al., 2021]. Indeed, having multiple attractors that are reach-
able from different input sequences probably allows one to encode information
about these sequences over the long term. We propose estimating the multi-
stability of an RNN for a set of input sequences by computing the number of
different reachable attractors for hidden states resulting from different input se-
quences. More precisely, we propose to compute VAA(f,X , u) for hidden states
X sampled from different input sequences. In practice, it is not feasible to es-
timate the VAA for all hidden states resulting from the set of input sequences.
Indeed, computing the VAA is quadratic in the number of hidden states because
of the pairwise distances. We thus propose to estimate the VAA by averaging its
value over several small batches of hidden states sampled at random time steps
in different sequences sampled from the set of input sequences. Moreover, we
still have to choose the stable input u according to which we want to measure
the multistability in u. In order to measure the multistability of the network
for a wide range of stable inputs, we propose to measure the multistability on
average for several inputs sampled according to a standard normal distribution.
Note that for each batch of hidden states, a unique u ∼ N (0, 1) is sampled
and kept constant during the convergence period of M time steps. The result-
ing procedure for estimating the multistability of an RNN for a set of input
sequences is given in Algorithm 4.1.

4.5.3 Experiments
In this subsection, we observe how the multistability of RNNs evolves when they
are trained on the long-term information restitution and reinforcement learning
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Algorithm 4.1: Multistability estimation.
parameters: I ∈ N the number of iterations to compute the average VAA,

M ∈ N the stabilization period,
ε ∈ R+ tolerance when considering state similarity,

inputs: D = {u1
1:T1 , . . . , u

N
1:Tn} a set of N input sequences,

θ ∈ Rdθ the parameters of the network.
1 Let f = f(·, ·; θ) the dynamical system.
2 Initialize mean value VAA = 0.
3 for i = 1, . . . , I do
4 Sample a batch of input sequences B ∼ D.
5 Sample a random hidden state in each input sequence

X = RandomHiddenStates(B, θ).
6 Sample u ∼ N (0,1).
7 VAA = VAA + 1

I
VAAM,ε(f,X , u).

8 return average VAA VAA.

Algorithm 4.2: Random hidden states sampling.
inputs: B = {u1

1:T1 , . . . , u
n
1:Tn} a batch of n input sequence sampled in the

training set,
θ ∈ Rdθ the parameters of the network.

1 Let X = {}.
2 foreach ui1:Ti ∈ B do
3 Sample a time step t ∼ U({1, . . . , Ti}).
4 Set xi0 = h(θ) where h is the initialization function of the RNN.
5 for k = 1, . . . , t do
6 Set xik = f(xik−1, u

i
k; θ) where f is the update function of the RNN.

7 Update X = X
⋃{

xit
}

.
8 return set of n hidden states X .
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benchmarks introduced in Section 4.4. The multistability of these networks is
estimated throughout the training procedure, using Algorithm 4.1. For the copy
first input benchmark, networks are made up of one 128 neurons recurrent layer.
For the other benchmarks, networks are made up of two recurrent layers, each
of 256 neurons. All averages and standard deviations reported were computed
over five different training sessions. Training was done using the Adam opti-
mizer [Kingma and Ba, 2014] with a learning rate of 1× 10−3 and a batch size
of 32. All hyperparameters have been chosen a priori to standard values and
are kept fixed. The goal here is not to measure the best performance of each
architecture but rather to study, for a given architecture and optimization pro-
cedure, whether there is a link between learning and multistability for different
benchmarks. In Subappendix 4.D.1, we show that those results also hold with
other hyperparameters for the copy first input benchmark. In all experiments,
the multistability is estimated with M = 10 000, ε = 1× 10−4, and I = 10.

Copy first input benchmark Figure 4.2 shows the performance of the dif-
ferent cells on this benchmark for different sequence lengths T ∈ {50, 300, 600}.
The best-performing cell is the NBRC, whose performance is not affected by
the length of the sequences. In comparison, the classical cells, MGU, LSTM
and GRU, struggle to decrease their losses. Surprisingly, the BRC, a bistable
cell, does not succeed in decreasing its loss. Generally speaking, the longer
the sequences are, the worse their performances are. The last cell, the chrono-
initialized LSTM, competes with the NBRC with its hyperparameter Tmax cho-
sen to 600. Figure 4.3 illustrates the correlation between the VAA and the
validation loss for the LSTM and CHRONO cells. The LSTM cell, whose VAA
increases late and little, fails to learn. On the other hand, the chrono initialized
LSTM cell sees its loss decreasing while its VAA increases. This figure also
shows that the chrono initialization promotes the learning of long time depen-
dencies through multistability. Figure 4.4 illustrates the correlation between the
VAA and the validation loss for the other cells. It is clear from this figure that
the bistability mechanism introduced in the BRC and NBRC cells also promote
multistability. Moreover, as for the LSTMs and chrono-initialized LSTMs, the
loss only starts decreasing when the VAA increases.
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Figure 4.2: Test MSE loss for the copy first input benchmark with different
sequence lengths T . Mean and standard deviation are reported after 50 epochs.

Denoising benchmark Figure 4.5 shows the performance of the different
cells on this benchmark for different forgetting periods N ∈ {5, 100}. Once
again, the NBRC has the best performance, closely followed by the chrono-
initialized LSTM. On this benchmark, the BRC also reaches a very low loss.
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Figure 4.3: Evolution of the validation loss (left) and of the VAA (right) of
LSTM networks, with and without chrono initialization, for the copy first input
benchmark with T = 50. Mean and standard deviation are reported after 50
epochs.
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Figure 4.4: Evolution of the validation loss (left) and of the VAA (right) of
GRU, MGU, BRC and NBRC networks, for the copy first input benchmark
with T = 50. Mean and standard deviation are reported after 50 epochs.

Once again, we can see that all classical cells (LSTM, GRU, and MGU) gen-
erally fail in learning when longer time dependencies are present (N = 100).
Figure 4.6 shows the evolution of the VAA and the validation loss of multiple
LSTM cells, with and without chrono initialization, during the training on this
benchmark. As for the previous benchmark, only the chrono-initialized LSTMs
have a high VAA and efficiently decrease their loss. It can be noted that classi-
cally initialized LSTMs have a VAA close to zero throughout the learning on this
harder benchmark. Figure 4.7 shows these results for the GRU, BRC, NBRC
and MGU cells. It is observed that the GRU network has a very low VAA,
and learning does not start before its VAA increases. The MGU network does
not manage to learn on this benchmark while its VAA only slowly increases
at the end of the training procedure. As far as the bistable networks (BRC
and NBRC) are concerned, their VAA is directly maximized and learning starts
directly, indicating that those indeed promote the learning of long time depen-
dencies through multistability. Finally, Figure 4.8 shows the validation loss and
the VAA of five different trainings of the GRU cell on the denoising benchmark
with N = 5. It is clear that the GRU cell only starts decreasing its loss when
its VAA has started increasing. This proves once more the correlation between
the VAA and the learning on long-term information restitution benchmarks.

T-Maze benchmark In this reinforcement learning setting, a policy is de-
rived from the approximation of the Q-function. The hyperparameters of the
DRQN algorithm used for approximating the Q-function are given in Appendix 4.C.
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Figure 4.5: Test MSE loss for the denoising benchmark with different forgetting
periods N and T = 200. Mean and standard deviation are reported after 50
epochs.
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Figure 4.6: Evolution of the validation loss (left) and of the VAA (right) of
LSTM networks, with and without chrono initialization, for the denoising bench-
mark with N = 100 and T = 200. Mean and standard deviation are reported
after 50 epochs.

On the left in Figure 4.9, we can see the mean non-discounted cumulative reward
obtained by the policies derived from GRU cells approximating the Q-function.
On the right in Figure 4.9, we can see the VAA of these cells estimated with
Algorithm 4.1 using the histories of the replay buffer as input sequences. Those
value are clearly correlated. Indeed, the better the agent plays, the higher its
VAA is.

4.6 Fostering Multistability at Initialization
In Subsection 4.6.1, we describe the warmup initialization procedure that al-
lows one to maximize the estimated multistability of a network for a dataset of
input sequences. Then, in Subsection 4.6.2, we compare classic cells to warmed-
up cells on information restitution, sequence classification, and RL benchmarks
and show the benefits of the warmup in tasks with long time dependencies,
when considering the same standard hyperparameters as in the previous sec-
tion. However, we also show that the warmup procedure does not improve the
results in the sequence classification tasks. In Subsection 4.6.3, we introduce the
double-layer architecture, that has both multistable and transient dynamics. We
show that this architecture reaches a better performance both on information
restitution and sequence classification benchmarks. Finally, in Subsection 4.6.4,
we show that the advantage of the warmup and the double-layer architecture,
shown for standard hyperparameters in Subsection 4.6.2 and Subsection 4.6.3,
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Figure 4.7: Evolution of the validation loss (left) and of the VAA (right) of GRU,
MGU, BRC and NBRC networks, for the denoising benchmark with N = 100
and T = 200. Mean and standard deviation are reported after 50 epochs.
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Figure 4.8: Evolution of the validation loss (left) and of the VAA (right) of
multiple GRU networks, for the denoising benchmark with N = 5 and T = 200.
Mean and standard deviation are reported after 50 epochs. Loss decrease only
start when the network becomes multistable (VAA greater than 1

|X | ).

also holds when optimizing the hyperparameters for each cell version (number
of recurrent layers L, number of hidden units H, batch size B, learning rate α).

4.6.1 Warming Up Recurrent Neural Networks
The previous observations, that show a correlation between the multistability
of a network and its ability to learn long time dependencies, suggest that fos-
tering multistability could ease learning in this case. In order to promote the
multistability of a network, we propose maximizing the number of reachable
attractors for hidden states resulting from the set of input sequences. As for
the estimation of the multistability, computing the VAA for all hidden states is
not feasible because of its quadratic complexity. In practice, we propose using
stochastic gradient descend (SGD) to maximize the number of reachable at-
tractors for batches of hidden states from different input sequences. As for the
estimation of the multistability, we sample a different stable input u ∼ N (0, 1)
for each batch of hidden states. We note however that SGD cannot be used
directly on the estimation of the proportion of reachable attractors detailed in
Algorithm 4.1, for two different reasons. First, the VAA and the VAAM,ε are
not differentiable because of the Kronecker delta, which prevents from comput-
ing the gradient. Second, it is likely that hidden states convergence is slow when
several RNNs are stacked. Indeed, the first layers must have reached stability
for the following one to receive a stable input.

In order to solve the first problem, we introduce a differentiable proxy VAA∗
M,ε
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Figure 4.9: Evolution of the mean cumulative reward (left) and their VAA
(right) obtained by GRU agents during DRQN training on a T-Maze of length
200. Mean and standard deviation are estimated over 3 training sessions.

of the VAAM,ε. Instead of the denominator?

Ci,j = δ
(∥∥fM (xi, u)− fM (xj , u)

∥∥ ≤ ε), (4.6)

that is equal to 1 when the final states after truncated convergence are close
enough, we use,

C∗
i,j = 1−

max(0,
∥∥tanh fM (xi, u)− tanh fM (xj , u)

∥∥− ε)
∥tanh fM (xi, u)− tanh fM (xj , u)∥ . (4.7)

We note that the value of C∗
i,j is strictly equal to 1 if fM (xi, u) is close enough

in Euclidian distance to fM (xj , u). On the other hand, C∗
i,j will be close to 0

when they are far away. We also note that C∗
i,j will never be strictly equal to 0,

but will get closer as the distance increases, since the fraction tends towards 1.
It can be noted that we are not interested in states being far apart from each
other, but just in them being different. However, we noticed in the experiments
that this small bias provides a good direction for the gradient in order to reach
multistability. For this reason, we need to apply a saturating function (hyper-
bolic tangent in this case) to the states in order to avoid extreme states when
maximizing VAA*. The resulting differentiable proxy of the VAA is given by,

VAA∗
M,ε(f,X , u) = 1

|X |

|X |∑
i=1

1
|X |∑
j=1

1− max(0,∥tanh fM (xi,u)−tanh fM (xj ,u)∥−ε)
∥tanh fM (xi,u)−tanh fM (xj ,u)∥

. (4.8)

For maximizing the multistability of an RNN for a given dataset of input se-
quences, we thus propose to maximize by SGD the VAA* of batches of hidden
states resulting from different input sequences, at random time steps. For each
batch of hidden states, a constant input perturbation is randomly sampled from
u ∼ N (0, 1) in order to stabilize the RNN hidden states over M time steps.
However, as can be seen from equation (4.8), maximising the VAA* only occurs
when all hidden states are infinitely distant, which is not desirable for learning
efficiently. In practice, we thus use SGD to get the VAA* of each layer as close
as possible to k = 0.95, as this proved empirically to maximize the number of
attractors (see Figure 4.10) while avoiding too extreme states that could arise
from the approximation of the VAA with C∗. In Subappendix 4.D.3, we show
on the copy first input benchmark with T ∈ {50, 300, 600} that the warmup
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procedure improves learning for a wide range of k. It shows the robustness of
our findings with respect to some hyperparameter variation. The loss used is
thus given by,

L(v, k) = 1
L

L∑
i=1

(vi − k)2, (4.9)

where vi = VAA∗
M,ε(f i,X , u) is the estimated multistability of layer i and L

is the number of layers in the RNN. Maximizing the VAA* of each layer sepa-
rately allows one to tackle the problem of layer convergence as identified above.
To avoid over-fitting problems, M is sampled uniformly in {1, . . . ,Mmax(s)} at
gradient step s, where Mmax(s) = min(M∗, 1 + c · s) with M∗ the maximum
stabilization period and c the stabilization period increment. This progres-
sive increase is required for reaching multistability smoothly, avoiding gradients
problems. For the supervised learning tasks, the batches of input sequences are
sampled in the training set. For the reinforcement learning tasks, batches of
input sequences are sampled from the exploration policy. Algorithm 4.3 details
the whole warmup procedure for a dataset D of input sequences.

Algorithm 4.3: Recurrent neural network warmup.
parameters: S ∈ N the number of gradient steps,

n ∈ N the batch size,
α ∈ R+ the learning rate,
k ∈ [0, 1] the target average VAA∗

M,ε,
M∗ ∈ N the maximum stabilization period,
c ∈ N the stabilization period increment,
ε ∈ R+ tolerance when considering state similarity,
L the number of layers in the RNN.

inputs: D = {u1
1:T1 , . . . , u

N
1:TN } a training set of N input sequences,

θ ∈ Rdθ the parameters of the network.
1 for s = 1, . . . , S do
2 Sample a batch B of n sequences in D without replacement B ∼ Un(D).
3 Sample a random hidden state in each sequence

X = RandomHiddenStates(B, θ).
4 Sample M ∼ U({1, . . . ,min(M, 1 + s · c)}).
5 for i = 1, . . . , L do
6 Sample u ∼ N (0,1).
7 Set vi = VAA∗

M,ε(f i,X , u) where f i is the update function of the ith

RNN layer.
8 Compute loss L = L(v, k) where v =

(
v1 · · · vL

)
.

9 Compute gradient g = ∇θL with BPTT (over stabilization period and input
sequence).

10 Update parameters θ = θ − αg.
11 Update maximum stabilization period M∗ = M∗ + c.

We show in Figure 4.10 that the warmup procedure effectively increases the
VAA* of each layer in an RNN. Furthermore, we can also see on the right in
Figure 4.10 that as the warmup procedure is carried out, the true VAA measure
of the RNN is increasing as well, even reaching 1 as the warmup procedure ends.
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Figure 4.10: Evolution of the VAA* for a two-layer GRU (left and middle) and
of the VAA of the network (right) during warmup. This network is warmed up
on the denoising dataset and results were averaged over three runs.

4.6.2 Experiments
To demonstrate the impact of warming up RNNs on information restitution
tasks, sequence classification tasks, and in partially observable RL environment,
we tackle all benchmarks introduced in Section 4.4. We train the LSTM, GRU
and MGU cells with and without warmup and show that their performance is
greatly improved with warmup. As chrono-initialized LSTMs are known to work
well, we also compare our results to such cells, with and without warmup. The
hyperparameters were chosen to the same values as in previous section. The goal
here is not to measure the best performance of each architecture with or without
warmup but rather to measure, for a given architecture and optimization proce-
dure with fixed hyperparameters, whether the warmup initialization procedure
provides a better learning for different benchmarks. In Subappendix 4.D.2, we
show that those results also hold for other hyperparameters for the permuted
row sequential MNIST benchmark. In addition, in the Subsection 4.6.4, we
compare the performance of all cells with and without warmup with optimized
hyperparameters. All averages and standard deviations reported were computed
over three different training sessions. The optimal parameters for warming up
can vary depending on architectures and needs, but we found α = 1e−2, c = 10,
S = 100, n = 200 and M∗ = 200 to be a good choice.

Copy first input benchmark As can be seen from Figure 4.11, warming
up RNNs greatly improves performances in the copy first input benchmark, for
any sequence length T ∈ {50, 300, 600}. Indeed, classically initialized RNNs
have an average loss above 0.500 after 50 epochs, while all warmed-up RNNs
have an average loss below 0.001 after 50 epochs. On the other hand, the
chrono-initialized LSTM performs better when it is not warmed up. Even if the
chrono-initialization and the warmup both promote the learning of long-term
dependencies, combining them seems to have the opposite effect, leading to less
performant model.

Denoising benchmark As far as the denoising benchmark is concerned, Fig-
ure 4.12 shows that warmed-up cells always perform better than classically ini-
tialized ones, on sequences of length T = 200. However, it can be noted that
the average loss is still quite significant after 50 epochs for the LSTM and MGU
cells, in the case of a forgetting period of N = 100. As for the copy first input
benchmark, the chrono-initialized cells perform worse when warmed-up which
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Figure 4.11: Test MSE loss for the copy first input benchmark with different
sequence lengths T . Mean and standard deviation are reported after 50 epochs.

suggests once again that the chrono initialization interacts disadvantageously
with the warmup procedure.
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Figure 4.12: Test MSE loss for the denoising benchmark with different forgetting
periods N and T = 200. Mean and standard deviation are reported after 50
epochs.

T-Maze benchmark On the left in Figure 4.13, we can see the evolution of
the expected cumulative reward of the DRQN policy for the T-Maze environ-
ment as a function of the number of episodes of interaction. It is more than clear
that all warmed-up cells and bistable cells (i.e., BRC and NBRC), are better
than the classically initialized ones on this RL benchmark. As for the other
benchmarks, the chrono-initialized LSTMs seem to interact disadvantageously
with the warmup procedure. In any case, it can be noted that the chrono-
initialized LSTMs are always among the worse cells for this benchmark, with
and without warmup. Furthermore, we can see that warming up cells improves
their performance even more as the length of the T-Maze increases, suggesting
that the warmup procedure and the multistability of an RNN indeed help to
tackle tasks with long time dependencies. On the right in Figure 4.13, we can
see the number of episodes required to reach the optimal policy for each cell. It
is clear that warming up a cell speeds up the convergence towards the optimal
policy when time dependencies become large. Indeed, for L = 200, all warmed-
up cells reach the optimal policy before any classically initialized cell, except for
the chrono-initialized LSTM.

Permuted sequential MNIST In Figure 4.14, we can see the test accuracies
after 70 epochs on the permuted sequential MNIST benchmark. It is clear that
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Figure 4.13: Evolution of the mean cumulative reward obtained by warmed-
up and classic agents during their training (up) and mean number of episodes
required to reach the optimal policy (down) on T-Mazes of length 20 (left), 100
(center) and 200 (right).

the warmup initialization does not help in this task. For the LSTM and GRU,
the warmed-up cells are even worse than the classic cells. This confirms that
some tasks such as this sequence classification benchmark needs more transient
dynamics instead of multistable ones.
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Figure 4.14: Test accuracy for the permuted sequential MNIST benchmark.
Mean and standard deviation are reported after 70 epochs.

Permuted line-sequential MNIST In Figure 4.15, we can see the accura-
cies of each cell after 70 epochs on the test set of the permuted line-sequential
MNIST benchmark. For a sequence length of 100 (i.e., N = 72), it is clear
that the classically initialized cells are better at this task. As for the permuted
sequential MNIST, this shows that transient dynamics are important for those
sequence classification tasks, as opposed to information restitution tasks.

4.6.3 Recurrent Double-Layers
As shown in the previous section and mentioned in the literature [Sussillo and
Barak, 2013], the importance of the transient dynamics of RNNs should not
be neglected for prediction. Indeed, it is easy to see why transient dynamics
can be of importance when trying to tackle a regression task. If information is
only stored in the form of attractors, then there can only be a limited number
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Figure 4.15: Test accuracy for the permuted line-sequential MNIST benchmark
for different forgetting periods N . Mean and standard deviation are reported
after 70 epochs. We note that when N equals 72 (472) the resulting image has
100 (500) lines.

of states the network can take, making it very hard to get precise predictions.
We observe that when warming up neural networks they tend to lose predictive
accuracy, at the benefit of easier training on longer sequences. This leads one
to think that RNNs should be built to have both rich transient and multistable
dynamics. We thus propose using a double-layer architecture that allows one
to get precise predictions while maintaining the benefits of warmup. We simply
split each recurrent layer in two equal parts and only warmup one of them. In
this double architecture, the hidden states sizes are divided by two compared
to the simple architecture, for a fairer comparison. This allows to endow some
part of each layer with multistability, while the other remains monostable with
richer transient dynamics. A double-layer structure is depicted in Figure 4.16.

Input

RNN

Warmed-up RNN

⊕

RNN

Warmed-up RNN

. . .

Layer 1 Layer 2

Figure 4.16: Double-layer architecture.

As can be seen from Figure 4.17, Figure 4.18, Figure 4.19 and Figure 4.20, the
double-layer architecture is always among the best performing architecture, for
all four supervised learning benchmarks and for the LSTM, GRU and MGU
cells, when using the same standard hyperparameters of the previous sections.
Even the chrono-initialized LSTMs perform well with the double-layer architec-
ture except on the copy first input benchmark. It shows that the double-layer
architecture combines both the transient and multistable features of an RNN.
In addition, we can see in Figure 4.20 that the double-layer architecture is
significantly better than the other architecture, for all types of cell, on the per-
muted line-sequential MNIST benchmark with a forgetting length of N = 472,
a problem that requires both transient and multistable dynamics. In addition,
we show in Appendix 4.F that the double-layer architectures without partial
warmup generally perform worse that the classic architectures. This ensures
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Figure 4.17: Test MSE loss for the copy first input benchmark with different
sequence lengths T . Mean and standard deviation are reported after 50 epochs.
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Figure 4.18: Test MSE loss for the denoising benchmark with different forgetting
periods N and T = 200. Mean and standard deviation are reported after 50
epochs.

that the partial warmup is the most important factor for the performance of
the double-layer architecture. In Figure 4.21, we can visualize the evolution of
the validation loss averaged over 5 training sessions on the denoising benchmark
for the LSTM, GRU and MGU cells, with the three architectures (i.e., classic,
warmed up and double). It is clear that the warmed-up and double-layer archi-
tectures are better. Additionally, we can see that the double-layer architecture
is significantly faster at learning this task for the GRU and MGU cells.

4.6.4 Hyperparameter Optimization
In this section, we study the performance of the different cells in their different
versions (i.e., classic, warmed up and double), when the hyperparameters are
optimized. In Section 4.6 and Appendix 4.D, we have shown that the warmup
procedure and double-layer architecture provides a nice improvement in perfor-
mance for a wide range of hyperparameters. Here, we consider a more practical
setting in which the hyperparameters of a considered cell version can be opti-
mized according to the learning set. We consider a standard hyperparameter
selection procedure where the hyperparameters are selected according to the
loss on a selection set, averaged over 5 training sessions (see Appendix 4.E for
details). Those hyperparameters are then selected for 5 training sessions accord-
ing to the standard procedure, and the average loss on the test set is reported.
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Figure 4.19: Test accuracy for the permuted sequential MNIST benchmark.
Mean and standard deviation are reported after 70 epochs.

Due to the computational cost of such an optimization procedure, we only con-
sider the most challenging benchmarks of each category, that is the denoising
benchmark with N = 100 and the permuted line-sequential MNIST benchmark
with N = 472.

The best hyperparameters are reported in Appendix 4.E for both benchmarks.
The test losses obtained using those hyperparameters are given in Figure 4.22.
As can be seen by putting Figure 4.22a in perspective with Figure 4.18b, the
hyperparameter selection allows all cell versions to reach a lower test MSE for
the denoising benchmark. Similarly, by putting Figure 4.22b in perspective with
Figure 4.20b, it can be seen that all cell versions reach a higher test accuracy
for the MNIST benchmark, when the hyperparameters have been optimized.
Figure 4.23 shows the evolution of the validation losses throughout the training
procedure for the best hyperparameters of each cell version, averaged over the 5
training sessions, for the denoising benchmark with N = 100. It can be seen that
the warmup procedure and the double cell architecture still provide a significant
advantage in term of convergence speed and final performance. Figure 4.24
shows the evolution of the validation losses throughout the training procedure
using the best hyperparameters, for the line-sequential MNIST benchmark with
N = 472. As for the denoising benchmark, the warmup and the double layer
architecture still provide a very significant improvement in term of convergence
speed.

4.7 Conclusion
In this work, we introduced a new initialization procedure, called warmup, that
improve the ability of recurrent neural networks to learn long time dependen-
cies. This procedure is motivated by recent work that showed the importance
of fixed points and attractors for the prediction process of trained RNNs. More
precisely, we introduced a lightweight measure called VAA, that can be opti-
mized at initialization in few gradient steps to endow RNNs with multistable
dynamics. Warmup can be used with any type of recurrent cell and we show
that it vastly improves their performance on problems with long time dependen-
cies. In addition, we introduced a new architecture that combines transient and
multistable dynamics through partial warmup. This architecture was shown to
reach a better performance than both classic and warmed-up cells on several
tasks, including information restitution and sequence classifications tasks.

This work also motivates several future works. First, it can be noted that the
double-layer architecture might be worth exploring with different types of cell.
We showed here that there are benefits of using different types of initialization
for the same type of cell. This might hint at the possibility of having similar
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Figure 4.20: Test accuracy for the permuted line-sequential MNIST benchmark
for different forgetting periods N . Mean and standard deviation are reported
after 70 epochs. We note that when N equals 72 (472) the resulting image has
100 (500) lines.
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Figure 4.21: Evolution of the validation loss on the denoising benchmark for
LSTM, GRU and MGU networks, with N = 100 and T = 200. For each cell,
four versions are considered: the classical one, the warmed-up one and the
double-layer one, with and without partial warmup.
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Figure 4.22: Test accuracy for the denoising benchmark and the permuted line-
sequential MNIST benchmark with hyperparameter selection on the learning
set. Mean and standard deviation are reported after 50 epochs.
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Figure 4.23: Evolution of the validation loss on the denoising benchmark for
LSTM, GRU and MGU networks, with N = 100 and T = 200. For each
cell, three versions are considered: the classical one, the warmed-up one and
the double-layer one with partial warmup. The hyperparameters of each cell
version were optimized on the learning set.
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Figure 4.24: Evolution of the validation loss on the line-sequential MNIST
benchmark for LSTM, GRU and MGU networks, with N = 100 and T = 200.
For each cell, three versions are considered: the classical one, the warmed-up
one and the double-layer one with partial warmup. The hyperparameters of
each cell version were optimized on the learning set.
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benefits when combining different types of cell that have different dynamical
properties in a single recurrent neural network. Furthermore, in this paper we
have aimed at maximizing the number of attractors through warmup before
training. We noticed however that in some rare cases, networks loose multi-
stability properties when training. Using VAA as a regularization loss to avoid
this could be interesting. For online reinforcement learning too, a regularization
loss throughout the learning procedure might make more sense than warming
up a priori on random trajectories. Moreover, we note that not all benchmarks
would benefit from warming up. In fact, it is likely that for several benchmarks,
having only a few attractors could be better. In this regard, it would be in-
teresting to try to warm up in order to reach a specific number of attractors,
rather than for maximizing them. Finally, the warmup procedure maximizes
reachable multistability for a particular dataset of input sequences. Warming
up on totally random input sequences would result in a simpler procedure that
might still provide a good initialization for reaching multistability.

This work also present some limitations. First, the VAA is not discriminating
limit cycles from fixed point attractors. In addition, states that are on the same
limit cycles but far from each others are not considered in the basin. Moreover,
the warmup maximizes the number of attractors present in all hidden states,
while we might want the hidden states from a same input sequence to belong
to a single basin of attraction. Finally, the stability of the RNN is measured
for a stable input, an assumption that is unrealistic in our experiments and in
general. It might be worth exploring those problems in future works.
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4.A Recurrent Neural Network Architectures
Formally, an RNN architecture is defined by its update function f , its output
function g and its initialization function h that are parameterized by a vector
θ ∈ Rd. Given a sequence of inputs u1:T = [u1, . . . , uT ], with T ∈ N and ut ∈ Rn,
the RNN maintains a hidden state xt and output a prediction ot according to,

xt = f(xt−1, ut; θ), t = 1, . . . , T, (4.10)
ot = g(xt; θ), t = 1, . . . , T, (4.11)
x0 = h(θ). (4.12)

RNNs can be composed of L layers that are linked sequentially through uit =
oi−1
t with u1

t = ut and ot = oLt , where oit denotes the output of layer i and uit its
input. In this case, each layer i has its own update function f i, output function
gi and initialization function hi.

In the following, we give the update function f and output function g of a
single layer for each architecture considered in this work. As far as the initial
hidden state is concerned, it is always chosen to zero, i.e., h(θ) = 0. Note
that σ(x) = 1

1+e−x denote the sigmoid activation function, and ⊙ to denote the
Hadamard product.

Long short-term memory. The LSTM update and output functions are
defined from the following intermediate values,

ft = σ(Wfuut +Wfhht−1 + bt), (4.13)
it = σ(Wiuut +Wihht−1 + bi), (4.14)
rt = σ(Wouut +Wohht−1 + br), (4.15)
c̃t = tanh(Wcuut +Wchht−1 + bc), (4.16)
ct = ft ⊙ ct−1 + it ⊙ c̃t, (4.17)
ht = rt ⊙ tanh(ct). (4.18)

The hidden state is given by xt = f(xt−1, ut; θ) = [ht, ct], and the output is given
by ot = g(xt; θ) = ht. The parameters of the LSTM network are θ = (Wfu,
Wfh,Wiu,Wih,Wou,Woh,Wcu,Wch, bt, bi, br, bc).

Gated recurrent unit. The GRU update and output functions are defined
from the following intermediate values,

zt = σ(Wzuut +Wzhht−1 + bz), (4.19)
rt = σ(Wruut +Wrhht−1 + br), (4.20)
ht = zt ⊙ ht−1 + (1− zt)⊙ tanh(Whuut + rt ⊙Whhht−1 + bh). (4.21)

The hidden state is given by xt = f(xt−1, ut; θ) = ht, and the output is given
by ot = g(xt; θ) = ht. The parameters of the GRU network are θ = (Wzu,Wzh,
Wru,Wrh,Whu,Whh, bz, br, bh).

Bistable recurrent cell. The BRC update and output functions are defined
from the following intermediate values,

ct = σ(Wcuut + wc ⊙ ht−1 + bc), (4.22)
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at = 1 + tanh(Wauut + wa ⊙ ht−1 + ba), (4.23)
ht = ct ⊙ ht−1 + (1− ct)⊙ tanh(Whu + at ⊙ ht−1 + bh). (4.24)

The hidden state is given by xt = f(xt−1, ut; θ) = ht, and the output is given
by ot = g(xt; θ) = ht. The parameters of the BRC network are θ = (Wcu, wc,
Wau, wa,Whu, bc, ba, bh).

Neuromodulated bistable recurrent cell. The NBRC update and output
functions are defined from the following intermediate values,

ct = σ(Wcuut +Wchht−1 + bc), (4.25)
at = 1 + tanh(Wauut +Wahht−1 + ba), (4.26)
ht = ct ⊙ ht−1 + (1− ct)⊙ tanh(Whu + at ⊙ ht−1 + bh). (4.27)

The hidden state is given by xt = f(xt−1, ut; θ) = ht, and the output is given
by ot = g(xt; θ) = ht. The parameters of the NBRC network are θ = (Wcu,
Wch,Wau,Wah,Whu, bc, ba, bh).

Minimal gated unit. The MGU update and output functions are defined
from the following intermediate values,

ft = σ(Wfuut +Wfhht−1 + bf ), (4.28)
h̃t = tanh(Whuut +Whh(ft ⊙ ht−1) + bh), (4.29)
ht = ft ⊙ h̃+ (1− ft)⊙ ht−1. (4.30)

The hidden state is given by xt = f(xt−1, ut; θ) = ht, and the output is given
by ot = g(xt; θ) = ht. The parameters of the MGU network are θ = (Wfu,Wfh,
Whu,Whh, bf , bh).

4.B Partially Observable Markov Decision Pro-
cesses

Formally, a POMDP P is a tuple P = (S,A,O, T,R,O, P, γ) where S is the
state space, A is the action space, and O is the observation space. The initial
state distribution P gives the probability P (s0) of s0 ∈ S being the initial
state of the decision process. The dynamics are described by the transition
distribution T that gives the probability T (st+1 | st, at) of st+1 ∈ S being the
state resulting from action at ∈ A in state st ∈ S. The reward function R gives
the immediate reward rt = R(st, at, st+1) obtained after each transition. The
observation distribution O gives the probability O(ot | st) to get observation
ot ∈ O in state st ∈ S. Finally, the discount factor γ ∈ [0, 1[ weights the
relative importance of future rewards.

Taking a sequence of t actions (a0:t−1) in the POMDP conditions its execution
and provides a sequence of t + 1 observations (o0:t). Together, they compose
the history ht = (o0:t, a0:t−1) ∈ Ht until time step t, where Ht is the set of
such histories. Let h ∈ H denote a history of arbitrary length sampled in the
POMDP, and let H =

⋃∞
t=0Ht denote the set of histories of arbitrary length.
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A policy η ∈ H in a POMDP is a mapping from histories to actions, where
H = H → A is the set of such mappings. A policy η∗ ∈ H is said to be optimal
when it maximizes the expected discounted sum of future rewards starting from
any history h ∈ H,

η∗ ∈ arg max
η∈H

Eη
[ ∞∑
t=0

γtRt

∣∣∣∣∣ H0 = h

]
, ∀h ∈ H. (4.31)

The history-action value function, or Q-function, is defined as the maximal
expected discounted reward that can be gathered, starting from a history h ∈ H
and an action a ∈ A,

Q(h, a) = max
η∈H

Eη
[ ∞∑
t=0

γtRt

∣∣∣∣∣ H0 = h,A0 = a

]
, (4.32)

The Q-function is also the unique solution of the Bellman equation [Smallwood
and Sondik, 1973, Kaelbling et al., 1998, Porta et al., 2006],

Q(h, a) = E
[
R+ γmax

a′∈A
Q(H ′, A′)

∣∣∣∣ H = h,A = a

]
, ∀h ∈ H, ∀a ∈ A, (4.33)

where H ′ = (H,A,O′) and R is the immediate reward obtained when taking
action A in history R. From (4.31) and (4.32), it can be noticed that any optimal
policy satisfies,

η∗(h) ∈ arg max
a∈A

Q(h, a), ∀h ∈ H. (4.34)

4.C Deep Recurrent Q-learning
The DRQN [Hausknecht and Stone, 2015] algorithm aims at learning a para-
metric approximation Qθ of the Q-function, where θ ∈ Rdθ is the parameter
vector of a recurrent neural network. This algorithm is motivated by equation
(4.34) that shows that an optimal policy can be derived from the Q-function.
The strategy consists of minimising with respect to θ, for all (h, a), the distance
between the estimation Qθ(h, a) of the LHS of equation (4.33), and the esti-
mation of the expectation E[r + γmaxa′∈A Qθ(h′, a′)] of the RHS of equation
(4.33). This is done by using transitions (h, a, r, o′, h′) sampled in the POMDP,
with h′ = (h, a, o′).

In practice, this algorithm interleaves the generation of episodes and the update
of the estimation Qθ. Indeed, in the DRQN algorithm, the episodes are gen-
erated with the ε-greedy policy derived from the current estimation Qθ. This
stochastic policy selects actions according to arg maxa∈A Qθ(·, a) with proba-
bility 1 − ε, and according to an exploration policy with probability ε. This
exploration policy is defined by a probability distribution E(A) ∈ P(A) over
the actions, where P(A) is the set of probability measures over the action space
A. The DRQN algorithm also introduces a truncation horizon H such that the
histories generated in the POMDP have a maximum length of H. Moreover,
a replay buffer of histories is used and the gradient is evaluated on a batch
of histories sampled from this buffer. Furthermore, the parameters θ are up-
dated with the Adam algorithm [Kingma and Ba, 2014]. Finally, the target
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rt + γmaxa∈A Qθ′(ht+1, a) is computed using a past version Qθ′ of the estima-
tion Qθ with parameters θ′ that are updated to θ less frequently, which eases
the convergence towards the target, and ultimately towards the Q-function.

Algorithm 4.4: Deep recurrent Q-learning.
parameters: N ∈ N the buffer capacity,

C ∈ N the target update period in term of episodes,
E ∈ N the number of episodes,
H ∈ N the truncation horizon,
I ∈ N the number of gradient steps after each episode,
ε ∈ R the exploration rate,
E(A) ∈ P(A) the exploration policy probability distribution,
α ∈ R the learning rate,
B ∈ N the batch size,
θ ∈ Rdθ the initial parameters of the network,
θ′ ∈ Rdθ the initial parameters of the target network.

1 Initialize weights θ randomly.
2 Fill replay buffer B with transitions from the exploration policy E(A).
3 if warmup then
4 Let D be the set of histories h (input sequences) in replay buffer B.
5 Warmup the parameters of the RNN using Warmup(D, θ).
6 for e = 0, . . . , E − 1 do
7 if e mod C = 0 then
8 Update target network with θ′ ← θ.
9 Draw an initial state s0 according to P and observe o0.

10 Let h0 = (o0).
11 for t = 0, . . . , H − 1 do
12 Select at ∼ E(A) with probability ε, otherwise select

at = arg maxa∈A {Qθ(ht, a)}.
13 Take action at and observe rt and ot+1.
14 Let ht+1 = (o0, a0, o1, . . . , ot+1).
15 if |B| < N then add (ht, at, rt, ot+1, ht+1) in replay buffer B
16 else replace oldest transition in replay buffer B by (ht, at, rt, ot+1, ht+1).
17 if ot+1 is terminal then
18 break
19 for i = 0, . . . , I − 1 do
20 Sample B transitions (hbt , abt , rbt , obt+1, h

b
t+1) uniformly from the replay

buffer B.
21 Compute targets

yb =
{
rbt + γmaxa∈A

{
Qθ′ (hbt+1, a)

}
if obt+1 is not terminal.

rbt otherwise.
22 Compute loss L =

∑B−1
b=0

(
yb −Qθ(hbt , abt)

)2.
23 Compute direction g using Adam optimizer.
24 Perform gradient step θ ← θ + αg.

The DRQN training procedure is detailed in Algorithm 4.4. In this algorithm,
the output of the RNN is yt = g(xt; θ) ∈ R|A|, and it gives Qθ(ht, a), ∀a ∈ A.
The hidden states are given by xk = f(xk−1, uk; θ), ∀k ∈ N0, with the inputs
given by uk = (ak−1, ok), ∀t ∈ N and u0 = (0, o0). From the approximation Qθ,
the policy ηθ is given by ηθ(h) = arg maxa∈A Qθ(h, a).

In the experiments, the following hyperparameters have been chosen: N = 8192,
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C = 20, I = 10, ε = 0.2, α = 1 × 10−3, B = 32. The exploration policy and
truncation horizon depend on the environment and are thus detailed in the
following appendix.

4.D Generalization to Other Hyperparameters
In this section, we study the generalization of the results of this work to other
hyperparameters. More precisely, we vary the number of recurrent layers, the
number of neurons in each layer, the batch size, and the learning rate. In
Subappendix 4.D.1, we study if the VAA increases when learning occurs for the
copy first input benchmark with T = 50. In Subappendix 4.D.2, we study if
the warmup procedure and the double layer architecture improve learning for
the permuted row sequential MNIST benchmark with N = 472. Finally, in
Subappendix 4.D.3, we study the impact of the warmup procedure on the copy
first input benchmark with T = 300 for different values of k. All averages and
standard deviations reported were computed over three different trainings.

4.D.1 Correlation Between Multistability and Learning
In Figure 4.25 and Figure 4.26, we see the evolution of the loss on the validation
set and of the VAA for different hyperparameters. There is a clear correlation
between learning and multistability, for all choices of hyperparameters. More
precisely, it can be seen that learning loss decrease generally starts when the
VAA starts increasing. Moreover, the loss is highly correlated with the VAA.

4.D.2 Learning Improvements with the Warmup Proce-
dure

In Figure 4.27 and Figure 4.28, we can see the evolution of the loss on the
validation set and the test set accuracy for different hyperparameters. It can
be seen from those figures that the warmup procedure and the double layer
architecture with partial warmup both improve on the classically initialized
GRU architecture. Those improvements are consistent over all hyperparameters
choices. It can be noted that the warmup procedure is sometimes better than
the double layer architecture in terms of speed of convergence, notably when
using a single RNN layer and a small hidden size.

4.D.3 Impact of the Parameter k in the Warmup Proce-
dure

In Figure 4.29, we can see the impact of the target VAA* k used in the warmup
procedure on the final test loss, for the copy first input benchmark for different
sequence lengths T . It can be seen that for this benchmark with long time
dependencies, the higher k, the lower the MSE.

4.E Hyperparameters Optimization
In this section, we report the best hyperparameters obtained for each cell version
and the final test loss obtained for those hyperparameters, in Table 4.1 for the
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Figure 4.25: Evolution of the validation loss (left) and of the VAA (right) of
LSTM, GRU and MGU networks, for the copy first input benchmark.
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Figure 4.26: Evolution of the validation loss (left) and of the VAA (right) of
LSTM, GRU and MGU networks, for the copy first input benchmark.
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(a) S = 1, H = 64, α = 1e− 3, B = 32

0 10 20 30 40 50

Epoch

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

C
E

L

Classical

Warmed up

Warmed up
double layer

Classical

Warmed up

Warmed up
double layer Classical Warmed up Warmed up

double layer

Model

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

0.
33

0.
70

0.
94

(b) S = 1, H = 64, α = 1e− 3, B = 64
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(c) S = 1, H = 64, α = 1e− 4, B = 32
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(d) S = 1, H = 64, α = 1e− 4, B = 64
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(e) S = 1, H = 256, α = 1e− 3, B = 32

0 10 20 30 40 50

Epoch

0.0

0.5

1.0

1.5

2.0

C
E

L

Classical

Warmed up

Warmed up
double layer

Classical

Warmed up

Warmed up
double layer

Classical Warmed up Warmed up
double layer

Model

0.00

0.25

0.50

0.75

1.00

A
cc

u
ra

cy

0.
14

0.
95 0.

96

(f) S = 1, H = 256, α = 1e− 3, B = 64
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(g) S = 1, H = 256, α = 1e− 4, B = 32
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(h) S = 1, H = 256, α = 1e− 4, B = 64

Figure 4.27: Evolution of the validation loss (left) and test set accuracy after
50 epochs (right) of GRU networks, for the permuted line-sequential MNIST
benchmark with N = 472.
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(b) S = 2, H = 64, α = 1e− 3, B = 64
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(c) S = 2, H = 64, α = 1e− 4, B = 32
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(d) S = 2, H = 64, α = 1e− 4, B = 64
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(e) S = 2, H = 256, α = 1e− 3, B = 32
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(f) S = 2, H = 256, α = 1e− 3, B = 64
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(g) S = 2, H = 256, α = 1e− 4, B = 32
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(h) S = 2, H = 256, α = 1e− 4, B = 64

Figure 4.28: Evolution of the validation loss (left) and test set accuracy after
50 epochs (right) of GRU networks, for the permuted line-sequential MNIST
benchmark with N = 472.
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Figure 4.29: Mean squared error (± standard deviation) of different architecture
for different value of target VAA* k on the copy first input test set for different
values of T .
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L H α B MSE

LSTM
Classical 3 512 1× 10−3 32 0.9970± 0.0089
Double 3 256 5× 10−4 64 0.0004 ± 0.0001

Warmup 3 256 1× 10−3 64 0.0010± 0.0009

GRU
Classical 1 512 1× 10−3 32 0.2656± 0.4593
Double 2 256 1× 10−3 32 0.0002 ± 0.0001

Warmup 1 512 5× 10−4 64 0.0002 ± 0.0001

MGU
Classical 3 512 1× 10−3 32 0.3356± 0.5695
Double 2 256 5× 10−4 32 0.0003 ± 0.0000

Warmup 1 256 1× 10−3 32 0.0003 ± 0.0002

Chrono
Classical 1 512 1× 10−3 32 0.0003 ± 0.0002
Double 1 512 1× 10−3 32 0.0004± 0.0003

Warmup 1 512 1× 10−3 32 0.0004± 0.0002

BRC Classical 3 256 1× 10−3 32 0.0006 ± 0.0001
NBRC Classical 1 512 1× 10−3 32 0.0001 ± 0.0000

Table 4.1: Test mean squared error after hyperparameter selection in the de-
noising benchmark.

denoising benchmark with N = 100 and in Table 4.2 for the line-sequential
MNIST benchmark with N = 472. The hyperparameter selection procedure is
described hereafter. First, the dataset is split into the learning set and the test
set. Then, the learning set is split into three sets: the training set, the validation
set and the selection set. The network is then trained according to the standard
procedure: the final weights are those that have obtained the lowest loss on the
validation set, throughout the training on the training set. Those weights are
then evaluated on the selection set. This procedure is repeated five times for
each set of hyperparameters, with different splits of the learning set each time.
Note that those 5 different splits are the same for all cell versions. The set of
hyperparameters having obtained the lowest loss on average on the selection
set is selected. Using those hyperparameters, the cells are then trained 5 times
on the learning set, using a standard training-validation split, and the average
score obtained on the test set is reported. The sets of hyperparameters that are
considered are given by a grid search.

4.F Double-Layer Architecture without Partial
Warmup

In this section, we show the performance of all cells on the copy first input and
denoising benchmarks including the double-layer architecture without partial
warmup. As can be seen from Figure 4.30 and Figure 4.31 the double-layer
architecture without partial warmup generally performs worse than the classic
architecture. This ablation study confirms that the partial warmup is the most
important factor for the double-layer architecture performance.
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L H α B Accuracy

LSTM
Classical 2 512 1× 10−3 64 0.6693± 0.4807
Double 2 256 5× 10−4 32 0.9519 ± 0.0058

Warmup 3 256 5× 10−4 32 0.9475± 0.0008

GRU
Classical 3 512 5× 10−4 32 0.9578 ± 0.0087
Double 2 512 1× 10−4 32 0.9549± 0.0011

Warmup 1 512 1× 10−4 32 0.9555± 0.0053

MGU
Classical 2 512 5× 10−4 64 0.9576 ± 0.0085
Double 2 512 5× 10−4 64 0.9562± 0.0045

Warmup 2 256 5× 10−4 32 0.9485± 0.0073

Chrono
Classical 1 256 1× 10−3 32 0.9545± 0.0020
Double 1 256 1× 10−3 32 0.9575 ± 0.0029

Warmup 1 256 1× 10−3 32 0.9562± 0.0017

BRC Classical 2 512 5× 10−4 32 0.9589 ± 0.0064
NBRC Classical 2 512 5× 10−4 64 0.9600 ± 0.0006

Table 4.2: Test accuracy after hyperparameter selection in the line-sequential
MNIST benchmark.
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Figure 4.30: Test MSE loss for the copy first input benchmark with different
sequence lengths T . Mean and standard deviation are reported after 50 epochs.
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Figure 4.31: Test MSE loss for the denoising benchmark with different forgetting
periods N and T = 200. Mean and standard deviation are reported after 50
epochs.
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Part II

Leveraging Additional
Information
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Leveraging Additional
Information

In this part, we question the learning paradigm for reinforcement learning in
partially observable Markov decision processes. First, we study how eventual
additional information about the environment can be leveraged at training time
for learning to memorize relevant information. It is achieved by adapting an
existing world model to learn predicting future information about the environ-
ment instead of future observations, which is shown to learn a sufficient statistic
of the history. Second, we question the theoretical foundations of asymmetric
reinforcement learning algorithms, by studying why leveraging additional infor-
mation would improve learning. More precisely, we show that the asymmetric
actor-critic algorithm does not suffer from aliasing in the agent state when eval-
uating the policy, compared to its symmetric counterpart.
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Chapter 5

Remembering by Predicting
Additional Information

Informed POMDP: Leveraging Additional Information in Model-Based RL. Gas-
pard Lambrechts, Adrien Bolland and Damien Ernst.

From the paper presented at the Reinforcement Learning Conference and pub-
lished in the Reinforcement Learning Journal.

Abstract
In this work, we generalize the problem of learning through interaction in a
POMDP by accounting for eventual additional information available at training
time. First, we introduce the informed POMDP, a new learning paradigm offer-
ing a clear distinction between the information at training and the observation
at execution. Next, we propose an objective that leverages this information for
learning a sufficient statistic of the history for optimal control. We then adapt
this informed objective to learn a world model able to sample latent trajectories.
Finally, we empirically show a learning speed improvement in several environ-
ments using this informed world model in the Dreamer algorithm. These results
and the simplicity of the proposed adaptation advocate for a systematic con-
sideration of eventual additional information when learning in a POMDP using
model-based RL.
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5.1 Introduction

Reinforcement learning (RL) aims to learn to act optimally through interaction
with environments whose dynamics are unknown. A major challenge in this field
is partial observability, where only a partial observation o of the Markovian state
of the environment s is available for taking action a. Such an environment can
be formalized as a partially observable Markov decision process (POMDP). In
this context, an optimal policy η(a|h) generally depends on the history h of all
observations and previous actions, which grows linearly with time. Fortunately,
it is theoretically possible to find a statistic f(h) of the history h that is updated
recurrently and that summarizes all relevant information to act optimally. Such
a statistic is said to be recurrent and sufficient for optimal control. Formally, a
statistic f(h) is recurrent when it is updated according to f(h′) = u(f(h), a, o′)
each time an action a is taken and a new observation o′ is received, with h′ =
(h, a, o′). And a statistic f(h) is sufficient for optimal control when there exists
an optimal policy η(a|h) = g(a|f(h)).

In view of the existence of recurrent and sufficient statistics, many approaches
have relied on learning a recurrent policy ηθ,ϕ(a|h) = gϕ(a|fθ(h)) using a recur-
rent neural network (RNN) fθ for the statistic. These policies are simply trained
by stochastic gradient ascent of a RL objective using backpropagation through
time [Bakker, 2001, Wierstra et al., 2007, Hausknecht and Stone, 2015, Heess
et al., 2015, Zhang et al., 2016, Zhu et al., 2017]. In this case, the RNN learns a
sufficient statistic fθ(h) as it learns an optimal policy [Lambrechts et al., 2022,
Hennig et al., 2023]. Although these approaches theoretically allow implicit
learning of a sufficient statistic, sufficient statistics can also be learned explicitly.
Notably, many works [Igl et al., 2018, Buesing et al., 2018, Guo et al., 2018, Gre-
gor et al., 2019, Han et al., 2019, Guo et al., 2020, Lee et al., 2020, Hafner et al.,
2019, 2020] focused on learning a recurrent statistic that encodes the reward and
next observation distribution given the action: p(r, o′|h, a) = p(r, o′|f(h), a), a
property known as predictive sufficiency [Bernardo and Smith, 2009]. A recur-
rent and predictive statistic is indeed proven to be sufficient for optimal control
[Subramanian et al., 2022]. The sufficiency objective is usually pursued jointly
with the RL objective.

While these methods can learn sufficient statistics and optimal policies in the
context of POMDPs, they learn solely from the observations. However, assum-
ing the same partial observability at training time and execution time is too
pessimistic for many environments, notably for those that are simulated. We
claim that additional information about the state s, be it partial or complete,
can be leveraged during training for learning sufficient statistics more efficiently.
To this end, we generalize the problem of learning from interaction in a POMDP
by proposing the informed POMDP. This formalization introduces the training
information i about the state s, which is only available at training time. Impor-
tantly, this training information is designed such that the observation is condi-
tionally independent of the state given the information. Note that it is always
possible to design such an information i, possibly by concatenating the observa-
tion o with the eventual additional observations o+, such that i = (o, o+). This
formalization offers a new learning paradigm where the training information is
used along the reward and observation to supervise policy learning.
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In this context, we prove that recurrent statistics are sufficient for optimal con-
trol when they are predictive sufficient for the reward and next information given
the action: p(r, i′|h, a) = p(r, i′|f(h), a). We then derive a learning objective for
finding a predictive sufficient statistic, which amounts to approximating the con-
ditional distribution p(r, i′|h, a) through likelihood maximization using a model
qθ(r, i′|fθ(h), a), where fθ is the recurrent statistic. Compared to the classic ob-
jective for learning sufficient statistics [Igl et al., 2018, Buesing et al., 2018, Han
et al., 2019, Hafner et al., 2019], this objective approximates p(r, i′|h, a) instead
of p(r, o′|h, a). Next, we show that this learned model qθ(r, i′|fθ(h), a) can be
adapted to provide a world model from which latent trajectories can be sampled
without explicitly reconstructing the observation. This approach boils down to
adapting latent world models such as those of PlaNet or Dreamer [Hafner et al.,
2019, 2020, 2021, 2023] by relying on a model of the information instead of a
model of the observation. Our claims are supported by experiments in several
environments that we formalize as informed POMDPs (Mountain Hike, Veloc-
ity Control, Pop Gym, Flickering Atari and Flickering Control). The informed
adaptation of Dreamer exhibits an improvement in terms of convergence speed
and policy performance in many environments, while sometimes hurting perfor-
mance in others.

This work is structured as follows. In Section 5.2, we present some related
works in asymmetric learning and multi-agent RL. In Section 5.3, the informed
POMDP is presented with the underlying execution POMDP. In Section 5.4,
we provide a learning objective for sufficient statistics in this context. In Sec-
tion 5.5, we adapt the Dreamer algorithm to informed POMDPs using this
informed objective. In Section 5.6, we compare the Uninformed Dreamer and
the Informed Dreamer in several environments.

5.2 Related Works
In RL for POMDPs, asymmetric learning consists of exploiting state information
during training. These approaches usually learn policies for the POMDP by imi-
tating a policy conditioned on the state [Choudhury et al., 2018]. However, these
heuristic approaches lack a theoretical framework, and the resulting policies are
known to be suboptimal for the POMDP [Warrington et al., 2021, Baisero et al.,
2022]. Intuitively, optimal policies in POMDP might indeed need to consider
actions that reduce state uncertainty. Warrington et al. [2021] addressed this
issue by constraining the expert policy so that its imitation results in an op-
timal policy in the POMDP. Alternatively, asymmetric actor-critic approaches
use a critic conditioned on the state [Pinto et al., 2018]. These approaches were
proven to provide biased gradients by Baisero and Amato [2022], who also pro-
posed an unbiased actor-critic approach by introducing the history-state value
function V (h, s). Baisero et al. [2022] adapted this method to value-based RL,
where the history-dependent value function V (h) uses the history-state value
function V (h, s) in its temporal difference target. Alternatively, Nguyen et al.
[2021] proposed to enforce that the statistic f(h) encodes the belief p(s|h), a
sufficient statistic for optimal control [Åström, 1965]. It makes the strong as-
sumption that beliefs b(s) = p(s|h) are available at training time. Finally, in
a concurrent work, Avalos et al. [2024] learns a statistic f(h) that encodes the
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belief distribution p(s|h) by leveraging the states during training.

In multi-agent RL, exploiting additional information available at training time
was extensively studied under the centralized training and decentralized execu-
tion (CTDE) framework [Oliehoek et al., 2008]. In CTDE, it is assumed that the
histories of all agents, or even the environment state, are available to all agents
at training time. To exploit this additional information, several asymmetric
actor-critic approaches have been developed by leveraging an asymmetric critic
conditioned on all histories, including COMA [Foerster et al., 2018], MADDPG
[Lowe et al., 2017], M3DDPG [Li et al., 2019] and R-MADDPG [Wang et al.,
2020]. While efficient in practice, Lyu and Xiao [2022] showed that these asym-
metric actor-critic approaches provide biased gradient estimates, which general-
izes results developed for asymmetric learning in POMDP [Baisero and Amato,
2022] to the multi-agent setting. In the cooperative CTDE setting, another
line of work focuses on value decomposition to learn a utility function for each
agent, including QMIX [Rashid et al., 2018], QVMix [Leroy et al., 2021] and
QPLEX [Wang et al., 2021]. These approaches use the additional information to
modulate the contribution of each utility function in the global value function,
while ensuring that maximizing the local utility functions also maximize the
global value function, a property known as individual global max (IGM). Other
methods relax this IGM requirement but still condition the value function on
all histories, including QTRAN [Son et al., 2019] and WQMix [Rashid et al.,
2020]. Recently, Hong et al. [2022] established that the IGM decomposition is
not attainable in the general case.

In contrast to the existing literature on asymmetric learning in POMDP, we
introduce an objective that provides a sufficient statistic for optimal control, and
that leverages the additional information only through the objective. Moreover,
our new learning paradigm is not restricted to state supervision, but supports
any level of additional information. Finally, to the best of our knowledge, our
method is the first to exploit additional information for learning an environment
model of the POMDP. While our approach is probably applicable to the CTDE
setting for learning sufficient statistics of the local histories of each agent, we
leave it as future work.

5.3 Informed Partially Observable Markov De-
cision Processes

In this section, we introduce the informed POMDP and the associated training
information, along with the underlying execution POMDP and the RL objective
in this context.

5.3.1 Informed Partially Observable Markov Decision Pro-
cesses

An informed POMDP P̃ is defined as a tuple P̃ = (S,A, I,O, T,R, Ĩ, Õ, P, γ),
where S is the state space, A is the action space, I is the information space,
and O is the observation space. The initial state distribution P gives the prob-
ability P (s0) of s0 ∈ S being the initial state of the decision process. The dy-
namics are described by the transition distribution T that gives the probability
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Figure 5.1: Bayesian network of an informed POMDP execution.

T (st+1|st, at) of st+1 ∈ S being the state resulting from action at ∈ A in state
st ∈ S. The reward distribution R gives the probability density R(rt|st, at)
of the immediate reward rt ∈ R after taking action at ∈ A in state st ∈ S.
The information distribution Ĩ gives the probability Ĩ(it|st) to get information
it ∈ I in state st ∈ S, and the observation distribution Õ gives the probability
Õ(ot|it) to get observation ot ∈ O given information it. Finally, the discount
factor γ ∈ [0, 1] weights the relative importance of future rewards. The main
assumption about an informed POMDP is that the observation ot is condition-
ally independent of the state st given the information it: p(ot|it, st) = Õ(ot|it).
In other words, the random variables st, it and ot satisfy the Bayesian network
st −→ it −→ ot. In practice, it is always possible to define such a training
information it. For example, the information it = (ot, o+

t ) satisfies the afore-
mentioned conditional independence for any o+

t . Taking a sequence of t ac-
tions in the informed POMDP conditions its execution and provides samples
(i0, o0, a0, r0, . . . , it, ot) at training time, as illustrated in Figure 5.1.

For each informed POMDP, there is an underlying execution POMDP that
is defined as P = (S,A,O, T,R,O, P, γ), where O(ot|st) =

∫
I Õ(ot|i)Ĩ(i|st) di.

Taking a sequence of t actions in the execution POMDP conditions its execution
and provides the history ht = (o0, a0, . . . , ot) ∈ H, where H is the set of histories
of arbitrary length. Note that information samples i0, . . . , it and reward samples
r0, . . . , rt−1 are not included, since they are not available at execution time.

5.3.2 Reinforcement Learning Objective

A policy η ∈ H is a mapping from histories to probability measures over the
action space, where H = H → ∆(A) is the set of such mappings. A policy is
said to be optimal for an informed POMDP when it is optimal in the underlying
execution POMDP, i.e., when it maximizes the expected return,

J(η) = Eη
[ ∞∑
t=0

γtRt

]
. (5.1)

The RL objective for an informed POMDP is thus to find an optimal policy
η∗ ∈ arg maxη∈H J(η) for the execution POMDP from interaction with the
informed POMDP.
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5.4 Optimal Control with Recurrent Sufficient
Statistics

In this section, we introduce the notion of sufficient statistic for optimal control
and derive an objective for learning such a statistic in an informed POMDP.
For the sake of conciseness, we simply use x to denote a random variable at the
current time step and x′ to denote it at the next time step. Moreover, we use
the composition notation g ◦ f to denote the history-dependent policy g(·|f(·)).

5.4.1 Recurrent Sufficient Statistics
Let us first define the concept of sufficient statistic, and derive a necessary
condition for optimality.
Definition 5.1 (Sufficient statistic). In an informed POMDP P̃ and in its un-
derlying execution POMDP P, a statistic of the history f : H → Z is sufficient
for optimal control if, and only if,

max
g : Z→∆(A)

J(g ◦ f) = max
η : H→∆(A)

J(η). (5.2)

Corollary 5.1 (Sufficiency of optimal policies). In an informed POMDP P̃ and
in its underlying execution POMDP P, if a policy η = g ◦ f is optimal, then the
statistic f : H → Z is sufficient for optimal control.

In this work, we focus on learning recurrent policies, i.e., policies η = g ◦ f for
which the statistic f is recurrent. Formally, we have,

η(a|h) = g(a|f(h)), ∀(h, a), (5.3)
f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′). (5.4)

This enables the history to be processed iteratively each time that an action is
taken and an observation is received. According to Corollary 5.1, when learning
a recurrent policy η = g◦f , the objective can be broken down into two problems:
finding a sufficient statistic f and an optimal distribution g,

max
f : H→Z

g : Z→∆(A)

J(g ◦ f). (5.5)

5.4.2 Learning Recurrent Sufficient Statistics
Below, we provide a sufficient condition for a statistic to be sufficient for optimal
control.
Theorem 5.1 (Sufficiency of recurrent predictive sufficient statistics). In an
informed POMDP P̃, a statistic f : H → Z is sufficient for optimal control if it
is (i) recurrent and (ii) predictive sufficient for the reward and next information
given the action,

(i) f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′), (5.6)
(ii) p(r, i′|h, a) = p(r, i′|f(h), a), ∀(h, a, r, i′). (5.7)
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The proof for this theorem is in Appendix 5.A, generalizing earlier work by
Subramanian et al. [2022].

Now, let us consider a distribution over the histories and actions whose density
function is denoted as p(h, a). For example, we consider the stationary distri-
bution induced by the current policy η in the informed POMDP P̃. Let us also
assume that the density function p(h, a) is non-zero everywhere. As shown in
Appendix 5.B, under mild assumptions, any statistic f satisfying the objective,

max
f : H→Z

q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a) (5.8)

also satisfies (ii). This variational objective jointly optimizes the statistic func-
tion f : H → Z with a conditional probability density function q : Z × A →
∆(R × I). According to Theorem 5.1, a statistic that is recurrent and that
satisfies objective (5.8) is sufficient for optimal control.

In practice, both the recurrent statistic and the density function are imple-
mented with neural networks fθ and qθ respectively, both parametrized by
θ ∈ Rd. In this case, the objective can be maximized by stochastic gradient
ascent. Regarding the statistic function fθ, it is implicitly implemented by the
update function zt = uθ(zt−1;xt) of an RNN. The inputs are xt = (at−1, ot),
with a−1 the null action that is typically set to zero. The hidden state of the
RNN zt = fθ(ht) is thus a statistic of the history that is recurrently updated
using uθ. Regarding qθ, it is implemented by a parametrized probability density
function estimator. In such a context, we obtain the objective,

max
θ

E
p(h,a,r,i′)

log qθ(r, i′|fθ(h), a)︸ ︷︷ ︸
L(fθ)

. (5.9)

We might wonder whether this informed objective is better than the classic
objective, where i = o. In this work, we hypothesize that approximating the
information distribution instead of the observation distribution is a better ob-
jective in practice. This is motivated by the data processing inequality applied
to the Bayesian network s′ −→ i′ −→ o′, which concludes that the information
i′ is more informative than the observation o′ about the Markovian state s′ of
the environment,

I(s′, i′|h, a) ≥ I(s′, o′|h, a), (5.10)

where I denotes the conditional mutual information. We thus expect the statis-
tic fθ(h) to converge faster towards a sufficient statistic, and the policy to
converge faster towards an optimal policy. It is however important to note that
the information i might contain irrelevant state variables. In practice, the con-
ditional distribution p(i′|h, a) may thus be much more difficult to approximate
than p(o′|h, a), while not being much more useful to the control task. While
we consider this study out of the scope of this work, ensuring that the suffi-
cient representations of the histories are also necessary for the control task is a
promising avenue for future work.
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5.4.3 Optimal Control with Recurrent Sufficient Statistics
As seen from Corollary 5.1, sufficient statistics are needed for optimally control-
ling POMDPs. Moreover, as we focus on recurrent policies implemented with
RNNs, we can exploit objective (5.9) to learn a sufficient statistic fθ. In prac-
tice, we jointly maximize the RL objective J(ηθ,ϕ) = J(gϕ ◦fθ) and the statistic
objective L(fθ). This enables one to use the information i to guide the statistic
learning through L(fθ). This joint maximization results in the objective,

max
θ,ϕ

J(gϕ ◦ fθ) + L(fθ). (5.11)

Note that a policy maximizing (5.11) also maximizes the return J(gϕ ◦ fθ) if fθ
and qθ are expressive enough, such that this objective provides optimal policies
in the sense of objective (5.5).

5.5 Model-Based RL with Informed World Mod-
els

Model-based RL focuses on learning a model of the dynamics p(r, o′|h, a) of
the environment, known as a world model, that is exploited to derive a near-
optimal policy. Since the approximate model usually allows one to generate
trajectories, many works derive a near-optimal policy by online planning (e.g.,
model-predictive control) or by optimizing a parametrized policy based on these
trajectories [Sutton, 1991, Ha and Schmidhuber, 2018, Chua et al., 2018, Zhang
et al., 2019, Hafner et al., 2019, 2020]. In this section, we first modify the model
qθ(r, i′|fθ(h), a) in order to get a world model from which trajectories can be
sampled. We then adapt the DreamerV3 [Hafner et al., 2023] algorithm using
this world model, resulting in the Informed Dreamer algorithm.

5.5.1 Informed World Model
We implement the informed world model with a variational RNN (VRNN) as
introduced by Chung et al. [2015], also known as a recurrent state-space model
(RSSM) in the RL context [Hafner et al., 2019]. It is worth noticing that such
a model performs its recurrent update using a latent stochastic representation
of the observation. When generating trajectories, it also samples latent rep-
resentations of the observations without explicitly reconstructing them, which
we refer to as latent trajectories. This key design choice enables the sampling
of trajectories without explicitly learning the observation distribution, but the
reward and information distribution only. Formally, we have,

ê ∼ qpθ (·|z, a), (prior, 5.12)
r̂ ∼ qrθ(·|z, ê), (reward decoder, 5.13)
î′ ∼ qiθ(·|z, ê), (information decoder, 5.14)

where ê is the latent variable of the VRNN when generating trajectories. The
prior qpθ and the decoders qiθ and qrθ are jointly trained with the encoder,

e ∼ qeθ(·|z, a, o′), (encoder, 5.15)
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to maximize the likelihood of reward and next information samples. The latent
representation e ∼ qeθ(·|z, a, o′) of the next observation o′ can be used to update
the statistic to z′,

z′ = uθ(z, a, e). (recurrence, 5.16)

Note that the statistic z is no longer deterministically updated to z′ given a and
o′, instead we have z ∼ fθ(·|h), which is induced by uθ and qeθ . In practice, we
maximize the evidence lower bound (ELBO), a variational lower bound on the
likelihood of reward and next information samples given the statistic [Chung
et al., 2015],

E
p(h,a,r,i′)
fθ(z|h)

log qθ(r, i′|z, a) ≥ E
p(h,a,r,i′,o′)
fθ(z|h)

[
E

qe
θ

(e|z,a,o′)

[
log qiθ(i′|z, e) + log qrθ(r|z, e)

]
−KL (qeθ(·|z, a, o′) ∥ qpθ (·|z, a))

]
. (5.17)

As illustrated in Figure 5.2 for a trajectory sampled in the informed POMDP, the
ELBO objective maximizes the conditional log-likelihood qrθ(r|z, e) and qiθ(i|z, e)
of r and i′ for a sample of the encoder e ∼ qeθ(·|z, a, o′), and minimizes the KL
divergence from qeθ(·|z, a, o′) to the prior distribution qpθ (·|z, a). Note that when
i = o, it corresponds to Dreamer’s world model and learning objective.
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qrθ qiθ

− KL

qp
θ

Figure 5.2: Variational recurrent neural network loss for a given trajectory at
training time. Dependence of qrθ and qiθ on z is omitted.

As can be noticed from Equation 5.17 and Figure 5.2, the encoder is condi-
tioned on the observation and not on the information. While this is required for
the encoder to be used at execution time, it certainly loosen the lower bound
and limits the quality of the conditional information distribution that can be
learned. Future work may improve the quality of the information reconstruc-
tion by considering an additional information encoder, also conditioned on the
statistic of the history, whose samples are not used in the recurrence.

5.5.2 Informed Dreamer
As explained above, while our informed world model does not learn the observa-
tion distribution, it is still able to sample latent trajectories. Indeed, the VRNN
only uses the latent representation e ∼ qeθ(·|z, a, o′) of the observation o′, trained
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to reconstruct the information i′, in order to update z to z′. Consequently, we
can use the prior distribution ê ∼ qpθ (·|z, a), trained according to (5.17) to min-
imize the KL divergence from e ∼ qpθ (·|z, a, o′) in expectation, to sample latent
trajectories.

The Informed Dreamer algorithm leverages such trajectories to learn a latent
critic vψ(z) and a latent policy a ∼ gϕ(·|z). Figure 5.3a illustrates the generation
of a latent trajectory, along with estimated rewards r̂ ∼ qrθ(·|z, e) and values
v̂ = vψ(z). The actions are sampled according to the latent policy, and any RL
algorithm can be used to maximize the estimated return. Moreover, note that
the estimated return is given by a function that is differentiable with respect
to ϕ, and it can be directly maximized by stochastic gradient ascent. In the
experiments, we use an actor-critic approach for discrete actions and direct
maximization for continuous actions, following DreamerV3 [Hafner et al., 2023].
Finally, as shown in Figure 5.3b, when deployed in the execution POMDP, the
encoder qeθ is used to compute the latent representations of the observations and
to update the statistic. The actions are then selected according to a ∼ gϕ(·|z).
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(a) Imagination of a trajectory using policy gϕ with estimated rewards and values.
Dependence of qrθ and vψ on z is omitted.
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(b) Execution of the policy on a trajectory of the POMDP using the encoder qeθ to
condition the latent policy gϕ.

Figure 5.3: Bayesian graph of a VRNN evaluation during imagination and exe-
cution.

A pseudocode for the adaptation of the DreamerV3 algorithm using this in-
formed world model is given in Appendix 5.C. We also detail some divergences
of our formalization with respect to the original DreamerV3 algorithm. As in
DreamerV3, we use symlog predictions, a discrete VAE, KL balancing, free bits,
reward normalization, a distributional critic, and entropy regularization.

5.6 Experiments
In this section, we compare Dreamer to the Informed Dreamer on several in-
formed POMDPs, all considered with a discount factor of γ = 0.997. For
reproducibility purposes, we use the implementation and hyperparameters of
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DreamerV3 released by the authors at github.com/danijar/dreamerv3, and re-
lease our adaptation to informed POMDPs using the same hyperparameters at
github.com/glambrechts/informed-dreamer.

5.6.1 Varying Mountain Hike
In the Varying Mountain Hike environments, the agent should walk through-
out a mountainous terrain to reach the mountain top as fast as possible while
avoiding the valleys. There exists four versions of this environment, depend-
ing on the agent orientation (north or random) and on the observation that is
available (position or altitude). More formally, the agent has a position x and a
fixed orientation c in each episode. The orientation c is either always north or a
random cardinal orientation, depending on the environment version. It can take
four actions to move relative to its orientation (right, forward, left and back-
ward). The orientation is not observed by the agent, but it receives a Gaussian
observation of its position, or its altitude, depending on the environment version
(σo = 0.1 in both cases). The reward is given by its altitude relative to the
mountain top, such that the goal of the agent is to obtain the highest cumula-
tive altitude. Around the mountain top, states are terminal and the trajectories
are truncated at t = 160 in practice. We refer the reader to Lambrechts et al.
[2022] for a formal description of these environments, strongly inspired by the
Mountain Hike of Igl et al. [2018].

For this environment, we first consider the position and orientation to be avail-
able as additional information at training time. In other words, we consider the
state-informed POMDP with i = s. As can be seen in Figure 5.4a, the speed of
convergence of the policies is improved in all four environments when using the
Informed Dreamer. Moreover, as shown in Table 5.1 in Appendix 5.D, the final
performance of the Informed Dreamer is better in 3 out of 4 environments.
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(a) Uninformed Dreamer and Informed
Dreamer with i = s in the four environments.
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Figure 5.4: Varying Mountain Hike environments: minimum, maximum and
average returns over five trainings.

We also experiment with other types of information in the Varying Mountain
Hike with position observation and random orientation. More precisely, we
consider an information i = (x̃, c̃) about the state s = (x, c), where x̃ is an
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observation of the position x with Gaussian noise of standard deviation σi ∈
[0, σo], and c̃ is a noisy observation of the orientation c replaced by a random
orientation with probability εi ∈ [0, 1]. Note that when σi = 0, the position x is
encoded in the information, while when σi = σo, the observation o is encoded
in the information. As shown in Figure 5.4b, without confidence intervals for
the sake readability, the better the information, the faster the policy converges.
It supports the idea that the more information about the state is exploited, the
faster an optimal policy for the POMDP is learned. Moreover, we observe that
the Informed Dreamer with εi = 1 and σi = 0.1 performs even worse than the
Uninformed Dreamer. It suggests that considering additional information that
is not informative about the state (i.e., I(s, i|o) = 0), such as c̃ with εi = 1, can
degrade learning. Similar results are obtained for the other three environments
in Subappendix 5.E.1.

5.6.2 Velocity Control
In the Velocity Control environments, we consider the standard DeepMind Con-
trol tasks [Tassa et al., 2018], where only the joints velocities are available as
observations and not their absolute positions, which is a standard benchmark in
the partially observable RL literature [Han et al., 2019, Lee et al., 2020]. These
environments consists of controlling different multi-joints robots to achieve sev-
eral tasks. We consider the absolute positions to be available at training time
along with the velocities, which results in a Markovian information i = s.
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Figure 5.5: Uninformed Dreamer and Informed Dreamer with i = s in the
Velocity Control environments: minimum, maximum and average returns over
five trainings.

Figure 5.5 shows that the convergence speed of the policies is improved in this
benchmark, for nearly all of the considered games. Moreover, the final returns
are given in Table 5.2 in Appendix 5.D, and show that policies obtained after
one million time steps are better in 13 out of 18 environments when considering
additional information.

5.6.3 Pop Gym
The Pop Gym environments have been specifically designed to benchmark the
ability of handling partial observability [Morad et al., 2023]. The latter notably
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includes memory games, board games, or control problems involving partial
observability and noise. For these environments, we consider the state to be
available as additional information.
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Figure 5.6: Uninformed Dreamer and Informed Dreamer with i = s in the
Pop Gym environments: minimum, maximum and average returns over five
trainings.

Figure 5.6 shows that learning in those POMDPs sometimes benefits from the
exploitation of additional information as proposed in the Informed Dreamer.
The learning of the Informed Dreamer seems to suffer from the approximation
of the information distribution in 2 out of those 10 environments (Concen-
tration and Higher Lower). The final returns are given in Table 5.3 in Ap-
pendix 5.D, showing a better final performance in 7 out of 10 environments,
even though returns have a high variability. In particular, we observe that the
Informed Dreamer converges to a significantly higher return for the Repeat First
and Repeat Previous environments, that both require discovering long time de-
pendencies. The exploitation of additional information seems crucial in these
environments, and we study this in depth on harder instances of the Repeat
Previous environment in Subappendix 5.E.2. This analysis shows that the In-
formed Dreamer can learn near-optimal policies in environments for which the
Uninformed Dreamer does not learn at all.

5.6.4 Flickering Atari and Flickering Control
While arguably not constituting a relevant benchmark for measuring the abil-
ity of handling partial observability [Shao et al., 2022, Avalos et al., 2024], the
Flickering Atari and Flickering Control environments have become standard
benchmarks in the partially observable RL literature [Hausknecht and Stone,
2015, Zhu et al., 2017, Igl et al., 2018, Ma et al., 2020]. For completeness, the
results for these environments are reported in Appendix 5.E. We observe that
the speed of convergence and final performance of the agent is sometimes greatly
improved when considering additional information (e.g., Asteroids, Pong, Break-
out). However, we also observe that the performance is lower in some environ-
ments. As far as the Flickering Atari environments are concerned, the Informed
Dreamer only outperforms Dreamer in 6 out of 12 environments. In the Flicker-
ing Control environments, the Informed Dreamer tends to systematically under-
perform the Uninformed Dreamer, attaining a better performance in only 2 out
of 18 environments. It suggests that additional state information is not useful
for these tasks. We furthermore hypothesize that the conditional information
distribution is difficult to approximate, which may cause learning to degrade. It
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shows that not all information is worth exploiting, particularly when the level
of uncertainty due to partial observability is low.

5.7 Conclusion
In this work, we introduced a new formalization for considering additional in-
formation available at training time for POMDP, called the informed POMDP.
In this context, we proposed a learning objective and proved that it provides
sufficient statistic for optimal control. Next, we adapted this objective to pro-
vide an environment model from which latent trajectories can be sampled. We
then adapted a successful model-based RL algorithm, known as Dreamer, with
this informed world model, resulting in the Informed Dreamer algorithm. By
considering several environments from the partially observable RL literature,
we showed that this informed learning objective often improves the convergence
speed and quality of the policies. This work also presents several limitations.
First, a formal justification for the use of the information instead of the ob-
servation is still lacking. Future work may consider the notion of approximate
information states to bound the suboptimality of the policy for a given error on
the information distribution instead of the observation distribution. Second, we
observed that this informed objective hurts performance in some environments,
motivating further work in which particular attention is paid to the design of
the information. It would be worth drawing connection to the exogenous RL
literature that complements this work by focusing on discarding irrelevant in-
formation. Third, the proposed ELBO learning objective is probably a loose
lower bound on the information likelihood. Future work may improve the qual-
ity of the information distribution by considering informed world models with
a dedicated information encoder.
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5.A Proof of the Sufficiency of Recurrent Pre-
dictive Sufficient Statistics

In this section, we prove Theorem 5.1, that is recalled below.
Theorem 5.1 (Sufficiency of recurrent predictive sufficient statistics). In an
informed POMDP P̃, a statistic f : H → Z is sufficient for optimal control if it
is (i) recurrent and (ii) predictive sufficient for the reward and next information
given the action,

(i) f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′), (5.6)
(ii) p(r, i′|h, a) = p(r, i′|f(h), a), ∀(h, a, r, i′). (5.7)

Proof. From Proposition 4 and Theorem 5 by Subramanian et al. [2022], we
know that a statistic is sufficient for optimally controlling an execution POMDP
if it is (i) recurrent and (ii’) predictive sufficient for the reward and next obser-
vation given the action: p(r, o′|h, a) = p(r, o′|f(h), a). Let us consider a statistic
f : H → A satisfying (i) and (ii). Let us show that it satisfies (ii’). We have,

p(r, o′|f(h), a) =
∫

I
p(r, o′, i′|f(h), a) di′ (5.18)

=
∫

I
p(o′|r, i′, f(h), a)p(r, i′|f(h), a) di′, (5.19)

using the law of total probability and the chain rule. As can be seen from
the informed POMDP formalization of Section 5.3 and the resulting Bayesian
network in Figure 5.1, the Markov blanket of o′ is {i′}. As a consequence,
o′ is conditionally independent of any other variable given i′. In particular,
p(o′|i′, r, f(h), a) = p(o|i′), such that,

p(r, o′|f(h), a) =
∫

I
p(o′|i′)p(r, i′|f(h), a) di′. (5.20)

From hypothesis (ii), we can write,

p(r, o′|f(h), a) =
∫

I
p(o′|i′)p(r, i′|h, a) di′. (5.21)

Finally, exploiting the Markov blanket {i′} of o′, the chain rule and the law of
total probability again, we have,

p(r, o′|f(h), a) =
∫

I
p(o′|i′, r, h, a)p(r, i′|h, a) di′ (5.22)

=
∫

I
p(o′, r, i′|h, a) di′ (5.23)

= p(r, o′|h, a). (5.24)

This proves that (ii) implies (ii’). As a consequence, any statistic f satisfying
(i) and (ii) is a sufficient statistic of the history for optimally controlling the
informed POMDP.
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5.B Proof of the Predictive Sufficient Objective
First, let us consider a fixed history h and action a. Let us recall that two
density functions p(r, i′|h, a) and p(r, i′|f(h), a) are equal almost everywhere if,
and only if, their KL divergence is zero,

E
p(r,i′|h,a)

log p(r, i′|h, a)
p(r, i′|f(h), a) = 0. (5.25)

Now, let us consider a probability density function p(h, a) that is non zero
everywhere. We have that the KL divergence from p(r, i′|h, a) to p(r, i′|f(h), a)
is equal to zero for almost every history h and action a if, and only if, it is zero
on expectation over p(h, a) since the KL divergence is non-negative,

E
p(r,i′|h,a)

log p(r, i′|h, a)
p(r, i′|f(h), a)

a.e.= 0⇔ E
p(h,a,r,i′)

log p(r, i′|h, a)
p(r, i′|f(h), a) = 0. (5.26)

Rearranging, we have that p(r, i′|h, a) is equal to p(r, i′|f(h), a) for almost every
h, a, r and i′ if, and only if,

E
p(h,a,r,i′)

log p(r, i′|h, a) = E
p(h,a,r,i′)

log p(r, i′|f(h), a). (5.27)

Now, we recall the data processing inequality, enabling one to write, for any
statistic f ′,

E
p(h,a,r,i′)

log p(r, i′|h, a) ≥ E
p(h,a,r,i′)

log p(r, i′|f ′(h), a). (5.28)

since h(r, i′|h, a) = h(r, i′|h, f(h), a) ≤ h(r, i′|f(h), a), ∀(h, a), where h(x) is
the differential entropy of random variable x. Assuming that there exists at
least one f : H → Z for which the inequality is tight, we obtain the following
objective for a predictive sufficient statistic f ,

max
f : H→Z

E
p(h,a,r,i′)

log p(r, i′|f(h), a). (5.29)

Unfortunately, the probability density p(r, i′|f(h), a) is unknown. However,
knowing that the distribution that maximizes the log-likelihood of samples from
p(r, i′|f(h), a) is p(r, i′|f(h), a) itself, we can write,

E
p(h,a,r,i′)

log p(r, i′|f(h), a) = max
q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a). (5.30)

By jointly maximizing the probability density function q : Z ×A → ∆(R× I),
we obtain,

max
f : H→Z

q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a). (5.31)

This objective ensures that the statistic f(h) is predictive sufficient for the
reward and next information given the action. If f(h) is a recurrent statistic,
then it is also sufficient for optimal control, according to Theorem 5.1.
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5.C Informed Dreamer
The Informed Dreamer algorithm is presented in Algorithm 5.1. Differences with
the Uninformed Dreamer algorithm [Hafner et al., 2020] are highlighted in blue.
In addition, it can be noted that in the original Dreamer algorithm, the statistic
zt encodes ht = (o0, a0, . . . , ot) and at, instead of ht only. As a consequence,
the prior distribution et ∼ qpθ (·|zt) can be conditioned on the statistic zt only,
instead of the statistic and last action. Similarly, the encoder distribution et ∼
qpθ (·|zt, ot+1) can be conditioned on the statistic zt only, instead of the statistic
and last action. On the other hand, the latent policy at+1 ∼ g(·|zt, et) should
be conditioned on the statistic zt and the new latent et to account for the
last observation, and the same is true for the value function vψ(zt, et). In the
experiments, we follow the original implementation for both the Uninformed
Dreamer and the Informed Dreamer, according to the code that we release at
github.com/glambrechts/informed-dreamer.

Following Dreamer, the algorithm introduces the continuation flag ct, which
indicates whether state st is terminal. A terminal state st is a state from
which the agent can never escape, and in which any further action provides
a zero reward. It follows that the value function of a terminal state is zero,
and trajectories can be truncated at terminal states since we do not need to
learn their value or the optimal policy in those states. Alternatively, ct can be
interpreted as an indicator that can be extracted from the observation ot, but
we made it explicit in the algorithm.

5.D Final Returns
We provide the final returns obtained by Dreamer and the Informed Dreamer for
the Varying Mountain Hike environments in Table 5.1, for the Velocity Control
environments in Table 5.2, and for the Pop Gym environments in Table 5.3.

5.E Additional Experiments
In this section, we provide results for non-Markovian information in the Varying
Mountain Hike environments, for harder Pop Gym environments, along with the
results of the flickering environments.

5.E.1 Non-Markovian Information
We experiment with other levels of information in the Varying Mountain Hike
environments. More precisely, we consider an information i that contains an ob-
servation x̃ of the position x (or an observation ỹ of the altitude y) with Gaussian
noise of standard deviation σi ∈ [0, σo]. In addition, in the case of environments
with random orientation, we consider an information that also contains a noisy
observation of the orientation c replaced with a random orientation with prob-
ability εi ∈ [0, 1]. Note that when σi = 0, the exact position x (or altitude y) is
encoded in the information, while when σi = σo, the observation o is encoded
in the information.

As shown in Figure 5.7, without confidence intervals for the sake of readability,
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Algorithm 5.1: Informed Dreamer.
parameters: S the number of environment steps, F the number of steps before

training,
R the train ratio,
W the backpropagation horizon,
K the imagination horizon,
N the batch size,
B replay buffer capacity.

1 Initialize parameters θ, ϕ, ψ randomly, and empty replay buffer B.
2 Let g = 0, t = 0, a−1 = 0, r−1 = 0, z−1 = 0.
3 Reset the environment and observe o0 and c0 (true at reset).
4 for s = 0 . . . S − 1 do
5 Encode observation ot to et−1 ∼ qeθ(·|zt−1, at−1, ot).
6 Update zt = uθ(zt−1, at−1, et−1).
7 Given the current statistic zt, take action at ∼ gϕ(·|zt).
8 Observe reward rt, information it+1, observation ot+1 and continuation flag

ct+1.
9 if ct+1 is false (terminal state) then

10 Reset t = 0.
11 Reset the environment and observe o0 and c0 (true at reset).
12 Update t = t+ 1.
13 Add trajectory of W steps (aw−1, rw−1, iw, ow, cw)tw=t−W+1 to buffer B.
14 while |B| ≥ F ∧ g < Rs do
15 Draw N trajectories of length W

{
(anw−1, r

n
w−1, i

n
w, o

n
w, c

n
w)W−1
w=0

}N−1
n=0

uniformly from replay buffer B.
16 Compute statistics and encoded latents{

(znw, enw)W−2
w=−1

}N−1
n=0

= Encode
(
uθ, q

e
θ ,
{

(anw−1, o
n
w)W−1
w=0

}N−1
n=0

)
.

17 Update θ using ∇θ
∑N

n=0

∑W−2
w=−1 L

n
w, where an−1 = 0 and,

Lnw = log qiθ(inw+1|znw, enw) + log qcθ(cnw+1|znw, enw) + log qrθ(rnw|znw, enw)
−KL (qeθ(·|znw, anw, onw+1) ∥ qpθ (·|znw, anw)) .

18 Sample latent trajectories{{
(zn,wk , ên,wk )K−1

k=0
}W−2
w=−1

}N−1

n=0
= Imagine

(
uθ, q

p
θ , gϕ,

{
(znw, enw, anw)W−2

w=−1
}N−1
n=0

)
.

19 Predict rewards rn,wk ∼ qrθ(·|zn,wk , ên,wk ), continuations flags cn,wk+1 ∼
qcθ(·|z

n,w
k , ên,wk ), and values vn,wk = vψ(zn,wk ).

20 Compute value targets using λ-returns, with Gn,wK−1 = vn,wK−1 and

Gn,wk = rn,wk + γcn,wk
(
(1− λ)vn,wk+1 + λGn,wk+1

)
.

21 Update ϕ using ∇ϕ
∑N−1

n=0

∑W−2
w=−1

∑K−1
k=0 Gn,wk .

22 Update ψ using ∇ψ
∑N−1

n=0

∑W−2
w=−1

∑K−1
k=0 ∥vψ(zn,wk )− sg(Gn,wk )∥2, where

sg is the stop-gradient operator.
23 Count gradient steps g = g + 1.
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Algorithm 5.2: Trajectory encoding.
inputs: uθ the update function,

qeθ the encoder,{
(anw−1, o

n
w)W−1
w=0

}N−1
n=0

the histories.
1 Let zn−1 = 0.
2 for w = 0 . . .W − 1 do
3 Let enw−1 ∼ qeθ(·|znw−1, a

n
w−1, o

n
w).

4 Let znw = uθ(znw−1, a
n
w−1, e

n
w−1).

5 return
{

(znw, enw)W−2
w=−1

}N−1
n=0

.

Algorithm 5.3: Trajectory imagination.
inputs: uθ the update function,

qpθ the prior,
gϕ the policy,{

(znw, enw, anw)W−2
w=−1

}N−1
n=0

the statistics, encoded latents and actions.
1 Let zn,w−1 = znw, ên,w−1 = enw, an,w−1 = anw.
2 for k = 0 . . .K − 1 do
3 Let zn,wk = uθ(zn,wk−1, a

n,w
k−1, ê

n,w
k−1).

4 Let ên,wk ∼ qpθ (·|zn,wk , an,wk ).
5 Let an,wk ∼ gϕ(·|zn,wk ).

6 return
{{

(zn,wk , ên,wk )K−1
k=0

}W−2
w=−1

}N−1

n=0
.

Altitude Random Uninformed Informed

False False −13.70± 03.32 −13.35± 02.93
False True −18.32± 06.04 −17.72± 04.19
True False −14.78± 02.44 −14.98± 04.73
True True −67.05± 21.76 −45.94± 32.77

Table 5.1: Average final return and standard deviation over five trainings in the
Mountain Hike environments.

the better the information, the faster the policy converges. These results hold
in all environments except that with altitude observation and fixed orientation,
for which the results are more mixed. As said in Subsection 5.6.1, it supports
the hypothesis that the more informative about the state the information is,
the faster an optimal policy is learned. Moreover, it can be observed that when
an additional information c̃ is not informative about the state, convergence is
slower than for the Uninformed Dreamer. This highlights again the importance
of the quality of the additional information.

5.E.2 Harder Pop Gym Environments
Despite the performance of the informed policy being equal to the performance
of the uninformed policy at optimum, there may exists environments for which
the optimum is never reached in practice without considering additional infor-
mation at training time. We observe it to be the case for environments with long
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Task Uninformed Informed

Acrobot Swingup 113.73± 108.03 112.49± 54.67
Cartpole Balance 511.60± 01.95 513.22± 00.82

Cartpole Balance Sparse 491.07± 00.00 485.34± 49.39
Cartpole Swingup 347.58± 18.30 371.24± 05.62

Cartpole Swingup Sparse 36.98± 42.83 102.44± 139.79
Cheetah Run 315.40± 39.64 305.91± 103.62
Cup Catch 465.23± 28.77 468.32± 12.53
Finger Spin 186.66± 39.34 245.77± 61.99

Finger Turn Easy 359.32± 76.13 414.82± 46.09
Finger Turn Hard 347.91± 81.80 398.38± 63.40

Hopper Hop 91.05± 29.62 97.50± 29.83
Hopper Stand 350.77± 88.92 384.44± 74.34

Pendulum Swingup 301.01± 39.80 233.66± 199.66
Reacher Easy 463.30± 17.78 477.51± 14.02
Reacher Hard 391.94± 148.99 466.35± 25.94
Walker Run 238.07± 76.42 271.72± 63.37

Walker Stand 462.81± 18.20 460.51± 41.87
Walker Walk 429.65± 27.06 440.85± 49.87

Table 5.2: Average final return and standard deviation over five trainings in the
Velocity Control environments.

Task Uninformed Informed

Concentration 00.01± 00.16 −0.24± 00.09
Count Recall −0.66± 00.17 −0.58± 00.24
Higher Lower 00.39± 00.07 00.31± 00.12
Mine Sweeper −0.06± 00.32 −0.07± 00.38

Noisy Position Cart Pole 00.21± 00.19 00.23± 00.27
Noisy Position Pendulum 00.54± 00.06 00.55± 00.05

Position Cart Pole 00.75± 00.00 00.75± 00.00
Position Pendulum 00.64± 00.07 00.65± 00.04

Repeat First 00.24± 00.87 00.56± 01.00
Repeat Previous −0.01± 00.18 00.44± 00.13

Table 5.3: Average final return and standard deviation over five trainings in the
Pop Gym environments.

time dependencies, such as the Repeat Previous environment of the Pop Gym
suite. In this subsection, we study in depth this failure case of the Uninformed
Dreamer for this particular environment. In the Repeat Previous environment,
the agent is observing random noise, and is rewarded for outputting the obser-
vation that it got k time steps ago. While in Subsection 5.6.3 we only considered
the default Pop Gym environments, where k = 4 for the Repeat Previous envi-
ronment, we here consider the Medium (k = 32) and Hard (k = 64) versions of
this environment.

In Figure 5.8, we see that the Uninformed Dreamer is not able to improve the
performance of its policy at all in these harder environments, while the In-
formed Dreamer still seems to converge towards a near-optimal policy. It once
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Environment steps (M)

Figure 5.7: Varying Mountain Hike environments: average return of the In-
formed Dreamer with various level of information over five trainings.
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Figure 5.8: Uninformed Dreamer and Informed Dreamer with i = s in the
Repeat Previous environments: minimum, maximum and average returns over
five trainings.

again validates empirically the assumption that exploiting additional informa-
tion about the state improves the speed of convergence towards an optimal
policy. Even more, it shows that exploiting additional information about the
state can lead to convergence in environments where traditional approaches fail,
such as those with long time dependencies. The additional supervision provided
by this Markovian information (the last k observations) certainly endows the
statistic z ∼ f(·|h) with a useful encoding of the last k observations, which is
then decoded by the policy. Table 5.4 provides the final return obtained by the
Uninformed Dreamer and the Informed Dreamer for these environments.

5.E.3 Flickering Atari
In the Flickering Atari environments, the agent is tasked with playing the Atari
games [Bellemare et al., 2013] on a flickering screen. The dynamics are left
unchanged, but the agent may randomly observe a blank screen instead of the
game screen, with probability p = 0.5. While the classic Atari games are known
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Task Uninformed Informed

Repeat Previous Easy −0.01± 00.18 00.44± 00.13
Repeat Previous Medium −0.41± 00.06 00.46± 00.16

Repeat Previous Hard −0.36± 00.07 00.33± 00.19

Table 5.4: Average final return and standard deviation over five trainings in the
Repeat Previous environments.

to have low stochasticity and few partial observability challenges [Hausknecht
and Stone, 2015], their flickering counterparts have constituted a classic bench-
mark in the partially observable RL literature [Hausknecht and Stone, 2015, Zhu
et al., 2017, Igl et al., 2018, Ma et al., 2020]. Moreover, regarding the recent
advances in sample-efficiency of model-based RL approaches, we consider the
Atari 100k benchmark, where only 100k actions can be taken by the agent for
generating samples of interaction.

For these environments, we consider the RAM state of the simulator, a 128-
dimensional byte vector, to be available as additional information for supervi-
sion. This information vector is indeed guaranteed to satisfy the conditional
independence of the informed POMDP: p(o|i, s) = p(o|i). Moreover, we post-
process this additional information by only selecting the subset of variables that
are relevant to the game that is considered, according to the annotations pro-
vided by Anand et al. [2019]. Depending on the game, this information vector
might contain the number of remaining opponents, their positions, the player
position, etc.
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Figure 5.9: Uninformed Dreamer and Informed Dreamer with i = ϕ(RAM) in
the Flickering Atari environments: minimum, maximum and average returns
over five trainings.

Figure 5.9 shows that the speed of convergence and the performance of the
policies is greatly improved by considering additional information for six envi-
ronments, while degraded for four others and left similar for the rest. The final
returns are given in Table 5.5, offering similar conclusions.

5.E.4 Flickering Control
In the Flickering Control environments, the agent performs one of the standard
DeepMind Control tasks from images but through a flickering screen. As with
the Flickering Atari environments, the dynamics are left unchanged, except
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Task Uninformed Informed

Asteroids 362.17± 112.95 580.92± 95.61
Battle Zone 706.67± 776.00 849.61± 357.35

Bowling 07.89± 02.00 09.17± 01.24
Boxing 03.54± 12.33 −0.06± 05.66

Breakout 02.06± 01.32 02.59± 01.47
Frostbite 174.96± 84.31 115.43± 30.20

Hero 2864.66± 1054.84 2033.51± 226.50
Ms Pacman 534.67± 117.97 455.02± 155.17

Pong −3.49± 01.19 −0.90± 01.78
Private Eye 74.27± 42.00 29.66± 67.47

Qbert 401.27± 117.26 574.70± 26.92
Seaquest 91.44± 13.60 83.95± 21.11

Table 5.5: Average final return and standard deviation over five trainings in the
Flickering Atari environments.

that the agent may randomly observe a blank screen instead of the task screen,
with probability p = 0.5. For these environments, we consider the state to be
available as additional information, as for the Velocity Control environments.
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Figure 5.10: Uninformed Dreamer and Informed Dreamer with i = s in the
Flickering Control environments: minimum, maximum and average returns over
five trainings.

Regarding this benchmark, considering additional information seems to degrade
learning, generally resulting in worse policies. This suggests that not all infor-
mation is good to learn, some might be irrelevant to the control task and hinders
the learning of optimal policies. The final returns are given in Table 5.6, and
offer similar conclusions.
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Task Uninformed Informed

Acrobot Swingup 104.87± 54.88 141.49± 72.53
Cartpole Balance 508.01± 00.92 499.95± 24.87

Cartpole Balance Sparse 507.94± 03.04 495.14± 69.63
Cartpole Swingup 384.37± 14.66 377.60± 32.62

Cartpole Swingup Sparse 347.07± 27.63 284.53± 72.05
Cheetah Run 372.96± 30.98 296.70± 23.34
Cup Catch 478.61± 12.53 455.59± 13.58
Finger Spin 349.85± 123.88 303.03± 76.30

Finger Turn Easy 441.53± 47.13 441.16± 66.91
Finger Turn Hard 323.19± 200.67 392.48± 85.25

Hopper Hop 126.72± 37.89 81.92± 19.90
Hopper Stand 420.38± 57.48 331.48± 27.61

Pendulum Swingup 329.35± 82.31 286.53± 102.18
Reacher Easy 479.25± 18.15 457.72± 19.31
Reacher Hard 433.40± 214.42 412.97± 27.10
Walker Run 239.22± 92.40 180.63± 27.73

Walker Stand 485.78± 46.26 457.36± 37.65
Walker Walk 447.03± 26.83 409.72± 68.67

Table 5.6: Average final return and standard deviation over five trainings in the
Flickering Control environments.
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Chapter 6

Learning Faster with
Additional Information

A Theoretical Justification for Asymmetric Actor-Critic Algorithms. Gaspard
Lambrechts, Damien Ernst and Aditya Mahajan.

From the paper to appear at the International Conference on Machine Learning.

Abstract
In reinforcement learning for partially observable environments, many successful
algorithms have been developed within the asymmetric learning paradigm. This
paradigm leverages additional state information available at training time for
faster learning. Although the proposed learning objectives are usually theoreti-
cally sound, these methods still lack a precise theoretical justification for their
potential benefits. We propose such a justification for asymmetric actor-critic
algorithms with linear function approximators by adapting a finite-time conver-
gence analysis to this setting. The resulting finite-time bound reveals that the
asymmetric critic eliminates error terms arising from aliasing in the agent state.
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6.1 Introduction

Reinforcement learning (RL) is an appealing framework for solving decision
making problems, notably because it makes very few assumptions about the
problem at hand. In its purest form, the promise of an RL algorithm is to learn
an optimal behavior from interaction with an environment whose dynamics are
unknown. More formally, an RL algorithm aims to learn a policy – which is
defined as a mapping from observations to actions – from interaction samples,
in order to maximize a reward signal. While RL has obtained empirical suc-
cesses for a plethora of challenging problems ranging from games to robotics
[Mnih et al., 2015, Schrittwieser et al., 2020, Levine et al., 2015, Akkaya et al.,
2019], most of these achievements have assumed full state observability. A more
realistic assumption is partial state observability, where only a partial obser-
vation of the state of the environment is available for taking actions. In this
setting, the optimal action generally depends on the complete history of past
observations and actions. Traditional RL approaches have thus been adapted
by considering history-dependent policies, usually with a recurrent neural net-
work to process histories [Bakker, 2001, Wierstra et al., 2007, Hausknecht and
Stone, 2015, Heess et al., 2015, Zhang et al., 2016, Zhu et al., 2017]. Given
the difficulty of learning effective history-dependent policies, various auxiliary
representation learning objectives have been proposed to compress the history
into useful representations [Igl et al., 2018, Buesing et al., 2018, Guo et al.,
2018, Gregor et al., 2019, Han et al., 2019, Guo et al., 2020, Lee et al., 2020,
Subramanian et al., 2022, Ni et al., 2024]. Such methods usually seek to learn
history representations that encode the belief, defined as the posterior distri-
butions over the states given the history, which is a sufficient statistic of the
history for optimal control.

While these methods are theoretically able to learn optimal history-dependent
policies, they usually learn solely from the partial state observations, which can
be restrictive. Indeed, assuming the same partial observability at training time
and execution time can be too pessimistic for many environments, notably for
those that are simulated. This motivated the asymmetric learning paradigm,
where additional state information available at training time is leveraged dur-
ing the process of learning a history-dependent policy. Although the optimal
policies obtained by asymmetric learning are theoretically equivalent to those
learned by symmetric learning, the promise of asymmetric learning is to im-
prove the convergence speed. Early approaches proposed to imitate a privileged
policy conditioned on the state [Choudhury et al., 2018], or to use an asymmet-
ric critic conditioned on the state [Pinto et al., 2018]. These heuristic methods
initially lacked a theoretical framework, and a recent line of work has focused
on proposing theoretically grounded asymmetric learning objectives. First, im-
itation learning of a privileged policy was known to be suboptimal, and it was
addressed by constraining the privileged policy so that its imitation results in
an optimal policy for the partially observable environment [Warrington et al.,
2021]. Similarly, asymmetric actor-critic approaches were proven to provide bi-
ased gradients, and an unbiased actor-critic approach was proposed by introduc-
ing the history-state value function [Baisero and Amato, 2022]. In model-based
RL, several works proposed world model objectives that are proved to provide
sufficient statistics of the history, by leveraging the state [Avalos et al., 2024]
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or arbitrary state information [Lambrechts et al., 2024a]. Finally, asymmetric
representation learning approaches were proposed to learn sufficient statistics
from state samples [Wang et al., 2023, Sinha and Mahajan, 2023]. It is worth
noting that many recent successful applications of RL have greatly benefited
from asymmetric learning, usually through an asymmetric critic [Degrave et al.,
2022, Kaufmann et al., 2023, Vasco et al., 2024].

Despite these methods being theoretically grounded, in the sense that policies
satisfying these objectives are optimal policies, they still lack a theoretical jus-
tification for their potential benefit. In particular, there is no theoretical justifi-
cation for the improved convergence speed of asymmetric learning. In this work,
we propose such a justification for an asymmetric actor-critic algorithm, using
agent-state policies and linear function approximators. Agent-state policies rely
on an internal state, which is updated recurrently based on successive actions
and observations, from which the next action is selected. This agent state can
introduce aliasing, a phenomenon in which an agent state may correspond to
two different beliefs. Our argument relies on the comparaison of two analogous
finite-time bounds: one for a symmetric natural actor-critic algorithm [Cayci
et al., 2024], and its adaptation to the asymmetric setting that we derive in this
paper. This comparison reveals that asymmetric learning eliminates error terms
arising from aliasing in the agent state in symmetric learning. These aliasing
terms are given by the difference between the true belief (i.e., the posterior dis-
tribution over the states given the history) and the approximate belief (i.e., the
posterior distribution over the states given the agent state). This suggests that
asymmetric learning may be particularly useful when aliasing is high.

A recent related work proposed a model-based asymmetric actor-critic algo-
rithm relying on belief approximation, and proved its sample efficiency [Cai
et al., 2024]. It also considered agent-state policies, and studied the finite-time
performance by providing a probably approximately correct (PAC) bound, in-
stead of an expectation bound as here. While the algorithm was restricted to
finite horizon and discrete spaces, notably for implementing count-based explo-
ration strategies, it tackled the online exploration setting and its performance
bound did not present a concentrability coefficient. This related analysis thus
provides a promising framework for future works in a more challenging setting.
However, it did not study the existing asymmetric actor-critic algorithm, and
did not provides a direct comparison with symmetric learning. In contrast, we
focus on providing comparable bounds for the existing model-free asymmetric
actor-critic algorithm and its symmetric counterpart.

In Section 6.2, we formalize the environments, policies, and Q-functions that
are considered. In Section 6.3, we introduce the asymmetric and symmetric
actor-critic algorithms that are studied. In Section 6.4, we provide the finite-
time bounds for the asymmetric and symmetric actor-critic algorithms. Finally,
in Section 6.5, we conclude by summarizing the contributions and providing
avenues for future works.
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6.2 Background

In Subsection 6.2.1, we introduce the decision processes and agent-state policies
that are considered. Then, we introduce the asymmetric and symmetric Q-
function for such policies, in Subsection 6.2.2 and Subsection 6.2.3, respectively.

6.2.1 Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP) is a tuple P =
(S,A,O, P, T,R,O, γ), with discrete state space S, discrete action space A,
and discrete observation space O. The initial state distribution P gives the
probability P (s0) of s0 ∈ S being the initial state of the decision process. The
dynamics are described by the transition distribution T that gives the probabil-
ity T (st+1|st, at) of st+1 ∈ S being the state resulting from action at ∈ A in state
st ∈ S. The reward function R gives the immediate reward rt = R(st, at, st+1)
of the reward rt ∈ [0, 1] resulting from this transition. The observation distribu-
tion O gives the probability O(ot|st) to get observation ot ∈ O in state st ∈ S.
Finally, the discount factor γ ∈ [0, 1) weights the relative importance of future
rewards. Taking a sequence of t actions in the POMDP conditions its execution
and provides the history ht = (o0, a0, . . . , ot) ∈ H, where H is the set of histories
of arbitrary length. In general, the optimal policy in a POMDP depends on the
complete history.

However, in practice it is infeasible to learn a policy conditioned on the full
history, since the latter grows unboundedly with time. We consider an agent-
state policy π ∈ ΠM that uses an agent-state process M = (Z, U), in order
to take actions Dong et al. [2022], Sinha and Mahajan [2024]. More formally,
we consider a discrete agent state space Z, and an update distribution U that
gives the probability U(zt+1|zt, at, ot+1) of zt+1 ∈ Z being the state resulting
from action at ∈ A and observation ot+1 ∈ O in agent state zt ∈ Z. Note that
the update distribution U also describe the initial agent state distribution with
z−1 ̸∈ Z the null agent state and a−1 ̸∈ A the null action. Some examples
of agent states that are often used are a sliding window of past observations,
or a belief filter. Aliasing may occur when the agent state does not summa-
rize all information from the history about the state of the environment, see
Appendix 6.A for an example. Given the agent state zt, the policy π samples
actions according to at ∼ π(·|zt). An agent-state policy π∗ ∈ ΠM is said to be
optimal for an agent-state process M if it maximizes the expected discounted
sum of rewards: π∗ ∈ arg maxπ∈ΠM

J(π) with J(π) = Eπ[
∑∞
t=0 γ

tRt].

In the following, we denote by St, Ot, Zt, At and Rt the random variables
induced by the POMDP P. Given a POMDP P and an agent-state processM,
the initial environment-agent state distribution P is given by,

P (s0, z0) = P (s0)
∑
o0∈O

O(o0|s0)U(z0|z−1, a−1, o0). (6.1)

Furthermore, given an agent-state policy π ∈ ΠM, we define the discounted
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visitation distribution as,

dπ(s, z) = (1− γ)
∑
s0,z0

P (s0, z0)
∞∑
t=0

γk Pr(St = s, Zt = z|S0 = s0, Z0 = z0).

(6.2)

Finally, we define the visitation distribution m steps from the discounted visi-
tation distribution as,

dπm(s, z) =
∑
s0,z0

dπ(s0, z0) Pr(Sm = s, Zm = z|S0 = s0, Z0 = z0). (6.3)

In the following, we define the various value functions for the policies that we
defined. Note that we use calligraphic letters Qπ, Vπ and Aπ for the asymmetric
functions, and regular letters Qπ, V π and Aπ for the symmetric ones.

6.2.2 Asymmetric Q-function
Similarly to the asymmetric Q-function of Baisero and Amato [2022], which is
conditioned on (s, h, a), we define an asymmetric Q-function that we condition
on (s, z, a), where z is the agent state resulting from history h. The asymmetric
Q-function Qπ of an agent-state policy π ∈ ΠM is defined as the expected
discounted sum of rewards, starting from environment state s, agent state z,
and action a, and using policy π afterwards,

Qπ(s, z, a) = Eπ
[ ∞∑
t=0

γtRt

∣∣∣∣∣S0 = s, Z0 = z,A0 = a

]
. (6.4)

The asymmetric value function Vπ of an agent-state policy π ∈ ΠM is defined
as Vπ(s, z) =

∑
a∈A π(a|z)Qπ(s, z, a). We also define the asymmetric advantage

function Aπ(s, z, a) = Qπ(s, z, a)− Vπ(s, z).

Let us define the m-step asymmetric Bellman operator as,

Q̃π(s, z, a) = Eπ
[
m−1∑
t=0

γtRt + γmQ̃π(Sm, Zm, Am)
∣∣∣∣∣ S0 = s, Z0 = z,A0 = a

]
.

(6.5)

Since thism-step asymmetric Bellman operator is γm-contractive, equation (6.5)
has a unique fixed point Q̃π. Notice that, when using an agent-state policy, the
environment state and agent state (St, Zt) are Markovian. Therefore, it can be
shown that the fixed point Q̃π is the same as the asymmetric Q-function Qπ.

6.2.3 Symmetric Q-function
The symmetric Q-function Qπ of an agent-state policy π ∈ ΠM in a POMDP P
is defined as the expected discounted sum of rewards, starting from agent state
z and action a, and using policy π afterwards,

Qπ(z, a) = Eπ
[ ∞∑
t=0

γtRt

∣∣∣∣∣Z0 = z,A0 = a

]
. (6.6)
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The symmetric value function V π of an agent-state policy π ∈ ΠM is defined
as V π(z) =

∑
a∈A π(a|z)Qπ(z, a). We also define the symmetric advantage

function Aπ(z, a) = Qπ(z, a)− V π(z).

Let us define the m-step symmetric Bellman operator as,

Q̃π(z, a) = Eπ
[
m−1∑
t=0

γtRt + γmQ̃π(Zm, Am)
∣∣∣∣∣Z0 = z,A0 = a

]
. (6.7)

It can be verified that the m-step symmetric Bellman operator is γm-contractive.
Therefore, equation (6.7) has a unique fixed point Q̃π. However, because the
agent state is not necessarily Markovian, in general Qπ ̸= Q̃π.

6.3 Natural Actor-Critic Algorithms
In this section, we present the asymmetric and symmetric natural actor-critic
algorithms, which make use of an actor, or policy, and a critic, or Q-function.
The asymmetric variant will use an asymmetric critic, learned using asymmetric
temporal difference learning, while the symmetric variant will use a symmetric
critic, learned using symmetric temporal difference learning. These temporal
difference learning algorithms are presented in in Subsection 6.3.1 and Subsec-
tion 6.3.2, respectively. Then, Subsection 6.3.3 presents the complete natural
actor-critic algorithm that uses a temporal difference learning algorithm as a
subroutine.

For any Euclidean space X , let B2(0, B) be the ℓ2-ball centered at the origin
with radius B > 0, and let ΓC : X → C be a projection operator into the closed
and convex set C ⊆ X in ℓ2-norm: ΓC(x) ∈ arg minc∈C ∥c− x∥

2
2 ⊆ C, ∀x ∈ X .

Finally, let us define the µ-weighted ℓ2-norm, for any probability measures µ ∈
∆(X ) as,

∥f∥µ =
√∑
x∈X

µ(x) |f(x)|2. (6.8)

In the algorithms, we implicitly assume to be able to directly sample from the
discounted visitation measure dπ. When it is unrealistic, it is still possible to
sample from dπ by sampling an initial time step t0 ∼ Geom(1 − γ) from a
geometric distribution with success rate 1− γ, and then taking t0− 1 actions in
the POMDP. The resulting sample (st0 , zt0) follows the distribution dπ.

6.3.1 Asymmetric Critic
Suppose we are given features ϕ : S ×Z ×A → Rdϕ . Without loss of generality,
we assume sups,z,a∥ϕ(s, z, a)∥2 ≤ 1. Given a weight vector β ∈ Rdϕ , let Q̂πβ
denote the linear approximation of the asymmetric Q-function Qπ that uses
features ϕ with weight β,

Q̂πβ(s, z, a) = ⟨β, ϕ(s, z, a)⟩. (6.9)

Given an arbitrary projection radius B > 0, we define the hypothesis space as,

FBϕ = {(s, z, a) 7→ ⟨β, ϕ(s, z, a)⟩ : β ∈ B2(0, B)} . (6.10)
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We denote the optimal parameter of the asymmetric critic approximation by
βπ∗ ∈ arg minβ∈B2(0,B) ∥⟨β, ϕ(·)⟩ − Qπ(·)∥d, and denote the corresponding ap-
proximation by Q̂π∗ (·) = ⟨βπ∗ , ϕ(·)⟩. The corresponding error is,

εapp = min
f∈FB

ϕ

∥∥∥f −Qπ∥∥∥
d

=
∥∥∥Q̂π∗ −Qπ∥∥∥

d
, (6.11)

with d(s, z, a) = dπ(s, z)π(a|z) the sampling distribution.

In Algorithm 6.1, we present the m-step temporal difference learning algorithm
for approximating the asymmetric Q-function Qπ of an arbitrary agent-state
policy π ∈ ΠM. At each step k, the algorithm obtains one sample (sk,0, zk,0) ∼
dπ from the discounted visitation distribution. Then, m actions are selected
according to policy π to provide samples (ak,t, rk,t, sk,t+1, ok,t+1, zk,t+1) for 0 ≤
t < m. Next, the temporal difference δk and semi-gradient gk are computed,
based on a last action ak,m ∼ π(·|zk,m),

δk =
m−1∑
i=0

γirk,i + γmQ̂πβk(sk,m, zk,m, ak,m)− Q̂πβk(sk,0, zk,0, ak,0), (6.12)

gk = δk∇βQ̂πβk(sk,0, zk,0, ak,0). (6.13)

Then, the semi-gradient update is performed with β−
k+1 = βk + αgk and the

parameters are projected onto the ball of radius B: βk+1 = ΓB2(0,B)(β−
k+1). At

the end, the algorithm computes the average parameter β̄ = 1
K

∑K−1
k=0 βk and

returns the average approximation Qπ = Q̂π
β̄
.

Algorithm 6.1: Multistep temporal difference learning algorithm.
parameters: m the bootstrap time step,

α the step size,
K the number of updates,
B the projection radius.

inputs: π ∈ ΠM the policy.
1 for k = 0 . . .K − 1 do
2 Initialize (sk,0, zk,0) ∼ dπ.
3 for i = 0 . . . ,m− 1 do
4 Select action ak,i ∼ π(·|zk,i).
5 Get environment state sk,i+1 ∼ T (·|sk,i, ak,i).
6 Get reward rk,i = R(sk,i, ak,i, sk,i+1).
7 Get observation ok,i+1 ∼ O(·|sk,i+1).
8 Update agent state zk,i+1 ∼ U(·|zk,i, ak,i, ok,i+1).
9 Sample last action ak,m ∼ π(·|zk,m).

10 Compute semi-gradient gk according to equation (6.13) or equation (6.17).
11 Update βk+1 = ΓB2(0,B)(βk + αgk).
12 Compute average parameter β̄ = 1

K

∑K−1
k=0 βk.

13 return average estimate Qπ(·) = Q̂π
β̄

(·) = ⟨β̄, ϕ(·)⟩ or Qπ(·) = Q̂π
β̄

(·) = ⟨β̄, χ(·)⟩.

6.3.2 Symmetric Critic
Similarly, we suppose that we are given features χ : Z×A → Rdχ . Without loss
of generality, we assume supz,a∥χ(z, a)∥2 ≤ 1. Given a weight vector β ∈ Rdχ ,
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let Q̂πβ denote the linear approximation of the symmetric Q-function Qπ that
uses features χ with weight β,

Q̂πβ(z, a) = ⟨β, χ(z, a)⟩. (6.14)

The corresponding hypothesis space for an arbitrary projection radius B > 0 is
denoted with FBχ . The optimal parameter is also denoted by βπ∗ ∈ arg minβ∈B2(0,B)

∥⟨β, χ(·)⟩ −Qπ(·)∥d, the corresponding optimal approximation is Q̂π∗ = ⟨βπ∗ , χ(·)⟩,
and the corresponding error is,

εapp = min
f∈FB

χ

∥∥∥f −Qπ∥∥∥
d

=
∥∥∥Q̂π∗ −Qπ∥∥∥

d
, (6.15)

with d(z, a) =
∑
s∈S

dπ(s, z)π(a|z) the sampling distribution.

Algorithm 6.1 also presents the m-step temporal difference learning algorithm
for approximating the symmetric Q-function. The latter is identical to that of
the asymmetric Q-function except that states are not exploited, such that the
temporal difference δk and semi-gradient gk are given by,

δk =
m−1∑
i=0

γirk,i + γmQ̂πβk(zk,m, ak,m)− Q̂πβk(zk,0, ak,0), (6.16)

gk = δk∇βQ̂πβk(zk,0, ak,0). (6.17)

At the end, the algorithm returns the average symmetric approximation Qπ =
Q̂π
β̄
. Note that this symmetric critic approximation and temporal difference

learning algorithm corresponds to the one proposed by Cayci et al. [2024].

6.3.3 Natural Actor-Critic Algorithms
For both the asymmetric and symmetric actor-critic algorithms, we consider a
log-linear agent-state policy πθ ∈ ΠM. More precisely, the policy uses features
ψ : Z × A → Rdψ , with supz,a∥ψ(z, a)∥2 ≤ 1 without loss of generality, and a
softmax readout,

πθ(at|zt) = exp(⟨θ, ψ(zt, at)⟩)∑
a∈A exp(⟨θ, ψ(zt, a)⟩) . (6.18)

In this work, we consider natural policy gradients, which are less sensitive to
policy parametrization [Kakade, 2001]. Instead of computing the policy gradient
in the original metric space, the idea is to compute the policy gradient on a
statistical manifold, defined by the expected Fisher information metric. The
natural policy gradient is thus given by the standard policy gradient multiplied
by a preconditioner Fisher information matrix. Natural policy gradients are at
the core of many effective modern policy-gradient methods [Schulman et al.,
2015].

The natural policy gradient of policy πθ ∈ ΠM is defined as follows [Kakade,
2001],

wπθ∗ = (1− γ)F †
πθ
∇θJ(πθ), (6.19)
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where F †
πθ

is the pseudoinverse of the Fisher information matrix, which is defined
as the outer product of the score of the policy,

Fπθ = Edπθ [∇θ log πθ(A|Z)⊗∇θ log πθ(A|Z)]. (6.20)

As shown in Theorem 6.1, the natural policy gradient wπθ∗ is the minimizer of
the asymmetric objective (6.22).
Theorem 6.1 (Asymmetric natural policy gradient). For any POMDP P and
any agent-state policy πθ ∈ ΠM, we have,

wπθ∗ = (1− γ)F †
πθ
∇θJ(πθ) ∈ arg min

w∈Rdψ
L(w), (6.21)

with,

L(w) = Edπθ
[
(⟨∇θ log πθ(A|Z), w⟩ − Aπθ (S,Z,A))2

]
. (6.22)

The proof is given in Appendix 6.B. In practice, since the asymmetric advantage
function is unknown, the algorithm estimates the natural policy gradient by
stochastic gradient descent of L(ω) using the approximation Aπθ (S,Z,A) =
Qπθ (S,Z,A)− Vπθ (S,Z) with Vπθ =

∑
a∈A πθ(a|Z)Q(S,Z, a).

Our natural actor-critic algorithm generalizes the one of Cayci et al. [2024] to the
asymmetric setting and is detailed in Algorithm 6.2. For each policy gradient
step 0 ≤ t < T , the natural policy gradient wπt∗ is first estimated using N
steps of stochastic gradient descent. At each natural policy gradient estimation
step 0 ≤ n < N , the algorithm samples an initial state (st,n, zt,n) ∼ dπt from
the discounted distribution dπt and an action at,n ∼ πt(·|zt,n) according to the
policy πt = πθt . Then, the gradient vt,n of the natural policy gradient estimate
wt,n is computed with,

vt,n = ∇w
(
⟨∇θ log πθ(at,n|zt,n), wt,n⟩ − Aπθ (st,n, zt,n, at,n)

)2
, (6.23)

The gradient step is performed with w−
t,n+1 = wt,n − ζvt,n and the parameters

are projected onto the ball of radius B: wt,n+1 = ΓB2(0,B)(w−
t,n+1). Finally, the

algorithm computes the average parameter w̄t = 1
N

∑N−1
n=0 wt,n and performs

the policy gradient step: θt+1 = θt + ηw̄t. After all policy gradient steps, the
final policy is returned.

As shown in Theorem 6.2, the natural policy gradient wπθ∗ is also the minimizer
of the symmetric objective (6.25).
Theorem 6.2 (Symmetric natural policy gradient). For any POMDP P and
any agent-state policy πθ ∈ ΠM, we have,

wπθ∗ = (1− γ)F †
πθ
∇θJ(πθ) ∈ arg min

w∈Rdψ
L(w), (6.24)

with,

L(w) = Edπθ
[
(⟨∇θ log πθ(A|Z), w⟩ −Aπθ (Z,A))2

]
. (6.25)
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Algorithm 6.2: Natural actor-critic algorithm.
parameters: T the number of updates,

N number of gradient estimation steps,
ζ the gradient estimation step size,
η the step size,
B the projection radius.

1 Initialize θ0 = 0.
2 for t = 0 . . . T − 1 do
3 Obtain Qπt or Qπt using Algorithm 6.1.
4 Initialize wt,0 = 0.
5 for n = 0 . . . N − 1 do
6 Initialize (st,n, zt,n) ∼ dπt .
7 Sample at,n ∼ πθt(·|zt,n).
8 Compute the gradient vt,n of the policy gradient using equation (6.23) or

equation (6.26).
9 Update w−

t,n+1 = wt,n − ζvt,n.
10 Project wt,n+1 = ΓB2(0,B)(w−

t,n+1).
11 Update θt+1 = θt + η 1

N

∑N−1
n=0 wt,n.

12 return final policy πT = πθT .

The proof is given in Appendix 6.B. As in the asymmetric case, the symmetric
advantage function is unknown, and the algorithm estimates the natural gradi-
ent by stochastic gradient descent of equation (6.25) using the approximation
Aπθ (Z,A) = Qπθ (Z,A)− V πθ (Z) with V πθ =

∑
a∈A πθ(a|Z)Qπθ (Z, a).

Algorithm 6.2 also presents the symmetric natural actor-critic algorithm, ini-
tially proposed by Cayci et al. [2024]. The latter is similar to the asymmetric
algorithm except that it uses the symmetric advantage function, such that the
gradient of the policy gradient is given by,

vt,n = ∇w
(
⟨∇θ log πθ(at,n|zt,n), wt,n⟩ −Aπθ (zt,n, at,n)

)2
. (6.26)

While Theorem 6.1 and Theorem 6.2 show that wπθ∗ is the minimizer of both
the asymmetric and the symmetric objectives, the next section establishes the
benefit of using the asymmetric loss. More precisely, asymmetric learning is
shown to improve the estimation of the critic and thus the advantage function,
which in turn results in a better estimation of the natural policy gradient.

6.4 Finite-Time Analysis
In this section, we give the finite-time bounds of the previous algorithms in both
the asymmetric and symmetric cases. The bounds of the asymmetric and sym-
metric temporal difference learning algorithms are presented in Subsection 6.4.1
and Subsection 6.4.2, respectively. In Subsection 6.4.3, the bounds of the asym-
metric and symmetric natural actor-critic algorithms are given.

We use ∥µ− ν∥TV to denote the total variation between two probability mea-
sures µ, ν ∈ ∆(X ) over a discrete space X ,

∥µ− ν∥TV = sup
A⊆X

|µ(A)− ν(A)| (6.27)
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= 1
2
∑
x∈X
|µ(x)− ν(x)| . (6.28)

6.4.1 Finite-Time Bound for the Asymmetric Critic
Our main result is to establish the following finite-time bound for the Q-function
approximation resulting from the asymmetric temporal difference learning al-
gorithm detailed in Algorithm 6.1.
Theorem 6.3 (Finite-time bound for asymmetric m-step temporal difference
learning). For any agent-state policy π ∈ ΠM, and any m ∈ N, we have for
Algorithm 6.1 with α = 1√

K
and arbitrary B > 0,√

E
[∥∥Qπ −Qπ∥∥2

d

]
≤ εtd + εapp + εshift, (6.29)

where the temporal difference learning, function approximation, and distribu-
tion shift terms are given by,

εtd =

√√√√√4B2 +
(

1
1−γ + 2B

)2

2
√
K(1− γm)

(6.30)

εapp = 1 + γm

1− γm min
f∈FB

ϕ

∥f −Qπ∥d (6.31)

εshift =
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV, (6.32)

with d(s, z, a) = dπ(s, z)π(a|z) the sampling distribution, and dm(s, z, a) =
dπm(s, z)π(a|z) the bootstrapping distribution.

The proof is given in Appendix 6.C, and adapts the proof of Cayci et al. [2024] to
the asymmetric setting. The first term εtd is the usual temporal difference error
term, decreasing in K−1/4. The second term εapp results from the use of linear
function approximators. The third term εshift arises from the distribution shift
between the sampling distribution dπ⊗π (i.e., the discounted visitation measure)
and the bootstrapping distribution dπm ⊗ π (i.e., the distribution m steps from
the discounted visitation measure). It is a consequence of not assuming the
existence of a stationary distribution nor assuming to sample from the stationary
distribution.

6.4.2 Finite-Time Bound for the Symmetric Critic
Given a history ht = (o0, a0, . . . , ot), the belief is defined as,

bt(st|ht) = Pr(St = st|Ht = ht). (6.33)

Given an agent state zt, the approximate belief is defined as,

b̂t(st|zt) = Pr(St = st|Zt = zt). (6.34)

We obtain the following finite-time bound for the Q-function approximation
resulting from the symmetric temporal difference learning algorithm detailed in
Algorithm 6.1.
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Theorem 6.4 (Finite-time bound for symmetric m-step temporal difference
learning [Cayci et al., 2024]). For any agent-state policy π ∈ ΠM, and any
m ∈ N, we have for Algorithm 6.1 with α = 1√

K
, and arbitrary B > 0,√

E
[∥∥Qπ −Qπ∥∥2

d

]
≤ εtd + εapp + εshift + εalias, (6.35)

where the temporal difference learning, function approximation, distribution
shift, and aliasing terms are given by,

εtd =

√√√√√4B2 +
(

1
1−γ + 2B

)2

2
√
K(1− γm)

(6.36)

εapp = 1 + γm

1− γm min
f∈FB

χ

∥f −Qπ∥d (6.37)

εshift =
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV (6.38)

εalias = 2
1− γ

∥∥∥∥∥Eπ
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm∥∥∥

TV

∣∣∣∣∣Z0 = ·
]∥∥∥∥∥

d

, (6.39)

with d(z, a) =
∑
s∈S d

π(s, z)π(a|z) the sampling distribution, and dm(z, a) =∑
s∈S d

π
m(s, z)π(a|z) the bootstrapping distribution.

The first three terms are identical or analogous to the asymmetric case. The
fourth term εalias results from the difference between the fixed point Q̃π of the
symmetric Bellman operator (6.7) and the true Q-function Qπ.

We note some minor differences with respect to the original result of Cayci et al.
[2024] that appear to be typos and minor mistakes in the original proof.1 We
provide the corrected proof in Appendix 6.D.

The results of Theorem 6.3 and Theorem 6.4 can be straightforwardly general-
ized to any other sampling distribution. However, obtaining bounds in term of
dπ ⊗ π is useful for bounding the performance of the actor-critic algorithm.

6.4.3 Finite-Time Bound for the Natural Actor-Critic
Following Cayci et al. [2024], we assume that there exists a concentrability
coefficient C∞ <∞ such that sup0≤t<T E[Ct] ≤ C∞ with,

Ct = sup
s,z,a

∣∣∣∣ dπ∗(s, z)π∗(a|z)
dπθt (s, z)πθt(a|z)

∣∣∣∣. (6.40)

Roughly speaking, this assumption means that all successive policies should
visit every agent states and actions visited by the optimal policy with nonzero
probability. It motivates the log-linear policy parametrization in equation (6.18)
and the initialization to the maximum entropy policy in Algorithm 6.2. We ob-
tain the following finite-time bound for the suboptimality of the policy resulting
from Algorithm 6.2.

1The authors notably wrongly bound the distance ∥Q̂π∗ −Q̃π∥d by εapp at one point, which
nevertheless yields a similar result.

132



Theorem 6.5 (Finite-time bound for asymmetric and symmetric natural ac-
tor-critic algorithm). For any agent-state process M = (Z, U), we have for
Algorithm 6.2 with α = 1√

K
, ζ = B

√
1−γ√
2N , η = 1√

T
and arbitrary B > 0,

(1− γ) min
0≤t<T

E [J(π∗)− J(πt)] ≤ εnac + 2εinf

+ C∞

(
εactor + 2εgrad + 2

√
6 1
T

T−1∑
t=0

επtcritic

)
, (6.41)

where the different terms may differ for asymmetric and symmetric critics,

εnac = B2 + 2 log |A|
2
√
T

(6.42)

εactor =
√

(2− γ)B
(1− γ)

√
N

(6.43)

εinf,asym = 0 (6.44)

εinf,sym = Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk∥∥∥

TV

]
(6.45)

εgrad,asym = sup
0≤t<T

√
min
w
Lt(w) (6.46)

εgrad,sym = sup
0≤t<T

√
min
w

Lt(w), (6.47)

and επtcritic is given in Theorem 6.3 and Theorem 6.4.

The first term εnac is the usual natural actor-critic term decreasing in T−1/2

[Agarwal et al., 2021]. The second term εinf is the inference error resulting from
use of an agent state in a POMDP [Cayci et al., 2024]. This term is zero for
the asymmetric algorithm. The third term εactor is the error resulting from the
estimation of the natural policy gradient by stochastic gradient descent. The
fourth term εgrad is the error resulting from the use of a linear function ap-
proximator with features ∇θ log πt(a|z) for the natural policy gradient. Finally,
the fifth term 1

T

∑T−1
t=0 επtcritic is the error arising from the successive critic ap-

proximations. Inside of each επtcritic terms, the aliasing term is thus zero for the
asymmetric algorithm. The proof, generalizing that of Cayci et al. [2024] to the
asymmetric setting, is available in Appendix 6.E.

6.4.4 Discussion
As can be seen from Theorem 6.3 and Theorem 6.4, compared to the symmetric
temporal difference learning algorithm, the asymmetric one eliminates a term
arising from aliasing in the agent state, in the sense of equation (6.39). In
other words, even for an aliased agent-state process, leveraging the state to
learn the asymmetric Q-function instead of the symmetric Q-function does not
suffer from aliasing, while still providing a valid critic for the policy gradient
algorithm. That said, these bounds are given in expectation, and future works
may want to study the variance of the error of such Q-function approximations.
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From Theorem 6.5, we notice that the inference term (6.45) in the subopti-
mality bound vanishes in the asymmetric setting. Moreover, the average error
1
T

∑T−1
t=0 ε

πt
critic made in the evaluation of all policies π0, . . . , πt−1 appears in the

finite-time bound that we obtain for the suboptimality of the policy. Thus, the
suboptimality bound for the actor also improves in the asymmetric setting by
eliminating the aliasing terms with respect to the symmetric setting.

By diving into the proof of Theorem 6.5 at equations (6.232) and (6.233), we
understand that the Q-function error impacts the suboptimality bound through
the estimation of the natural policy gradient (6.19). Indeed, this error term
in the suboptimality bound directly results from the error on the advantage
function estimation used in the target of the natural policy gradient estimation
loss of equations (6.23) and (6.26). This advantage function estimation is derived
from the estimation of the Q-function, such that the error on the latter directly
impacts the error on the former, as detailed in equations (6.232) and (6.233).
This improvement in the average critic error unfortunately comes at the expense
of a different residual error εgrad on the natural policy gradient loss. Indeed,
as can be seen in equation (6.47), we obtain a residual error εgrad,asym using
the best approximation of the asymmetric advantage Aπt(s, z, a), instead of a
residual error εgrad,sym using the best approximation of the symmetric critic
Aπt(z, a). Since both natural policy gradients are obtained through a linear
regression with features ∇θ log πt(a|z), it is clear than the asymmetric residual
error may be higher than the symmetric residual error, even in the tabular case.

We conclude that the effectiveness of asymmetric actor-critic algorithms notably
results from a better approximation of the Q-function by eliminating the aliasing
bias, which in turn provides a better estimate of the policy gradient.

6.5 Conclusion
In this work, we extended the unbiased asymmetric actor-critic algorithm to
agent-state policies. Then, we adapted a finite-time analysis for natural actor-
critic to the asymmetric setting. This analysis highlighted that on the con-
trary to symmetric learning, asymmetric learning is less sensitive to aliasing
in the agent state. While this analysis assumed a fixed agent-state process,
we argue that it is useful to interpret the causes of effectiveness of asym-
metric learning with learnable agent-state processes. Indeed, aliasing can be
present in the agent-state process throughout learning, and in particular at
initialization. Moreover, it should be noted that this analysis can be straight-
forwardly generalized to learnable agent-state processes by extending the action
space to select future agent states. More formally, we would extend the action
space to A+ = A × ∆(Z) with a+

t = (at, azt ), the agent state space to Z+ =
Z ×O with z+

t = (zt, zot ), and the agent-state process to U(z+
t+1|z

+
t , at, ot+1) ∝

exp(azt+1
t )δzot+1,ot+1 . This alternative to backpropagation through time would

nevertheless still not reflect the common setting of recurrent actor-critic algo-
rithms. We consider this as a future work that could build on recent advances
in finite-time bound for recurrent actor-critic algorithms [Cayci and Eryilmaz,
2024a,b]. Alternatively, generalizing this analysis to nonlinear approximators
may include recurrent neural networks, which can be seen as nonlinear approxi-
mators with a sliding window as agent state. Our analysis also motivates future
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work studying other asymmetric learning approaches that consider representa-
tion losses to reduce the aliasing bias [Sinha and Mahajan, 2023, Lambrechts
et al., 2022, 2024a].
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6.A Agent State Aliasing

Treasure
(Dark)

Tiger
(Dark)

Left
(Left)

Right
(Right)

Swap
(+0)

Enter
(+0)

Enter
(+0)

Swap/Enter
(+1)

Swap/Enter
(+0)

Figure 6.1: Aliased Tiger POMDP.

In this section, we provide an ex-
ample of aliased agent state, and
discuss the corresponding aliasing
bias. For this purpose, we in-
troduce a slightly modified ver-
sion of the Tiger POMDP [Kael-
bling et al., 1998], see Figure 6.1.
In this POMDP, there are two
doors: one opening on a room
with a treasure on the left, and
another opening on a room with a
tiger on the right. There are four
states for this POMDP: being in
the treasure room (Treasure), be-
ing in the tiger room (Tiger), be-
ing in front of the treasure door (Left) or being in front of the tiger door (Right).
The rooms are labeled outside (Left or Right), but inside it is completely dark
(Dark), such that we do not observe in which room we are. When outside of
the rooms, the agent can switch to the other door (Swap) or it can open the
door and enter the room (Enter). Once in a room (Treasure or Tiger), the agent
stays locked forever, and gets a positive reward (+1) if if it is in the treasure
room (Treasure) whatever the action taken (Swap or Enter). We consider the
agent state to be simply the last observation (Left, Right, or Dark). Notice
that the optimal agent-state policy conditioned on this agent state is also an
optimal history-dependent policy. In other words, the current observation is a
sufficient statistic for optimal control in this POMDP. We consider a uniform
initial distributions over the four states.

For a given agent state (Dark), there exist two different underlying states (Trea-
sure or Tiger). We call this phenomenon aliasing. Now, let us consider a
simple policy π that always takes the same action (Enter). It is clear that
the symmetric value function defined according to equation (6.6) is given by
V π(z = Dark) = 1

2(1−γ) , V π(z = Left) = γ
1−γ , and V π(z = Right) = 0. How-

ever, when considering the unique fixed point of the aliased Bellman opera-
tor of equation (6.7) with m = 1, we have instead Ṽ π(z = Dark) = 1

2(1−γ) ,
Ṽ π(z = Left) = γ

2(1−γ) , and Ṽ π(z = Right) = γ
2(1−γ) . We refer to the distance

between V π and Ṽ π, or similarly Qπ and Q̃π, as the aliasing bias. In the anal-
ysis of this paper, this distance appears as the weighted ℓ2-norm ∥Qπ − Q̃π∥d
where d(s, z, a) = dπ(s, z)π(a|z). In the analysis, we also define the aliasing
term εalias as an upper bound on this aliasing bias, see Lemma 6.D.1 for a
detailed definition.

6.B Proof of the Natural Policy Gradients
In this section, we prove that the natural policy gradient is the minimizer of
analogous asymmetric and symmetric losses.
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6.B.1 Proof of the Asymmetric Natural Policy Gradient
In this section, we prove that the natural policy gradient is the minimizer of an
asymmetric loss.
Theorem 6.1 (Asymmetric natural policy gradient). For any POMDP P and
any agent-state policy πθ ∈ ΠM, we have,

wπθ∗ = (1− γ)F †
πθ
∇θJ(πθ) ∈ arg min

w∈Rdψ
L(w), (6.21)

with,

L(w) = Edπθ
[
(⟨∇θ log πθ(A|Z), w⟩ − Aπθ (S,Z,A))2

]
. (6.22)

Proof. Let us note that,

∇wL(w) = 2Edπθ [∇θ log πθ(A|Z) (⟨∇θ log πθ(A|Z), w⟩ − Aπθ (S,Z,A))].
(6.48)

Therefore, for any wπθ∗ ∈ Rdψ minimizing L(w), we have ∇wL(w) = 0, such
that,

Edπθ [∇θ log πθ(A|Z)Aπθ (S,Z,A)]

= Edπθ [∇θ log πθ(A|Z)⟨∇θ log πθ(A|Z), wπθ∗ ⟩] (6.49)

= Edπθ [(∇θ log πθ(A|Z)⊗∇θ log πθ(A|Z))wπθ∗ ] (6.50)

= Edπθ [∇θ log πθ(A|Z)⊗∇θ log πθ(A|Z)]wπθ∗ (6.51)

= Fπθw
πθ
∗ . (6.52)

which follows from the definition of the Fisher information matrix Fπθ in equa-
tion (6.20). Now, let us define the policy π+

θ (A|S,Z) = πθ(A|Z), which ignores
the state S. From there, we have,

Fπθw
πθ
∗ = Edπθ [∇θ log πθ(A|Z)A(S,Z,A)] (6.53)

= Ed
π

+
θ [∇θ log π+

θ (A|S,Z)A(S,Z,A)
]

(6.54)

= Ed
π

+
θ [∇θ log π+

θ (A|S,Z) (A(S,Z,A) + V(S,Z)− V(S,Z))
]

(6.55)

= Ed
π

+
θ [∇θ log π+

θ (A|S,Z)Q(S,Z,A)
]

−Ed
π

+
θ [∇θ log π+

θ (A|S,Z)V(S,Z)
]

(6.56)

= Ed
π

+
θ [∇θ log π+

θ (A|S,Z)Q(S,Z,A)
]

−Ed
π

+
θ

[
V(S,Z)

∑
a∈A

π+
θ (a|S,Z)∇θ log π+

θ (a|S,Z)
]

(6.57)

= Ed
π

+
θ [∇θ log π+

θ (A|S,Z)Q(S,Z,A)
]

−Ed
π

+
θ

[
V(S,Z)

∑
a∈A
∇θπ+

θ (a|S,Z)
]

(6.58)
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= Ed
π

+
θ [∇θ log π+

θ (A|S,Z)Q(S,Z,A)
]

−Ed
π

+
θ

[
V(S,Z)∇θ

∑
a∈A

π+
θ (a|S,Z)

]
(6.59)

= Ed
π

+
θ [∇θ log π+

θ (A|S,Z)Q(S,Z,A)
]
−Ed

π
+
θ [V(S,Z)∇θ1] (6.60)

= Ed
π

+
θ [∇θ log π+

θ (A|S,Z)Q(S,Z,A)
]
. (6.61)

Using the policy gradient theorem [Sutton et al., 1999] and equation (6.61),

Fπθw
πθ
∗ = (1− γ)∇θJ(π+

θ ), (6.62)

From there, we obtain using the definition of π+
θ ,

Fπθw
πθ
∗ = (1− γ)∇θJ(π+

θ ) (6.63)
= (1− γ)∇θJ(πθ). (6.64)

This concludes the proof.

6.B.2 Proof of the Symmetric Natural Policy Gradient
In this section, we prove that the natural policy gradient is the minimizer of an
asymmetric loss.
Theorem 6.2 (Symmetric natural policy gradient). For any POMDP P and
any agent-state policy πθ ∈ ΠM, we have,

wπθ∗ = (1− γ)F †
πθ
∇θJ(πθ) ∈ arg min

w∈Rdψ
L(w), (6.24)

with,

L(w) = Edπθ
[
(⟨∇θ log πθ(A|Z), w⟩ −Aπθ (Z,A))2

]
. (6.25)

Proof. Similarly to the asymmetric setting, for any wπθ∗ minimizing L(w), we
have ∇wL(w) = 0, such that,

Edπθ [∇θ log πθ(A|Z)A(Z,A)]

= Edπθ [∇θ log πθ(A|Z)⟨∇θ log πθ(A|Z)wπθ∗ ⟩] (6.65)

= Edπθ [(∇θ log πθ(A|Z)⊗∇θ log πθ(A|Z))wπθ∗ ] (6.66)

= Edπθ [∇θ log πθ(A|Z)⊗∇θ log πθ(A|Z)]wπθ∗ (6.67)

= Fπθw
πθ
∗ , (6.68)

which follows from the definition of the Fisher information matrix Fπθ in equa-
tion (6.20). From there, we have,

Fπθw
πθ
∗ = Edπθ [∇θ log πθ(A|Z)A(Z,A)] (6.69)

Fπθw
πθ
∗ = Edπθ

[
∇θ log πθ(A|Z)Edπθ [A(S,Z,A)|Z,A]

]
(6.70)
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Fπθw
πθ
∗ = Edπθ

[
Edπθ [∇θ log πθ(A|Z)A(S,Z,A)|Z,A]

]
(6.71)

Fπθw
πθ
∗ = Edπθ [∇θ log πθ(A|Z)A(S,Z,A)], (6.72)

which follows from the law of total probability. From there, by following the
same steps as in the asymmetric case (see Subappendix 6.B.1), we obtain,

Fπθw
πθ
∗ = (1− γ)∇θJ(πθ). (6.73)

This concludes the proof.

6.C Proof of the Finite-Time Bound for the Asym-
metric Critic

In this section, we prove Theorem 6.3, that is recalled below.
Theorem 6.3 (Finite-time bound for asymmetric m-step temporal difference
learning). For any agent-state policy π ∈ ΠM, and any m ∈ N, we have for
Algorithm 6.1 with α = 1√

K
and arbitrary B > 0,√

E
[∥∥Qπ −Qπ∥∥2

d

]
≤ εtd + εapp + εshift, (6.29)

where the temporal difference learning, function approximation, and distribu-
tion shift terms are given by,

εtd =

√√√√√4B2 +
(

1
1−γ + 2B

)2

2
√
K(1− γm)

(6.30)

εapp = 1 + γm

1− γm min
f∈FB

ϕ

∥f −Qπ∥d (6.31)

εshift =
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV, (6.32)

with d(s, z, a) = dπ(s, z)π(a|z) the sampling distribution, and dm(s, z, a) =
dπm(s, z)π(a|z) the bootstrapping distribution.

Proof. To simplify notation, we drop the dependence on π and β and use Q
as a shorthand for Qπ, Q̂∗ as a shorthand for Q̂π∗ , Q as a shorthand for Qπ
and Q̂k as a shorthand for Q̂πβk , where the subscripts and superscripts remain
implicit but are assumed clear from context. When evaluating the Q-functions,
we go one step further by using Qk,i to denote Q(Sk,i, Zk,i, Ak,i), Q̂∗

k,i to de-
note Q̂∗(Zk,i, Ak,i) or Q̂k,i to denote Q̂k(Sk,i, Zk,i, Ak,i), and ϕk,i to denote
ϕ(Sk,i, Zk,i, Ak,i). In addition, we define d as a shorthand for dπ ⊗ π, such
that d(s, z, a) = dπ(s, z)π(a|z), and dm as a shorthand for dπm ⊗ π, such that
dm(s, z, a) = dπm(s, z)π(a|z).

First, let us define ∆k as,

∆k =

√
E
[∥∥∥Q− Q̂k∥∥∥2

d

]
=
√
E
[
∥Q(·)− ⟨βk, ϕ(·)⟩∥2

d

]
. (6.74)
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Using the linearity of Q in β1, . . . , βK−1, the triangle inequality, the subaddi-
tivity of the square root, and Jensen’s inequality, we have,

√
E
[∥∥Q−Q∥∥2

d

]
=

√√√√√E

∥∥∥∥∥Q(·)−
〈 1
K

K−1∑
k=0

βk, ϕ(·)
〉∥∥∥∥∥

2

d

 (6.75)

=

√√√√√E

∥∥∥∥∥ 1
K

K−1∑
k=0

(Q(·)− ⟨βk, ϕ(·)⟩)
∥∥∥∥∥

2

d

 (6.76)

=

√√√√√E

∥∥∥∥∥
K−1∑
k=0

1
K

(Q(·)− ⟨βk, ϕ(·)⟩)
∥∥∥∥∥

2

d

 (6.77)

≤

√√√√E
[
K−1∑
k=0

1
K2 ∥Q(·)− ⟨βk, ϕ(·)⟩∥2

d

]
(6.78)

=

√√√√ 1
K2

K−1∑
k=0

E
[
∥Q(·)− ⟨βk, ϕ(·)⟩∥2

d

]
(6.79)

= 1
K

√√√√K−1∑
k=0

∆2
k (6.80)

≤ 1
K

K−1∑
k=0

√
∆2
k (6.81)

= 1
K

K−1∑
k=0

∆k (6.82)

= 1
K

K−1∑
k=0

(∆k − l) + l (6.83)

≤

√√√√( 1
K

K−1∑
k=0

(∆k − l)
)2

+ l (6.84)

≤

√√√√ 1
K

K−1∑
k=0

(∆k − l)2 + l, (6.85)

where l is arbitrary.

Now, we consider the Lyapounov function L(β) = ∥β∗ − β∥2
2 in order to find

a bound on 1
K

∑K−1
k=0 (∆k − l)2. Since β∗ ∈ B2(0, B), with B2(0, B) a convex

subset of Rdϕ , and the projection ΓC is non-expansive for closed and convex C,
we have for all k ≥ 0,

L(βk+1) = ∥β∗ − βk+1∥2
2 (6.86)

≤
∥∥β∗ − β−

k+1
∥∥2

2 (6.87)

= ∥β∗ − (βk + αgk)∥2
2 (6.88)
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= ∥(β∗ − βk)− αgk∥2
2 (6.89)

= ⟨(β∗ − βk)− αgk, (β∗ − βk)− αgk⟩ (6.90)
= ⟨β∗ − βk, β∗ − βk⟩ − 2α⟨β∗ − βk, gk⟩+ α2⟨gk, gk⟩ (6.91)
= L(βk)− 2α⟨β∗ − βk, gk⟩+ α2 ∥gk∥2

2 (6.92)
= L(βk) + 2α⟨βk − β∗, gk⟩+ α2 ∥gk∥2

2 . (6.93)

Let us consider the Lyapounov drift E [L(βk+1)− L(βk)], and exploit the fact
that environments samples used to compute gk are independent and identically
distributed. Formally, we define Gk = σ(Si,j , Zi,j , Ai,j , i ≤ k, j ≤ m) and
Fk = σ(Sk,0, Zk,0, Ak,0), where σ(Xi : i ∈ I) denotes the σ-algebra generated
by a collection {Xi : i ∈ I} of random variables. We can write, using to the law
of total expectation,

E [L(βk+1)− L(βk)]

= E
[
E [L(βk+1)− L(βk)|Gk−1]

]
(6.94)

≤ 2αE
[
E [⟨βk − β∗, gk⟩|Gk−1]

]
+ α2E

[
E
[
∥gk∥2

2

∣∣∣Gk−1

]]
. (6.95)

Let us focus on the first term of equation (6.95) with E [⟨gk, βk − β∗⟩|Gk−1].
First, since∇βQ̂k,0 = ϕk,0, the semi-gradient gk is given by (see equation (6.13)),

gk =
(
m−1∑
t=0

γtRk,t + γmQ̂k,m − Q̂k,0

)
ϕk,0. (6.96)

By conditioning on the sigma-fields Gk−1 and Fk, we have,

E [⟨βk − β∗, gk⟩|Fk,Gk−1]

=
(
E
[
m−1∑
t=0

γtRk,t + γmQ̂k,m

∣∣∣∣∣Fk,Gk−1

]
− Q̂k,0

)
⟨βk − β∗, ϕk,0⟩ (6.97)

=
(
E
[
m−1∑
t=0

γtRk,t + γmQ̂k,m

∣∣∣∣∣Fk,Gk−1

]
− Q̂k,0

)(
Q̂k,0 − Q̂∗

k,0

)
. (6.98)

Note that according to the Bellman operator (6.5) we have,

E
[
m−1∑
t=0

γtRk,t

∣∣∣∣∣Fk,Gk−1

]
= Qk,0 − γmE [Qk,m|Fk,Gk−1]. (6.99)

By substituting equation (6.99) in equation (6.98), we obtain,

E [⟨βk − β∗, gk⟩|Fk,Gk−1]

=
(
Q̂k,0 − Q̂∗

k,0

)(
E
[
m−1∑
t=0

γtRk,t

∣∣∣∣∣Fk,Gk−1

]

+ γmE
[
Q̂k,m

∣∣∣Fk,Gk−1

]
− Q̂k,0

)
(6.100)
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=
(
Q̂k,0 − Q̂∗

k,0

)(
Qk,0 − γmE [Qk,m|Fk,Gk−1]

+ γmE
[
Q̂k,m

∣∣∣Fk,Gk−1

]
− Q̂k,0

)
(6.101)

=
(

(Q̂k,0 −Qk,0) + (Qk,0 − Q̂∗
k,0)
)(

(Qk,0 − Q̂k,0)

− γmE
[
Qk,m − Q̂k,m

∣∣∣Fk,Gk−1

])
(6.102)

= −(Qk,0 − Q̂k,0)2 + (Qk,0 − Q̂k,0)(Qk,0 − Q̂∗
k,0)

+ γmE
[
Q̂k,m −Qk,m

∣∣∣Fk,Gk−1

]
(Q̂k,0 −Qk,0)

+ γmE
[
Q̂k,m −Qk,m

∣∣∣Fk,Gk−1

]
(Qk,0 − Q̂∗

k,0). (6.103)

Let us now take the expectation of (6.103) over Fk given Gk−1, for each term
separately,

• For the first term, we have,

E
[
−(Qk,0 − Q̂k,0)2

∣∣∣Gk−1

]
= −

∥∥∥Q− Q̂k∥∥∥2

d
. (6.104)

• For the second term, we have, using the Cauchy-Schwarz inequality,

E
[
(Qk,0 − Q̂k,0)(Qk,0 − Q̂∗

k,0)
∣∣∣Gk−1

]
=
∥∥∥(Q− Q̂k)(Q− Q̂∗)

∥∥∥
d

(6.105)

≤
∥∥∥Q− Q̂k∥∥∥

d

∥∥∥Q− Q̂∗
∥∥∥
d
. (6.106)

Before proceeding to the third and fourth terms, let us notice that,

E
[
Q̂k,m −Qk,m

∣∣∣Gk−1

]
=
∑
s,z,a

dm(s, z, a)
(
Q̂k(s, z, a)−Q(s, z, a)

)
(6.107)

=
∑
s,z,a

(d(s, z, a) + dm(s, z, a)− d(s, z, a))
(
Q̂k(s, z, a)−Q(s, z, a)

)
.

(6.108)

Remembering that sups,z,a Q̂k(s, z, a) ≤ B and sups,z,aQ(s, z, a) ≤ 1
1−γ , we

have,

E
[(
Q̂k,m −Qk,m

)2
∣∣∣∣Gk−1

]
=
∑
s,z,a

(d(s, z, a) + dm(s, z, a)− d(s, z, a))
(
Q̂k(s, z, a)−Q(s, z, a)

)2
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=
∥∥∥Q̂k −Q∥∥∥2

d
+
∑
s,z,a

(dm(s, z, a)− d(s, z, a))
(
Q̂k(s, z, a)−Q(s, z, a)

)2

≤
∥∥∥Q̂k −Q∥∥∥2

d
+ ∥dm − d∥TV sup

s,z,a

(
Q̂k(s, z, a)−Q(s, z, a)

)2

≤
∥∥∥Q̂k −Q∥∥∥2

d
+ ∥dm − d∥TV

(
B + 1

1− γ

)2
, (6.109)

where
(
B + 1

1−γ

)
is an upper bound on sups,z,a

∣∣∣Q̂k(s, z, a)−Q(s, z, a)
∣∣∣. Now,

using Jensen’s inequality and the subadditivity of the square root, we have,

E
[
Q̂k,m −Qk,m

∣∣∣Gk−1

]
≤ E

[√
(Q̂k,m −Qk,m)2

∣∣∣∣Gk−1

]
(6.110)

≤

√
E
[(
Q̂k,m −Qk,m

)2
∣∣∣∣Gk−1

]
(6.111)

≤
∥∥∥Q̂k −Q∥∥∥

d
+
(
B + 1

1− γ

)√
∥dm − d∥TV. (6.112)

With this, we proceed to the third and fourth terms (without the multiplier γm)
and show the following.

• For the third term, we have by upper bounding |Q̂k,0−Qk,0| by B+ 1
1−γ ,

E
[
(Q̂k,m −Qk,m)(Q̂k,0 −Qk,0)

∣∣∣Gk−1

]
≤
∥∥∥Q̂k −Q∥∥∥2

d
+
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.113)

• For the fourth term, we have by upper bounding |Qk,0−Q̂∗
k,0| by 1

1−γ +B,

E
[
(Q̂k,m −Qk,m)(Qk,0 − Q̂∗

k,0)
∣∣∣Gk−1

]
≤
∥∥∥Q̂k −Q∥∥∥

d

∥∥∥Q− Q̂∗
∥∥∥
d

+
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.114)

By taking expectation over Gk−1 of the four terms and using the previous upper
bounds, we obtain,

E [⟨βk − β∗, gk⟩] = E
[
E [⟨βk − β∗, gk⟩|Gk−1]

]
(6.115)

≤ −(1− γm)E
[∥∥∥Q̂k −Q∥∥∥2

d

]
+ (1 + γm)E

[∥∥∥Q̂k −Q∥∥∥
d

] ∥∥∥Q̂∗ −Q
∥∥∥
d

+ 2γm
(
B + 1

1− γ

)2√
∥dm − d∥TV (6.116)

= −(1− γm)∆2
k + (1 + γm)∆k

∥∥∥Q̂∗ −Q
∥∥∥
d

+ 2γm
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.117)
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Let us now focus on the second term of equation (6.95) with E
[
∥gk∥2

2

∣∣∣Gk−1

]
.

Since sups,z,a ∥ϕ(s, z, a)∥2 ≤ 1 and ∥βk∥2 ≤ B for all k ≥ 0, and rk,i ≤ 1 for
all k ≥ 0 and for all i < m − 1, the norm of the gradient (6.96) is bounded as
follows,

sup
k≥0
∥gk∥2 ≤

1− γm
1− γ + (1 + γm)B ≤ 1

1− γ + 2B. (6.118)

We obtain, for the second term of equation (6.95),

E
[
∥gk∥2

2

]
= E

[
E
[
∥gk∥2

2

∣∣∣Gk−1

]]
(6.119)

≤
(

1
1− γ + 2B

)2
. (6.120)

By substituting equations (6.117) and (6.120) into the Lyapounov drift of equa-
tion (6.95), we obtain,

E [L(βk+1)− L(βk)] ≤ −2α(1− γm)∆2
k + 2α(1 + γm)∆k

∥∥∥Q̂∗ −Q
∥∥∥
d

+ α2
(

1
1− γ + 2B

)2

+ 4αγm
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.121)

By setting l = 1+γm
2(1−γm) minf∈FB

ϕ
∥f −Q∥d, we can write,

E [L(βk+1)− L(βk)]

≤ −2α(1− γm)
(
∆2
k − 2l∆k

)
+ α2

(
1

1− γ + 2B
)2

+ 4αγm
(
B + 1

1− γ

)2√
∥dm − d∥TV (6.122)

= −2α(1− γm)
(
∆2
k − 2l∆k + l2

)
+ 2α(1− γm)l2 + α2

(
1

1− γ + 2B
)2

+ 4αγm
(
B + 1

1− γ

)2√
∥dm − d∥TV (6.123)

= −2α(1− γm) (∆k − l)2 + 2α(1− γm)l2 + α2
(

1
1− γ + 2B

)2

+ 4αγm
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.124)

By summing all Lyapounov drifts
∑K−1
k=0 E [L(βk+1)− L(βk)], we get,

E [L(βK)− L(β0)]

≤ −2α(1− γm)
K−1∑
k=0

(∆k − l)2 + 2αK(1− γm)l2 + α2K

(
1

1− γ + 2B
)2
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+ 4αKγm
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.125)

By rearranging and dividing by 2αK(1−γm), we obtain after neglecting L(βK) >
0,

1
K

K−1∑
k=0

(∆k − l)2 ≤ E [L(β0)− L(βK)]
2αK(1− γm) + l2 + α

2(1− γm)

(
1

1− γ + 2B
)2

+ 2γm
1− γm

(
B + 1

1− γ

)2√
∥dm − d∥TV (6.126)

≤
∥β0 − β∗∥2

2
2αK(1− γm) + l2 + α

2(1− γm)

(
1

1− γ + 2B
)2

+ 2γm
1− γm

(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.127)

The bound obtained through this Lyapounov drift summation can be used to
further develop equation (6.85), using the subadditivity of the square root,

√
E
[∥∥Q−Q∥∥2

d

]
≤

√√√√ 1
K

K−1∑
k=0

(∆k − l)2 + l (6.128)

≤
∥β0 − β∗∥2√
2αK(1− γm)

+ 2l +
√

α

2(1− γm)

(
1

1− γ + 2B
)

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV (6.129)

= ∥β0 − β∗∥2√
2αK(1− γm)

+ 1 + γm

1− γm min
f∈FB

ϕ

∥f −Q∥d

+
√

α

2(1− γm)

(
1

1− γ + 2B
)

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV. (6.130)

By setting α = 1√
K

and upper bounding ∥β0 − β∗∥ by 2B, we get,√
E
[∥∥Q−Q∥∥2

d

]
≤ 2B√

2
√
K(1− γm)

+ 1 + γm

1− γm min
f∈FB

ϕ

∥f −Q∥d

+ 1√
2
√
K(1− γm)

(
1

1− γ + 2B
)

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV (6.131)

=

√√√√√4B2 +
(

1
1−γ + 2B

)2

2
√
K(1− γm)

+ 1 + γm

1− γm min
f∈FB

ϕ

∥f −Q∥d
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+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV. (6.132)

This concludes the proof.

6.D Proof of the Finite-Time Bound for the Sym-
metric Critic

Let us first find an upper bound on the distance
∥∥∥Qπ − Q̃π∥∥∥2

d
between the Q-

function Qπ and the fixed point Q̃π.
Lemma 6.D.1 (Upper bound on the aliasing bias [Cayci et al., 2024]). For any
agent-state policy π ∈ ΠM, and any m ∈ N, we have,

∥∥∥Qπ − Q̃π∥∥∥
d
≤ 1− γm

1− γ

∥∥∥∥∥Eπ
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm∥∥∥

TV

∣∣∣∣∣Z0 = ·
]∥∥∥∥∥

d

. (6.133)

Proof. The proof is similar to the one of Cayci et al. [2024]. Let us first define
the expected m-step return,

r̄m(s, z, a) = Eπ
[
m−1∑
k=0

γkRk

∣∣∣∣∣S0 = s, Z0 = s,A0 = a

]
. (6.134)

Using the expected m-step return and the definition of the belief b in equation
(6.33) and approximate belief b̂ in equation (6.34), it can be noted that,

Qπ(z, a) = Eπ
[ ∞∑
k=0

γkm
∑
s∈S

bkm(s|Hkm)r̄m(s, Zkm, Akm)
∣∣∣∣∣Z0 = z,A0 = a

]
(6.135)

Q̃π(z, a) = Eπ
[ ∞∑
k=0

γkm
∑
s∈S

b̂km(s|Zkm)r̄m(s, Zkm, Akm)
∣∣∣∣∣Z0 = z,A0 = a

]
.

(6.136)

Indeed, bootstrapping at time step m based on the agent state only is equiv-
alent to considering the distribution of future states to be b̂m(·|Zm) instead of
bm(·|Hm). As a consequence, we have,∣∣∣Qπ(z, a)− Q̃π(z, a)

∣∣∣
= Eπ

[ ∞∑
k=0

γkm
∑
s∈S

(
bkm(s|Hkm)− b̂km(s|Zkm)

)
r̄m(s, Zkm, Akm)

∣∣∣∣∣Z0 = z,A0 = a

]
(6.137)

≤ Eπ
[ ∞∑
k=0

γkm sup
s∈S

∣∣∣bkm(s|Hkm)− b̂km(s|Zkm)
∣∣∣
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sup
s∈S
|r̄m(s, Zkm, Akm)|

∣∣∣∣∣Z0 = z,A0 = a

]
(6.138)

≤ Eπ
[ ∞∑
k=0

γkm sup
s∈S

∣∣∣bkm(s|Hkm)− b̂km(s|Zkm)
∣∣∣ 1− γm

1− γ∣∣∣∣∣ Z0 = z,A0 = a

]
(6.139)

= 1− γm
1− γ Eπ

[ ∞∑
k=0

γkm sup
s∈S

∣∣∣bkm(s|Hkm)− b̂km(s|Zkm)
∣∣∣∣∣∣∣∣ Z0 = z,A0 = a

]
(6.140)

≤ 1− γm
1− γ Eπ

[ ∞∑
k=0

γkm
∥∥∥bkm(·|Hkm)− b̂km(·|Zkm)

∥∥∥
TV

∣∣∣∣∣Z0 = z,A0 = a

]
(6.141)

≤ 1− γm
1− γ Eπ

[ ∞∑
k=0

γkm
∥∥∥bkm − b̂km∥∥∥

TV

∣∣∣∣∣Z0 = z,A0 = a

]
, (6.142)

where we use bkm and b̂km to denote the random variables bkm(·|Hkm) and
b̂km(·|Zkm), respectively. It illustrates that the aliasing bias can be bounded
proportionally to the distance between the true belief and the approximate
belief at the bootstrapping time steps. Then, we obtain,∥∥∥Qπ − Q̃π∥∥∥

d
≤ 1− γm

1− γ

∥∥∥∥∥Eπ
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm∥∥∥

TV

∣∣∣∣∣Z0 = ·
]∥∥∥∥∥

d

. (6.143)

This concludes the proof.

Using Lemma 6.D.1, we can prove Theorem 6.4, that is recalled below. Note
that some notations used in Appendix 6.C will be reused with another meaning.

Theorem 6.4 (Finite-time bound for symmetric m-step temporal difference
learning [Cayci et al., 2024]). For any agent-state policy π ∈ ΠM, and any
m ∈ N, we have for Algorithm 6.1 with α = 1√

K
, and arbitrary B > 0,√

E
[∥∥Qπ −Qπ∥∥2

d

]
≤ εtd + εapp + εshift + εalias, (6.35)

where the temporal difference learning, function approximation, distribution
shift, and aliasing terms are given by,

εtd =

√√√√√4B2 +
(

1
1−γ + 2B

)2

2
√
K(1− γm)

(6.36)

εapp = 1 + γm

1− γm min
f∈FB

χ

∥f −Qπ∥d (6.37)
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εshift =
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV (6.38)

εalias = 2
1− γ

∥∥∥∥∥Eπ
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm∥∥∥

TV

∣∣∣∣∣Z0 = ·
]∥∥∥∥∥

d

, (6.39)

with d(z, a) =
∑
s∈S d

π(s, z)π(a|z) the sampling distribution, and dm(z, a) =∑
s∈S d

π
m(s, z)π(a|z) the bootstrapping distribution.

Proof. To ease notation as for the proof of Theorem 6.3 in Appendix 6.C, we
use Q as a shorthand for Qπ, Q̂∗ as a shorthand for Q̂π∗ , Q̃ as a shorthand
for Q̃π, Q as a shorthand for Qπ and Q̂k as a shorthand for Q̂πβk , where the
subscripts and superscripts remain implicit but are assumed clear from context.
When evaluating the Q-functions, we go one step further by using Qk,i to denote
Q(Zk,i, Ak,i), Q̂∗

k,i to denote Q̂∗(Zk,i, Ak,i), Q̃k,i to denote Q̃(Zk,i, Ak,i) and Q̂k,i
to denote Q̂k(Zk,i, Ak,i), and χk,i to denote χ(Zk,i, Ak,i). In addition, we define
d as a shorthand for dπ ⊗ π, such that d(z, a) = dπ(z)π(a|z), and dm as a
shorthand for dπm ⊗ π, such that dm(z, a) = dπm(z)π(a|z). Using the triangle
inequality and the subadditivity of the square root, we have,√

E
[∥∥Q−Q∥∥2

d

]
≤

√
E
[∥∥∥Q− Q̃∥∥∥2

d

]
+ E

[∥∥∥Q̃−Q∥∥∥2

d

]
(6.144)

≤

√
E
[∥∥∥Q− Q̃∥∥∥2

d

]
+

√
E
[∥∥∥Q̃−Q∥∥∥2

d

]
(6.145)

≤
∥∥∥Q− Q̃∥∥∥

d
+

√
E
[∥∥∥Q̃−Q∥∥∥2

d

]
. (6.146)

We can bound the second term in equation (6.146) using similar steps as in the
proof for the asymmetric finite-time bound (see Appendix 6.C). We obtain,√

E
[∥∥∥Q̃−Q∥∥∥2

d

]
≤

√√√√ 1
K

K−1∑
k=0

(∆k − l)2 + l, (6.147)

where l is arbitrary, and ∆k is defined as,

∆k =

√
E
[∥∥∥Q̃− Q̂k∥∥∥2

d

]
=

√
E
[∥∥∥Q̃(·)− ⟨βk, χ(·)⟩

∥∥∥2

d

]
. (6.148)

Similarly to the asymmetric case (see Appendix 6.C), we consider the Lyapounov
function L(β) = ∥β∗ − β∥2

2 in order to find a bound on 1
K

∑K−1
k=0 (∆k − l)2.

We define Gk = σ(Zi,j , Ai,j , i ≤ k, j ≤ m) and Fk = σ(Zk,0, Ak,0). As in
the asymmetric case (see Appendix 6.C), we obtain, using to the law of total
expectation,

E [L(βk+1)− L(βk)] ≤ 2αE
[
E [⟨βk − β∗, gk⟩|Gk−1]

]
+ α2E

[
E
[
∥gk∥2

2

∣∣∣Gk−1

]]
.

(6.149)
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Let us focus on the first term of equation (6.149) with E [⟨βk − β∗, gk⟩|Gk−1].
By conditioning on the sigma-fields Gk−1 and Fk, we have,

E [⟨βk − β∗, gk⟩|Fk,Gk−1]

=
(
E
[
m−1∑
t=0

γtRk,t + γmQ̂k,m

∣∣∣∣∣Fk,Gk−1

]
− Q̂k,0

)(
Q̂k,0 − Q̂∗

k,0

)
.

(6.150)

Note that, according to the Bellman operator (6.7), we have,

E
[
m−1∑
t=0

γtRk,t

∣∣∣∣∣Fk,Gk−1

]
= Q̃k,0 − γmE

[
Q̃k,m

∣∣∣Fk,Gk−1

]
. (6.151)

It differs from the asymmetric case (see Appendix 6.C) in that we do not nec-
essarily have Q = Q̃ here. By substituting equation (6.151) in equation (6.150),
we obtain,

E [⟨βk − β∗, gk⟩|Fk,Gk−1]

=
(
Q̂k,0 − Q̂∗

k,0

)(
E
[
m−1∑
t=0

γtRk,t

∣∣∣∣∣Fk,Gk−1

]

+ γmE
[
Q̂k,m

∣∣∣Fk,Gk−1

]
− Q̂k,0

)
(6.152)

=
(
Q̂k,0 − Q̂∗

k,0

)(
Q̃k,0 − γmE

[
Q̃k,m

∣∣∣Fk,Gk−1

]
+ γmE

[
Q̂k,m

∣∣∣Fk,Gk−1

]
− Q̂k,0

)
(6.153)

=
(

(Q̂k,0 − Q̃k,0) + (Q̃k,0 − Q̂∗
k,0)
)(

(Q̃k,0 − Q̂k,0)

− γmE
[
Q̃k,m − Q̂k,m

∣∣∣Fk,Gk−1

])
(6.154)

= −(Q̃k,0 − Q̂k,0)2 + (Q̃k,0 − Q̂k,0)(Q̃k,0 − Q̂∗
k,0)

+ γmE
[
Q̂k,m − Q̃k,m

∣∣∣Fk,Gk−1

]
(Q̂k,0 − Q̃k,0)

+ γmE
[
Q̂k,m − Q̃k,m

∣∣∣Fk,Gk−1

]
(Q̃k,0 − Q̂∗

k,0). (6.155)

We now follow the same technique as in the asymmetric case (see Appendix 6.C)
for each of the four terms. By taking the expectation over Fk, we get the
following.

• For the first term, we have,

E
[
−(Q̃k,0 − Q̂k,0)2

∣∣∣Gk−1

]
= −

∥∥∥Q̃− Q̂k∥∥∥2

d
. (6.156)
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• For the second term, we have,

E
[
(Q̃k,0 − Q̂k,0)(Q̃k,0 − Q̂∗

k,0)
∣∣∣Gk−1

]
≤
∥∥∥Q̃− Q̂k∥∥∥

d

∥∥∥Q̃− Q̂∗
∥∥∥
d
. (6.157)

• For the third term, we have,

E
[
(Q̂k,m − Q̃k,m)(Q̂k,0 − Q̃k,0)

∣∣∣Gk−1

]
≤
∥∥∥Q̂k − Q̃∥∥∥2

d
+
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.158)

• For the fourth term, we have,

E
[
(Q̂k,m − Q̃k,m)(Q̃k,0 − Q̂∗

k,0)
∣∣∣Gk−1

]
≤
∥∥∥Q̂k − Q̃∥∥∥

d

∥∥∥Q̃− Q̂∗
∥∥∥
d

+
(
B + 1

1− γ

)2√
∥dm − d∥TV.

(6.159)

By taking expectation over Gk−1 of the four terms and using the previous upper
bounds, we obtain,

E [⟨βk − β∗, gk⟩] ≤ −(1− γm)∆2
k + (1 + γm)∆k

∥∥∥Q̂∗ − Q̃
∥∥∥
d

+ 2γm
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.160)

The second term in equation (6.149) is treated similarly to the asymmetric case
(see Appendix 6.C), which yields,

E
[
∥gk∥2

2

]
≤
(

1
1− γ + 2B

)2
. (6.161)

By substituting equations (6.160) and (6.161) into the Lyapounov drift of equa-
tion (6.149), we obtain,

E [L(βk+1)− L(βk)] ≤ −2α(1− γm)∆2
k + 2α(1 + γm)∆k

∥∥∥Q̂∗ − Q̃
∥∥∥
d

+ α2
(

1
1− γ + 2B

)2

+ 4αγm
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.162)

We can upper bound
∥∥∥Q̂∗ − Q̃

∥∥∥
d

as follows,∥∥∥Q̂∗ − Q̃
∥∥∥
d
≤
∥∥∥Q̂∗ −Q

∥∥∥
d

+
∥∥∥Q− Q̃∥∥∥

d
. (6.163)
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By setting l = 1+γm
2(1−γm)

(∥∥∥Q̂∗ −Q
∥∥∥
d

+
∥∥∥Q− Q̃∥∥∥

d

)
, we can write, following a

similar strategy as in the asymmetric case (see Appendix 6.C),

E [L(βk+1)− L(βk)]

≤ −2α(1− γm) (∆k − l)2 + 2α(1− γm)l2 + α2
(

1
1− γ + 2B

)2

+ 4αγm
(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.164)

By summing all drifts, rearranging, and dividing by 2αK(1 − γm), we obtain
after neglecting L(βK) > 0,

1
K

K−1∑
k=0

(∆k − l)2 ≤
∥β0 − β∗∥2

2
2αK(1− γm) + l2 + α

2(1− γm)

(
1

1− γ + 2B
)2

+ 2γm
1− γm

(
B + 1

1− γ

)2√
∥dm − d∥TV. (6.165)

The bound obtained through this Lyapounov drift summation can be used to
further develop equation (6.147), using the subadditivity of the square root,√

E
[∥∥∥Q̃−Q∥∥∥2

d

]
≤

√√√√ 1
K

K−1∑
k=0

(∆k − l)2 + l (6.166)

≤
∥β0 − β∗∥2√
2αK(1− γm)

+ 2l +
√

α

2(1− γm)

(
1

1− γ + 2B
)

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV (6.167)

= ∥β0 − β∗∥2√
2αK(1− γm)

+ 2l +
√

α

2(1− γm)

(
1

1− γ + 2B
)

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV. (6.168)

Plugging equation (6.168) into equation (6.146), and substituting back l, we
finally have,√

E
[∥∥Q−Q∥∥2

d

]
≤

∥β0 − β∗∥2√
2αK(1− γm)

+ 1 + γm

1− γm
(∥∥∥Q̂∗ −Q

∥∥∥
d

+
∥∥∥Q− Q̃∥∥∥

d

)
+
√

α

2(1− γm)

(
1

1− γ + 2B
)

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV +

∥∥∥Q− Q̃∥∥∥
d

(6.169)

≤
∥β0 − β∗∥2√
2αK(1− γm)

+ 1 + γm

1− γm
∥∥∥Q̂∗ −Q

∥∥∥
d
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+
√

α

2(1− γm)

(
1

1− γ + 2B
)

+ 2
1− γm

∥∥∥Q− Q̃∥∥∥
d

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV (6.170)

Using Lemma 6.D.1, we finally obtain,√
E
[∥∥Q−Q∥∥2

d

]
≤

∥β0 − β∗∥2√
2αK(1− γm)

+ 1 + γm

1− γm
∥∥∥Q̂∗ −Q

∥∥∥
d

+
√

α

2(1− γm)

(
1

1− γ + 2B
)

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV

+
(

2
1− γm

)
1− γm
1− γ

∥∥∥∥∥E
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm∥∥∥

TV

∣∣∣∣∣Z0 = ·
]∥∥∥∥∥

d

(6.171)

≤
∥β0 − β∗∥2√
2αK(1− γm)

+ 1 + γm

1− γm min
f∈FB

ϕ

∥f −Q∥d

+
√

α

2(1− γm)

(
1

1− γ + 2B
)

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV

+ 2
1− γ

∥∥∥∥∥E
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm∥∥∥

TV

∣∣∣∣∣Z0 = ·
]∥∥∥∥∥

d

. (6.172)

By setting α = 1√
K

and upper bounding ∥β0 − β∗∥ by 2B, we get,

√
E
[∥∥Q−Q∥∥2

d

]
≤

√√√√√4B2 +
(

1
1−γ + 2B

)2

2
√
K(1− γm)

+ 1 + γm

1− γm min
f∈FB

ϕ

∥f −Q∥d

+
(
B + 1

1− γ

)√
2γm

1− γm
√
∥dm − d∥TV

+ 2
1− γ

∥∥∥∥∥E
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm∥∥∥

TV

∣∣∣∣∣Z0 = ·
]∥∥∥∥∥

d

. (6.173)

This concludes the proof.

6.E Proof of the Finite-Time Bound for the Nat-
ural Actor-Critic

Let us first give the performance difference lemma for POMDP proved by Cayci
et al. [2024]. Note that this proof is completely agnostic about the critic used
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to compute π1, π2 ∈ ΠM and is thus applicable both to the asymmetric setting
and the symmetric setting.
Lemma 6.E.1 (Performance difference [Cayci et al., 2024]). For any two agent-
state polices π1, π2 ∈ ΠM,

V π2(z0)− V π1(z0) ≤ 1
1− γE

dπ2 [Aπ1(Z,A)|Z0 = z0] + 2
1− γ ε

π2
inf(z0), (6.174)

where,

επ2
inf(z0) = Eπ2

[ ∞∑
k=0

γk
∥∥∥b̂k − bk∥∥∥

TV

∣∣∣∣∣Z0 = z0

]
. (6.175)

Proof. The proof is similar to the one of Cayci et al. [2024]. First, let us de-
compose the performance difference in the following terms,

V π2(z0)− V π1(z0)

= Eπ2

[ ∞∑
t=0

γtRt

∣∣∣∣∣Z0 = z0

]
− V π1(z0) (6.176)

= Eπ2

[ ∞∑
t=0

γt (Rt − V π1(Zt) + V π1(Zt))
∣∣∣∣∣Z0 = z0

]
− V π1(z0) (6.177)

= Eπ2

[ ∞∑
t=0

γt (Rt − V π1(Zt) + γV π1(Zt+1))
∣∣∣∣∣Z0 = z0

]
(6.178)

= Eπ2

[ ∞∑
t=0

γt (Rt + γVπ1(St+1, Zt+1)− V π1(Zt))
∣∣∣∣∣Z0 = z0

]

+ Eπ2

[ ∞∑
t=0

γt (γV π1(Zt+1)− γVπ1(St+1, Zt+1))
∣∣∣∣∣Z0 = z0

]
(6.179)

= Eπ2

[ ∞∑
t=0

γt (Rt + γVπ1(St+1, Zt+1)− V π1(Zt))
∣∣∣∣∣Z0 = z0

]

+ Eπ2

[ ∞∑
t=0

γt+1 (V π1(Zt+1)− Vπ1(St+1, Zt+1))
∣∣∣∣∣Z0 = z0

]
. (6.180)

Let us focus on bounding the first term in equation (6.180). We have, for any
T > 0,∣∣∣∣∣

T∑
t=0

γt (Rt + γVπ1(St+1, Zt+1)− V π1(Zt))
∣∣∣∣∣ ≤ 2

(1− γ)2 <∞. (6.181)

By Lebesgue’s dominated convergence, we have,

Eπ2

[ ∞∑
t=0

γt (Rt + γVπ1(St+1, Zt+1)− V π1(Zt))
∣∣∣∣∣Z0 = z0

]

=
∞∑
t=0

γtEπ2 [Rt + γVπ1(St+1, Zt+1)− V π1(Zt)|Z0 = z0]. (6.182)
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Then, by the law of total expectation, we have at any time step t ≥ 0,

Eπ2 [Rt + γVπ1(St+1, Zt+1)− V π1(Zt)|Z0 = z0]

= E
[
Eπ2 [Rt + γVπ1(St+1, Zt+1)|Ht, Zt]− V π1(Zt)

∣∣Z0 = z0
]
. (6.183)

And, we have,

Eπ2 [Rt + γVπ1(St+1, Zt+1)|Ht = ht, Zt = zt]

=
∑
st,at

bt(st|ht)π2(at|zt)Qπ1(st, zt, at) (6.184)

=
∑
at

π2(at|zt)Qπ1(zt, at) +
∑
st,at

bt(st|ht)π2(at|zt)Qπ1(st, zt, at)

−
∑
at

π2(at|zt)Qπ1(zt, at) (6.185)

=
∑
at

π2(at|zt)Qπ1(zt, at) +
∑
st,at

bt(st|ht)π2(at|zt)Qπ1(st, zt, at)

−
∑
st,at

b̂t(st|zt)π2(at|zt)Qπ1(st, zt, at) (6.186)

=
∑
at

π2(at|zt)Qπ1(zt, at)

+
∑
st,at

(
bt(st|ht)− b̂t(st|zt)

)
π2(at|zt)Qπ1(st, zt, at). (6.187)

By noting that sups,z |
∑
a π2(a|z)Qπ1(s, z, a)| ≤ sups,z,a |Qπ1(s, z, a)| ≤ 1

1−γ ,
we obtain,

Eπ2 [Rt + γVπ1(St+1, Zt+1)|Ht = ht, Zt = zt]

≤
∑
at

π2(at|zt)Qπ1(zt, at) + 1
1− γ

∥∥∥bt(·|ht)− b̂t(·|zt)∥∥∥
TV

. (6.188)

Finally, the expectation at time t ≥ 0 can be written as,

Eπ2 [Rt + γVπ1(St+1, Zt+1)− V π1(Zt)|Z0 = z0]

= E
[
Eπ2 [Rt + γVπ1(St+1, Zt+1)|Ht, Zt]− V π1(Zt)

∣∣Z0 = z0
]

(6.189)

≤ Eπ2

[
Qπ1(Zt, At) + 1

1− γ

∥∥∥bt(·|Ht)− b̂t(·|Zt)
∥∥∥

TV
− V π1(Zt)

∣∣∣∣∣ Z0 = z0

]
(6.190)

= Eπ2

[
Aπ1(Zt, At)−

1
1− γ

∥∥∥bt(·|Ht)− b̂t(·|Zt)
∥∥∥

TV

∣∣∣∣Z0 = z0

]
(6.191)

Now, by using Lebesgue’s dominated theorem in the reverse direction, we have,

Eπ2

[ ∞∑
t=0

γt (Rt + γVπ1(St+1, Zt+1)− V π1(Zt))
∣∣∣∣∣Z0 = z0

]

≤ Eπ2

[ ∞∑
t=0

γtAπ1(Zt, At)
∣∣∣∣∣Z0 = z0

]
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+ 1
1− γE

π2

[ ∞∑
t=0

γt
∥∥∥b̂t − bt∥∥∥

TV

∣∣∣∣∣Z0 = z0

]
(6.192)

= Eπ2

[ ∞∑
t=0

γtAπ1(Zt, At)
∣∣∣∣∣Z0 = z0

]
+ 1

1− γ ε
π2
inf(z0) (6.193)

Now, let us focus on bounding the second term in equation (6.180). We have,
for any T > 0,∣∣∣∣∣

T∑
t=0

γt+1 (V π1(Zt+1)− Vπ1(St+1, Zt+1))
∣∣∣∣∣ ≤ 2

(1− γ)2 <∞. (6.194)

Using Lebesgue dominated convergence theorem, we can write,

Eπ2

[ ∞∑
t=0

γt+1 (V π1(Zt+1)− Vπ1(St+1, Zt+1))
∣∣∣∣∣Z0 = z0

]

=
∞∑
t=0

γt+1Eπ2 [V π1(Zt+1)− Vπ1(St+1, Zt+1)|Z0 = z0] . (6.195)

By the law of total expectation, we have at any time step t ≥ 0,

Eπ2 [V π1(Zt+1)− Vπ1(St+1, Zt+1)|Z0 = z0]

= E
[
V π1(Zt+1)−Eπ2 [Vπ1(St+1, Zt+1)|Ht+1, Zt+1]

∣∣Z0 = z0
]
. (6.196)

And, we have,

Eπ2 [Vπ1(St+1, zt+1)|Ht+1 = ht+1, Zt+1 = zt+1, ]

=
∑
st+1

bt+1(st+1|ht+1)Vπ1(st+1, zt+1) (6.197)

= V π1(zt+1) +
∑
st+1

bt+1(st+1|ht+1)Vπ1(st+1, zt+1)− V π1(zt+1) (6.198)

= V π1(zt+1) +
∑
st+1

bt+1(st+1|ht+1)Vπ1(st+1, zt+1)

−
∑
st+1

b̂t+1(st+1|zt+1)Vπ1(st+1, zt+1) (6.199)

= V π1(zt+1) +
∑
st+1

(
bt+1(st+1|ht+1)− b̂t+1(st+1|zt+1)

)
Vπ1(st+1, zt+1).

(6.200)

From there, by noting that sups,z |Vπ1(s, z)| ≤ 1
1−γ , we obtain,

Eπ2 [Vπ1(St+1, zt+1)|Ht+1 = ht+1, Zt+1 = zt+1, ]

≥ V π1(zt+1)− 1
1− γ

∥∥∥bt+1(·|ht+1)− b̂t+1(·|zt+1)
∥∥∥

TV
. (6.201)

Finally, the expectation at time t ≥ 0 can be written as,

Eπ2 [V π1(Zt+1)− Vπ1(St+1, Zt+1)|Z0 = z0]
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= E
[
V π1(Zt+1)−Eπ2 [Vπ1(St+1, Zt+1)|Ht+1, Zt+1]

∣∣Z0 = z0
]

(6.202)

≤ E
[
V π1(Zt+1)− V π1(Zt+1)

+ 1
1− γ

∥∥∥bt+1(·|Ht+1)− b̂t+1(·|Zt+1)
∥∥∥

TV

∣∣∣ Z0 = z0

]
(6.203)

≤ E
[

1
1− γ

∥∥∥bt+1(·|Ht+1)− b̂t+1(·|Zt+1)
∥∥∥

TV

∣∣∣∣Z0 = z0

]
. (6.204)

Now, by using Lebesgue’s dominated theorem in the reverse direction, we have,

Eπ2

[ ∞∑
t=0

γt+1 (V π1(Zt+1)− Vπ1(St+1, Zt+1))
∣∣∣∣∣Z0 = z0

]

≤ 1
1− γE

π2

[ ∞∑
t=0

γt+1
∥∥∥bt+1(·|Ht+1)− b̂t+1(·|Zt+1)

∥∥∥
TV

∣∣∣∣∣Z0 = z0

]
(6.205)

= 1
1− γE

π2

[ ∞∑
t=0

γt
∥∥∥bt(·|Ht)− b̂t(·|Zt)

∥∥∥
TV

−
∥∥∥b0(·|H0)− b̂0(·|Z0)

∥∥∥
TV

∣∣∣∣∣ Z0 = z0

]
(6.206)

= 1
1− γE

π2

[ ∞∑
t=0

γt
∥∥∥bt(·|Ht)− b̂t(·|Zt)

∥∥∥
TV

∣∣∣∣∣Z0 = z0

]
−Eπ2

[∥∥∥b0(·|H0)− b̂0(·|Z0)
∥∥∥

TV

∣∣∣Z0 = z0

]
(6.207)

= 1
1− γ ε

π2
inf(z0)−Eπ2

[∥∥∥b0(·|H0)− b̂0(·|Z0)
∥∥∥

TV

∣∣∣Z0 = z0

]
(6.208)

≤ 1
1− γ ε

π2
inf(z0). (6.209)

Finally, by substituting the upper bound (6.193) on the first term and the upper
bound (6.209) on the second term into equation (6.180), we obtain,

V π2(z0)− V π1(z0)

≤ Eπ2

[ ∞∑
t=0

γtAπ1(Zt, At)
∣∣∣∣∣Z0 = z0

]
+ 2

1− γ ε
π2
inf(z0) (6.210)

= 1
1− γE

dπ2 [Aπ1(Z,A)|Z0 = z0] + 2
1− γ ε

π2
inf(z0). (6.211)

This concludes the proof.

Using Lemma 6.E.1, we can prove Theorem 6.5, that is recalled below. The
proof from Cayci et al. [2024] is generalized to the asymmetric setting.
Theorem 6.5 (Finite-time bound for asymmetric and symmetric natural ac-
tor-critic algorithm). For any agent-state process M = (Z, U), we have for
Algorithm 6.2 with α = 1√

K
, ζ = B

√
1−γ√
2N , η = 1√

T
and arbitrary B > 0,

(1− γ) min
0≤t<T

E [J(π∗)− J(πt)] ≤ εnac + 2εinf
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+ C∞

(
εactor + 2εgrad + 2

√
6 1
T

T−1∑
t=0

επtcritic

)
, (6.41)

where the different terms may differ for asymmetric and symmetric critics,

εnac = B2 + 2 log |A|
2
√
T

(6.42)

εactor =
√

(2− γ)B
(1− γ)

√
N

(6.43)

εinf,asym = 0 (6.44)

εinf,sym = Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk∥∥∥

TV

]
(6.45)

εgrad,asym = sup
0≤t<T

√
min
w
Lt(w) (6.46)

εgrad,sym = sup
0≤t<T

√
min
w

Lt(w), (6.47)

and επtcritic is given in Theorem 6.3 and Theorem 6.4.

Proof. The proof is based on a Lyapounov drift result using the following Lya-
pounov function,

Λ(π) =
∑
z∈Z

dπ
∗
(z)KL(π∗(·|z) ∥ π(·|z)). (6.212)

The Lyapounov drift is given by,

Λ(πt+1)− Λ(πt) =
∑
z∈Z

dπ
∗
(z)
∑
a∈A

π∗(a|z) log πt(a|z)
πt+1(a|z) (6.213)

=
∑
z,a

dπ
∗
(z, a) log πt(a|z)

πt+1(a|z) . (6.214)

Since supz,a ∥ψ(z, a)∥2 ≤ 1, we have that log πθ(a|z) is 1-smooth [Agarwal et al.,
2021], which implies,

log πθ2(a|z) ≤ log πθ1(a|z) + ⟨∇θ log πθ1(a|z), θ2 − θ1⟩+ 1
2 ∥θ2 − θ1∥2

2 . (6.215)

By selecting θ2 = θt and θ1 = θt+1 and noting that θt+1 − θt = ηw̄t =
η 1
N

∑N−1
n=0 wt,n we obtain,

log πt(a|z)
πt+1(a|z) ≤

η2

2 ∥w̄t∥
2
2 − η⟨∇θ log πt(a|z), w̄t⟩. (6.216)

Now, we separately bound the Lyapounov drift for the asymmetric and sym-
metric settings. In the following, some notations are overloaded across both
setting when their meaning is clear from context. For the asymmetric setting,
we have,

Λ(πt+1)− Λ(πt)

157



=
∑
z,a

dπ
∗
(z, a) log πt(a|z)

πt+1(a|z) (6.217)

≤ η2

2 ∥w̄t∥
2
2 − η

∑
z,a

dπ
∗
(z, a)⟨∇θ log πt(a|z), w̄t⟩ (6.218)

= η2

2 B
2 − η

∑
s,z,a

dπ
∗
(s, z, a)Aπt(s, z, a)

− η
∑
s,z,a

dπ
∗
(s, z, a) (⟨∇θ log πt(a|z), w̄t⟩ − Aπt(s, z, a)) (6.219)

≤ η2

2 B
2 − η

∑
s,z,a

dπ
∗
(s, z, a)Aπt(s, z, a)

+ η
∑
z,a

dπ
∗
(s, z, a)

√
(⟨∇θ log πt(a|z), w̄t⟩ − Aπt(s, z, a))2

. (6.220)

For the symmetric setting, we observe instead,

Λ(πt+1)− Λ(πt)

=
∑
z,a

dπ
∗
(z, a) log πt(a|z)

πt+1(a|z) (6.221)

≤ η2

2 B
2 − η

∑
z,a

dπ
∗
(z, a)Aπt(z, a)

+ η
∑
z,a

dπ
∗
(z, a)

√
(⟨∇θ log πt(a|z), w̄t⟩ −Aπt(z, a))2

. (6.222)

Now, let Ht denote the sigma field of all samples used in the computation of πt
(which excludes the samples used for computing w̄t), along with all the samples
used in the computation of Qπt . We define the ideal and approximate loss
functions, both in the asymmetric and the symmetric setting,

Lt(w) = E
[
(⟨∇θ log πt(A|Z), w⟩ − Aπt(S,Z,A))2

∣∣∣Ht] (6.223)

Lt(w) = E
[(
⟨∇θ log πt(A|Z), w⟩ − Aπt(S,Z,A)

)2
∣∣∣Ht] (6.224)

Lt(w) = E
[
(⟨∇θ log πt(A|Z), w⟩ −Aπt(Z,A))2

∣∣∣Ht] (6.225)

Lt(w) = E
[(
⟨∇θ log πt(A|Z), w⟩ −Aπt(Z,A)

)2
∣∣∣Ht]. (6.226)

Because E
[∥∥Vπt − Vπt∥∥2

dπt

∣∣∣Ht] ≤ E
[∥∥Qπt −Qπt∥∥2

dπt

∣∣∣Ht], the error between
the asymmetric advantage A and its approximation A is upper bounded by,√

E
[(
Aπt(S,Z,A)−Aπt(S,Z,A)

)2
∣∣∣Ht]

=
√
E
[∥∥Aπt −Aπt∥∥2

dπt

∣∣∣Ht] (6.227)

=
√
E
[∥∥Qπt − Vπt −Qπt + Vπt

∥∥2
dπt

∣∣∣Ht] (6.228)
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=
√
E
[∥∥Qπt −Qπt + Vπt − Vπt

∥∥2
dπt

∣∣∣Ht] (6.229)

≤
√
E
[∥∥Qπt −Qπt∥∥2

dπt
+
∥∥Vπt − Vπt∥∥2

dπt

∣∣∣Ht] (6.230)

≤
√
E
[∥∥Qπt −Qπt∥∥2

dπt

∣∣∣Ht]+
√
E
[∥∥Vπt − Vπt∥∥2

dπt

∣∣∣Ht] (6.231)

≤ 2επtcritic,asym, (6.232)

where επtcritic,asym = επttd,asym + επtapp,asym + επtshift,asym is given by the upper bound
(6.29) in Theorem 6.3. Similarly, the error between the symmetric advantage A
and its approximation A is upper bounded by,√

E
[(
Aπt(Z,A)−Aπt(Z,A)

)2
∣∣∣Ht] ≤ 2επtcritic,sym, (6.233)

where επtcritic,sym = επttd,sym + επtapp,sym + επtshift,sym + επtalias,sym is given by the upper
bound (6.35) in Theorem 6.4. By using the inequality (x+ y)2 ≤ 2x2 + 2y2,

Lt(w) = E
[(
⟨∇θ log πt(A|Z), w⟩ − Aπt(S,Z,A)

)2
∣∣∣Ht] (6.234)

= E
[(
⟨∇θ log πt(A|Z), w⟩ − Aπt(S,Z,A)

+Aπt(S,Z,A)−Aπt(S,Z,A)
)2
∣∣∣∣∣ Ht

]
(6.235)

≤ 2E
[
(⟨∇θ log πt(A|Z), w⟩ − Aπt(S,Z,A))2

∣∣∣Ht]
+ 2E

[(
Aπt(S,Z,A)−Aπt(S,Z,A)

)2
∣∣∣Ht] (6.236)

≤ 2Lt(w) + 2(2επtcritic,asym)2. (6.237)

Similarly, we obtain in the symmetric case,

Lt(w) ≤ 2Lt(w) + 2(2επtcritic,sym)2. (6.238)

Starting from the ideal objective and following a similar technique, we also
obtain,

Lt(w) ≤ 2Lt(w) + 2(2επtcritic,asym)2 (6.239)
Lt(w) ≤ 2Lt(w) + 2(2επtcritic,sym)2. (6.240)

By using Theorem 14.8 in [Shalev-Shwartz and Ben-David, 2014] with step size
ζ = B

√
1−γ√
2N , we obtain for the average iterate w̄t under the asymmetric loss and

symmetric loss, respectively,

Lt(w̄t) ≤ ε2
actor + min

∥w∥2≤B
Lt(w) (6.241)

Lt(w̄t) ≤ ε2
actor + min

∥w∥2≤B
Lt(w), (6.242)
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where ε2
actor = (2−γ)B

2(1−γ)
√
N

. On expectation, for the ideal asymmetric objective
Lt, we obtain,

E [Lt(w̄t)] ≤ 2E
[
Lt(w̄t)

]
+ 2(2επtcritic,asym)2 (6.243)

≤ 2ε2
actor + 2 min

∥w∥2≤B
Lt(w) + 2(2επtcritic,asym)2 (6.244)

≤ 2ε2
actor + 2

(
2 min

∥w∥2≤B
Lt(w) + 2(2επtcritic,asym)2

)
+ 2(2επtcritic,asym)2

(6.245)

= 2ε2
actor + 4 min

∥w∥2≤B
Lt(w) + 6(2επtcritic,asym)2 (6.246)

= 2ε2
actor + 4

(
επtgrad,asym

)2
+ 6(2επtcritic,asym)2, (6.247)

where we define the actor gradient function approximation error as,(
επtgrad,asym

)2
= min

∥w∥2≤B
Lt(w). (6.248)

Similarly, we obtain on expectation for the ideal symmetric objective Lt,

E [Lt(w̄t)] ≤ 2ε2
actor + 4

(
επtgrad,sym

)2
+ 6(2επtcritic,sym)2, (6.249)

where we define the actor gradient function approximation error as,(
επtgrad,sym

)2
= min

∥w∥2≤B
Lt(w). (6.250)

Now, let us go back to the asymmetric and symmetric Lyapounov drift functions
of equation (6.220) and (6.222). First, we assume that there exists C∞ < ∞
such that supt≥0 E[Ct] ≤ C∞ with,

Ct = sup
s,z,a

∣∣∣∣ dπ∗(s, z)π∗(a|z)
dπθt (s, z)πθt(a|z)

∣∣∣∣. (6.251)

Second, we leverage the performance difference lemma to bound the advantage.
For the asymmetric setting, the performance difference lemma for MDP [Kakade
and Langford, 2002] holds because of the Markovianity of (St, Zt),

(1− γ)
(
V π

∗
(s0, z0)− V πt(s0, z0)

)
= Edπ

∗

[Aπt(S,Z,A)|S0 = s0, Z0 = z0].
(6.252)

We note that E
[
V π

∗(S0, Z0)− V πt(S0, Z0)
]

= E [J(π∗)− J(πt)], such that,

−Edπ
∗

[Aπt(S,Z,A)] = −(1− γ) (J(π∗)− J(πt)). (6.253)

= −(1− γ) (J(π∗)− J(πt)) + εinf,asym, (6.254)

where εinf,asym = 0. For the symmetric setting, using Lemma 6.E.1 with π2 = π∗

and π1 = πt, we note that,

(1− γ)
(
V π

∗
(z0)− V πt(z0)

)
≤ Edπ

∗

[Aπt(Z,A)|Z0 = z0] + 2επ
∗

inf(z0), (6.255)
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which implies,

−Edπ
∗

[Aπt(Z,A)|Z0 = z0] ≤ −(1− γ)
(
V π

∗
(z0)− V πt(z0)

)
+ 2επ

∗

inf(z0).
(6.256)

We note that E
[
V π

∗(Z0)− V πt(Z0)
]

= E [J(π∗)− J(πt)] and we denote E
[
επ

∗

inf(Z0)
]

with εinf,sym, so that,

εinf,sym = E
[
Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk∥∥∥

TV

∣∣∣∣∣Z0 = Z0

]]
(6.257)

= Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk∥∥∥

TV

]
. (6.258)

By rearranging, we have,

−Edπ
∗

[Aπt(Z,A)] ≤ −(1− γ)E [J(π∗)− J(πt)] + 2εinf,sym. (6.259)

Note that
∑
s,z,a d

π∗(s, z, a)f(s, z, a) =
∑
s,z,a

dπ
∗

(s,z,a)
dπt (s,z,a) d

πt(s, z, a)f(s, z, a) ≤
Ct
∑
s,z,a d

πt(s, z, a)f(s, z, a) for positive f . Taking expectation over the asym-
metric Lyapounov drift of equation (6.220), we obtain using equation (6.251),

E [Λ(πt+1)− Λ(πt)]

≤ η2

2 B
2 − η

∑
z,a

dπ
∗
(z, a)Aπt(z, a)

+ η
∑
s,z,a

dπ
∗
(s, z, a)

√
(⟨∇θ log πt(a|z), w̄t⟩ − Aπt(s, z, a))2 (6.260)

≤ η2

2 B
2 − η(1− γ)E [J(π∗)− J(πt)] + 2ηεinf,asym

+ ηC∞

√
2ε2

actor + 4
(
επtgrad,asym

)2
+ 6(2επtcritic,asym)2 (6.261)

≤ η2

2 B
2 − η(1− γ)E [J(π∗)− J(πt)] + 2ηεinf,asym

+ ηC∞

(√
2εactor + 2επtgrad,asym + 2

√
6επtcritic,asym

)
. (6.262)

Similarly, taking expectation over the symmetric drift of equation (6.222), we
obtain a similar expression,

E [Λ(πt+1)− Λ(πt)]

≤ η2

2 B
2 − η

∑
z,a

dπ
∗
(z, a)Aπt(z, a)

+ η
∑
z,a

dπ
∗
(z, a)

√
(⟨∇θ log πt(a|z), w̄t⟩ −Aπt(z, a))2 (6.263)

≤ η2

2 B
2 − η(1− γ)E [J(π∗)− J(πt)] + 2ηεinf,sym
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+ ηC∞

(√
2εactor + 2επtgrad,sym + 2

√
6επtcritic,sym

)
. (6.264)

Given the similarity of equation (6.262) and equation (6.264), in the following
we denote the denote the upper bounds using εinf, επtgrad and επtcritic, irrespectively
of the setting (i.e., asymmetric or symmetric).

By summing all Laypounov drifts, we obtain,

E [Λ(πT )− Λ(π0)]

≤ T η
2

2 B
2 − η(1− γ)

T−1∑
t=0

E [J(π∗)− J(πt)] + 2ηTεinf

+ η

T−1∑
t=0

C∞

(√
2εactor + 2επtgrad + 2

√
6επtcritic

)
(6.265)

≤ T η
2

2 B
2 − η(1− γ)

T−1∑
t=0

E [J(π∗)− J(πt)] + 2ηTεinf

+ ηC∞

(
√

2Tεactor + 2
T−1∑
t=0

επtgrad + 2
√

6
T−1∑
t=0

επtcritic

)
. (6.266)

Since π0 is initialized at the uniform policy with θ0 := 0, we have,

Λ(π0) =
∑
z∈Z

dπ
∗
(z)KL(π∗(·|z) ∥ π0(·|z)) (6.267)

=
∑
z∈Z

dπ
∗
(z)
(∑
a∈A

π∗(a|z) log π∗(a|z)−
∑
a∈A

π∗(a|z) log π0(a|z)
)
(6.268)

=
∑
z∈Z

dπ
∗
(z)
(∑
a∈A

π∗(a|z) log π∗(a|z)−
∑
a∈A

π∗(a|z) log 1
|A|

)
(6.269)

=
∑
z∈Z

dπ
∗
(z)
(∑
a∈A

π∗(a|z) log π∗(a|z) + log |A|
)

(6.270)

=
∑
z∈Z

dπ
∗
(z) (log |A| −H(π∗(·|z))) (6.271)

≤
∑
z∈Z

dπ
∗
(z) log |A| (6.272)

≤ log |A|, (6.273)

where H denotes the Shannon entropy. Rearranging and dividing by ηT , we
obtain after neglecting L(πT ) > 0,

(1− γ) 1
T

T−1∑
t=0

E [J(π∗)− J(πt)] ≤
log |A|
ηT

+ η

2B
2 + 2εinf

+ C∞

(
√

2εactor + 2 1
T

T−1∑
t=0

επtgrad + 2
√

6 1
T

T−1∑
t=0

επtcritic

)
. (6.274)
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It can also be noted that min0≤t<T [xt] ≤ 1
T

∑T
t=0 xt, which implies that,

(1− γ) min
0≤t<T

E [J(π∗)− J(πt)] ≤
log |A|
ηT

+ η

2B
2 + 2εinf

+ C∞

(
√

2εactor + 2 1
T

T−1∑
t=0

επtgrad + 2
√

6 1
T

T−1∑
t=0

επtcritic

)
. (6.275)

Let us define the worse actor gradient function approximation error,

εgrad = sup
0≤t<T

επtgrad (6.276)

= sup
0≤t<T

√
min

∥w∥2≤B
Lt(w), (6.277)

and let us note that,

1
T

T−1∑
t=0

επtgrad ≤ εgrad. (6.278)

By setting η = 1√
T

, we obtain,

(1− γ) min
0≤t<T

E [J(π∗)− J(πt)] ≤
log |A|√

T
+ B2

2
√
T

+ 2εinf

+ C∞

(
√

2εactor + 2 1
T

T−1∑
t=0

επtgrad + 2
√

6 1
T

T−1∑
t=0

επtcritic

)
(6.279)

= B2 + 2 log |A|
2
√
T

+ 2Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk∥∥∥

TV

]

+ C∞

(√
(2− γ)B

(1− γ)
√
N

+ 2εgrad + 2
√

6 1
T

T−1∑
t=0

επtcritic

)
. (6.280)

This concludes the proof.
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Part III

Entangling Predictions and
Decisions
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Entangling Predictions and
Decisions

In this part, we introduce several architectural and algorithmic contributions
that result in an efficient generative sequence model. First, we introduce a
latent generative model based on parallelizable linear recurrent neural networks,
allowing parallel generation. We also show that this model presents several other
advantages such as its implicit recurrence, which allows resuming generation
without reprocessing the past. Second, we discuss the application of such world
models in combination with latent policies, for anticipating and learning from
the future without explicitly modeling it. More precisely, we introduce a world
model that allows parallel imagination using such latent policies.
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Chapter 7

Rolling the Dice First

Parallelizing Autoregressive Generation with Variational State Space Models.
Gaspard Lambrechts, Yann Claes, Pierre Geurts and Damien Ernst.

From the paper presented at the ICML Workshop on the Next Generation of
Sequence Modeling Architectures.

Abstract
Attention-based models such as Transformers and recurrent models like state
space models (SSM) have emerged as successful methods for autoregressive se-
quence modeling. Although both enable parallel training, none enable parallel
generation due to their autoregressiveness. We propose the variational SSM
(VSSM), a variational autoencoder (VAE) where both the encoder and decoder
are SSMs. Since sampling the latent variables and decoding them with the SSM
can be parallelized, both training and generation can be conducted in parallel.
Moreover, the decoder recurrence allows generation to be resumed without re-
processing the whole sequence. Finally, we propose the autoregressive VSSM
that can be conditioned on a partial realization of the sequence, as is common
in language generation tasks. Interestingly, the autoregressive VSSM still en-
ables parallel generation. We highlight on toy problems (MNIST, CIFAR) the
empirical gains in speed-up and show that it competes with traditional models
in terms of generation quality (Transformer, Mamba SSM).
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7.1 Introduction
Sequence modeling tasks, namely time-series forecasting and text generation,
have gained in popularity and various types of architectures were designed to
tackle such problems. Transformers were proven effective [Vaswani et al., 2017,
Radford et al., 2019], yet they nonetheless reprocess the complete sequence at
each time step, making generation less efficient. Recurrent neural networks
(RNN) [Graves, 2013, Cho et al., 2014b] update a hidden state based on new in-
puts at each time step, enabling efficient generation. SSMs [Gupta et al., 2022,
Gu et al., 2022a, Smith et al., 2023, Gu and Dao, 2023], a recently introduced
class of RNNs, enable parallel training thanks to their linear recurrence. Alter-
natively, several works adapt VAEs for sequential modeling. Some architectures
integrate Transformers [Liu and Liu, 2019, Jiang et al., 2020] and enable par-
allel training, although little work [Fang et al., 2021] proposes models that can
be conditioned on partial realizations (e.g., prompts). Conversely, variational
RNNs (VRNN) [Chung et al., 2015] loose parallelizability by making the model
both autoregressive and recurrent, allowing it to be conditioned on partial re-
alizations and to resume generation. However, all introduced autoregressive
models perform generation sequentially, as they are explicitly conditioned on
previously generated data.

Therefore, we propose the VSSM, a VAE whose encoder and decoder are SSMs.
Thanks to key architectural choices, both training and inference can be per-
formed in parallel and linear time with respect to the sequence length, while
still allowing generation to be to resumed without reprocessing the entire se-
quence. In contrast, a VAE with Transformer encoder and decoder, which we
call Transformer VAE (TVAE), would preserve parallel training and generation,
but would not be resumable. We then propose the autoregressive VSSM, that
can be conditioned on partial realizations of the sequence and still generates in
parallel. The VSSM combines all advantages of previous models, as observed in
Figure 7.1a, while producing results comparable to Transformers and SSMs on
simple tasks (MNIST, CIFAR). We highlight a recent work [Zhou et al., 2023]
that proposes a similar architecture, yet their prior and generative models are
explicitly autoregressive and do not exploit the parallelizability of SSMs. More-
over, they only consider generation from sampled latents, while we also propose
an approach to condition the model on partial realizations. We do not consider
diffusion models for sequences (e.g., [Gong et al., 2023]), but note that they
would not allow recurrent (i.e., resuming) generation.

7.2 Background

7.2.1 Variational Autoencoders for Time Series

We consider dynamical VAEs [Girin et al., 2021], that model sequential data
x1:T of length T through T latent variables z1:T . Given a target space X , they
define the joint distribution pϕ(x1:T , z1:T ) with,

• A latent space Z,

• A prior distribution pϕ(z1:T ) =
∏T
t=1 pϕ(zt|z1:t−1),
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Model Training // Sampling // Prompt Resume

Transformer O(T 2) ✓ O(T 2) ✗ ✓ ✗

RNN O(T ) ✗ O(T ) ✗ ✓ ✓

SSM O(T ) ✓ O(T ) ✗ ✓ ✓

TVAE O(T 2) ✓ O(T 2) ✓ ✗/✓ ✗

VRNN O(T ) ✗ O(T ) ✗ ✓ ✓

VSSM O(T ) ✓ O(T ) ✓ ✓ ✓

(a) Time complexities and parallelizability at training time and sampling time, and
generation properties.

x1:C ∅C+1:W1 ∅W1+1:W2

Partial he
C Partial he

W1 Partial

z1:C zC+1:W1 zW1+1:W2

Decoder hd
C Decoder hd

W1 Decoder

x̂1:C x̂C+1:W1 x̂W1+1:W2

(b) Parallel and recurrent sampling algorithm, given a contextual prompt x1:C .

Figure 7.1: Sequence models properties and variational state space model sam-
pling algorithm.

• A generative distribution pϕ(x1:T |z1:T ) =
∏T
t=1 pϕ(xt|x1:t−1, z1:T ),

where ϕ denotes the parameters of these probability distributions. Unfortu-
nately, the likelihood of the data pϕ(x1:T ) = Epϕ(z1:T )pϕ(x1:T |z1:T ) under this
model cannot be evaluated in practice. Nevertheless, we can show that the
log-likelihood is lower bounded by the evidence lower bound (ELBO), for any
conditional probability distribution q(z1:T |x1:T ),

log pϕ(x1:T ) ≥ E
q(z1:T |x1:T )

log pϕ(x1:T |z1:T )−KL(q(z1:T |x1:T ) ∥ pϕ(z1:T )) (7.1)

= ELBOϕ(x1:T ). (7.2)

Moreover, the ELBO becomes tight when q(z1:T |x1:T ) corresponds to the true
posterior distribution pϕ(z1:T |x1:T ). Thus, the generative model pϕ is usually
jointly optimized with,

• A posterior distribution qψ(z1:T |x1:T ) =
∏T
t=1 qψ(zt|z1:t−1, x1:T ),

where ψ denotes the parameters of this distribution. These four components
compose the dynamical VAE. More details are provided in Appendix 7.A.

7.2.2 State Space Models
SSMs are linear and time-invariant dynamical systems that can be discretized
into ht = Aht−1 + But, where ζ = (A,B) are learnable parameters. Using the
prefix-sum algorithm [Blelloch, 1990], we can parallelize the computation of the
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state sequence ht = SSMζ(u1:t) along all time steps t ∈ [1, T ]. Furthermore,
we can obtain effective sequence models of the form yt = fθ(u1:t) by stacking L
layers i = {1, . . . , L} of interleaved SSMs and time-step-wise feedforward neural
networks (FNN),

hit = SSMζi(ui−1
1:t ), (7.3)

yit = FNNξi(hit), (7.4)

where uit = yi−1
t , u0

t = ut, yt = yLt , and θ = ∪Li=1(ζi, ξi) includes all SSMs and
FNNs parameters. Indeed, it is believed that such stacking of SSMs and time-
step-wise FNNs is a universal approximator of sufficiently regular non-linear
sequence-to-sequence maps [Orvieto et al., 2023].

7.3 Method
7.3.1 Variational State Space Model
We introduce the VSSM as an instance of dynamical VAE, where we select,
given a target space X ,

• A discrete latent space of Z components of cardinality N each,

Z = {1, . . . , N}Z , (7.5)

• A uniform prior distribution

pϕ(z1:T ) =
T∏
t=1

pϕ(zt|z1:t−1) =
T∏
t=1

pϕ(zt) =
T∏
t=1

1
NZ

, (7.6)

• A generative distribution,

pϕ(x1:T |z1:T ) =
T∏
t=1

pϕ(xt|z1:t) =
T∏
t=1
P(xt|fdec

ϕ (z1:t)), (7.7)

where P(xt|wt)1 is a distribution of parameters wt = fdec
ϕ (z1:t) outputted

by a stacked SSM,

• A posterior distribution,

qψ(z1:T |x1:T ) =
T∏
t=1

qψ(zt|x1:t) =
T∏
t=1
D(zt|f enc

ψ (x1:t)), (7.8)

where D(zt|vt) is a discrete distribution of probabilities vt = f enc
ψ (x1:t)

outputted by a stacked SSM.

The independence of the prior over all time steps zt, along with the conditional
independence between z̸=t and zt given x1:t in qψ, and between x ̸=t and xt given
z1:T in pϕ enables the prior, posterior and generative models to be sampled in
parallel. Note that the discrete latent space requires the Gumbel reparametriza-
tion trick for computing ∇ψz1:T when maximizing the ELBO [Jang et al., 2017,
Maddison et al., 2016].

1Gaussian of mean wt and fixed variance for continuous X or discrete distribution of
probabilities wt for discrete X .
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7.3.2 Autoregressive Variational State Space Model
In some applications (e.g., language modeling), it is useful to learn a generative
model of the distribution p(x1:T |x1:C) conditioned on a partial realization x1:C .
Under the modeling assumptions of a trained dynamical VAE like the VSSM
prior and generative models of Subsection 7.3.1, we have,

pϕ(x1:T |x1:C) =
∫

ZT

pϕ(x1:T |z1:T )pϕ(z1:T |x1:C) dz1:T , (7.9)

where pϕ(x1:T |z1:T ) is our generative model, while pϕ(z1:T |x1:C) is the true par-
tial posterior, from which we cannot sample for a given x1:C . We thus propose to
learn an approximate partial posterior qω(z1:T |x1:C) of the true partial posterior
pϕ(z1:T |x1:C), by exploiting samples p(x1:T |x1:C) from the dataset to construct
samples of pϕ(z1:T |x1:C) (see details in Subappendix 7.A.2).

The partial posterior qω(z1:T |x1:C) is implemented with a stacked SSM, where
the input x1:C is padded with empty tokens: x̄1:T = (x1:C ,∅, . . . ,∅). The
autoregressive VSSM is a VSSM with,

• A partial posterior distribution,

qω(z1:T |x1:C) =
T∏
t=1

qω(zt|x1:min(C,t)) =
T∏
t=1
D(zt|fpar

ω (x̄1:t)). (7.10)

where D(zt|v̄t) is a discrete distribution of probabilities v̄t = fpar
ω (x̄1:t)

outputted by a stacked SSM.

Note that the partial posterior distribution qω should ideally correspond to the
prior when x̄1:T = (∅, . . . ,∅), and it will be used in practice for unconditional
generation.

The autoregressive VSSM generates in parallel, possibly conditioned on a partial
realization, and can resume generation, as illustrated on Figure 7.1 (see detailed
algorithms comparison in Appendix 7.B).

7.4 Experiments
In the following, we compare Transformer, SSM and VSSM on two toy sequence
modeling tasks: MNIST, for which we consider 28-dimensional sequences of
length 28, and CIFAR, for which we consider (32× 3)-dimensional sequences of
length 32. Transformer and SSM both output the mean of a Gaussian distribu-
tion of fixed variance. For more details about model architectures, see Subap-
pendix 7.C.1. We report samples, generation times and likelihoods in Figure 7.2,
estimated by importance-sampling for the VSSM, see Subappendix 7.C.2. We
also report additional results in Appendix 7.D. It can be observed that the
VSSM arguably outperforms the SSM and Transformer in terms of generation
quality. The VSSM also outperforms the other methods in terms of estimated
log likelihood on the test set. These results should however be treated with
caution, as the log likelihood is a rather crude estimation of the quality of
a generative model. Moreover, we also observed in practice that it was very
sensitive to the standard deviation parameters are selected for the generative
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distribution pϕ(x1:T |z1:T ), for all three models. Finally, as expected by the par-
allelizability of its generation process, the VSSM generates in two to eight time
less time than the other methods, depending on the benchmark and the prompt.
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Figure 7.2: Samples, generation times and likelihoods of the Transformer, state
space model and variational state space model for MNIST and CIFAR datasets.
We report results over 5 runs of each model. Confidence intervals correspond
to the minimum and maximum values observed. In 7.2a, 7.2d, we plot the
median full and partial log-likelihood log pϕ(x1:T ) and log pϕ(xC+1:T | x1:C) on
the validation set throughout training. In 7.2b, 7.2e, we report the average full
and partial log-likelihood on the test set, along with mean execution times at
generation, in both cases. In 7.2c, 7.2f, we report random qualitative examples
for all models, for unconditioned sampling (first three rows) and conditioned on
partial realizations (last three rows).

7.5 Conclusion
We introduce the VSSM, a dynamical VAE using SSMs as encoder and decoder.
Compared to other architectures, our model is the first one that can generate
in parallel while being recurrent, which allows generation to be resumed. Al-
though tested on simple tasks, we show that it produces decent results in only a
fraction of the time. The advantages of this architecture motivate further work
to scale and improve performance on more challenging tasks such as language
generation. It also motivates the investigation of its adaptation to more effec-
tive generative model such as hierarchical VAEs, discrete diffusion models, or
score-based diffusion models.
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7.A Mathematical Derivations
7.A.1 Learning Objective
Thanks to Jensen’s inequality, we can show for dynamical VAEs of Subsec-
tion 7.2.1 that,

log pϕ(x1:T ) = log E
pϕ(z1:T )

pϕ(x1:T |z1:T )q(z1:T |x1:T )
q(z1:T |x1:T ) , (7.11)

= log E
q(z1:T |x1:T )

pϕ(x1:T |z1:T )pϕ(z1:T )
q(z1:T |x1:T ) , (7.12)

≥ E
q(z1:T |x1:T )

log pϕ(x1:T |z1:T )pϕ(z1:T )
q(z1:T |x1:T ) , (7.13)

≥ E
q(z1:T |x1:T )

log pϕ(x1:T |z1:T )−KL(q(z1:T |x1:T ) ∥ pϕ(z1:T )).︸ ︷︷ ︸
ELBOϕ(x1:T )

(7.14)

Note that the ELBO becomes tight when the inference model q(z1:T |x1:T ) cor-
responds to the true posterior distribution pϕ(z1:T |x1:T ). Indeed,

ELBOϕ(x1:T ) = E
q(z1:T |x1:T )

log pϕ(z1:T |x1:T )p(x1:T )
q(z1:T |x1:T ) , (7.15)

= log p(x1:T )−KL(q(z1:T |x1:T ) ∥ pϕ(z1:T |x1:T )), (7.16)

and KL(q(z1:T |x1:T ) ∥ pϕ(z1:T |x1:T )) = 0 if and only if q(z1:T |x1:T ) = pϕ(z1:T |x1:T )
almost everywhere. Hence, the dynamical VAE, composed of the prior pϕ(z1:T ),
generative model pϕ(x1:T |z1:T ) and inference model qψ(z1:T |x1:T ) can be trained
according to the objective function,

max
ϕ,ψ

E
p(x1:T )

[
E

qψ(z1:T |x1:T )
[log pϕ(x1:T |z1:T )]−KL(qψ(z1:T |x1:T ) ∥ pϕ(z1:T ))

]
.

(7.17)

7.A.2 Approximate Partial Posterior
To learn the approximate partial posterior qω(z1:T |x1:C) of the true partial
posterior pϕ(z1:T |x1:C) introduced in Subsection 7.3.2, we propose to exploit
samples of the true partial posterior. Such samples are derived from samples
(x1:C , x1:T ), constructed from the dataset of sequences x1:T by taking random
cuts C ∼ U([0, T ]). Indeed, these allow us to draw samples (x1:C , z1:T ) such
that z1:T ∼ pϕ(z1:T |x1:C), as suggested by the decomposition,

pϕ(z1:T |x1:C) =
∫
x1:T

pϕ(z1:T |x1:T )p(x1:T |x1:C) dx1:T , (7.18)

where pϕ(z1:T |x1:T ) is the true posterior of this VAE, which we approximate by
the variational posterior qψ(z1:T |x1:T ) during the VSSM training. The training
objective for the approximate partial posterior qw(z1:T |x1:C) is,
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arg min
ω

E
p(x1:C)

KL(pϕ(z1:T |x1:C) ∥ qω(z1:T |x1:C)) (7.19)

= arg min
ω

E
p(x1:C)

E
pϕ(z1:T |x1:C)

[log pϕ(z1:T |x1:C)− log qω(z1:T |x1:C)] (7.20)

= arg max
ω

E
p(x1:C)

E
pϕ(z1:T |x1:C)

[log qω(z1:T |x1:C)] (7.21)

= arg max
ω

E
p(x1:C)

E
p(x1:T |x1:C)

[ E
pϕ(z1:T |x1:T )

[log qω(z1:T |x1:C)]] (7.22)

≈ arg max
ω

E
p(x1:C)

E
p(x1:T |x1:C)

[ E
qψ(z1:T |x1:T )

[log qω(z1:T |x1:C)]]. (7.23)

7.B Comparison of Autoregressive Generation
The VSSM sampling algorithm (Algorithm 7.1) can be compared to the RNN
(Algorithm 7.2), SSM (Algorithm 7.3), and Transformer (Algorithm 7.4) algo-
rithms. We also provide an algorithm for the chunk sampling method proposed
in Subsection 7.3.2 in Algorithm 7.5.

Algorithm 7.1: Variational state space model sampling.
inputs: x1:C the prompt,

T the final length.
1 Let v̄1:T = fpar

ω (k).
2 Sample zt ∼ D(zt|v̄t), t = 1, . . . , T .
3 Let w1:T = fdec

ϕ (z1:T ).
4 Sample xt ∼ P(xt|wt), t = C + 1, . . . , T .
5 return final sequence x1:T .

Algorithm 7.2: Recurrent neural network sampling.
inputs: x1:C the prompt,

T the final length.
1 Let h0 = 0.
2 for t = 1, . . . , C do
3 Let ht = fϕ(xt, ht−1).
4 for t = C + 1, . . . , T do
5 Let wt = gϕ(ht−1).
6 Sample xt ∼ D(xt|wt).
7 Let ht = fϕ(xt, ht−1).
8 return final sequence x1:T .

7.C Additional Details
7.C.1 Training Hyperparameters
We train all three architectures (Transformer, SSM, VSSM) with comparable
sizes for 200 epochs on the classical train set of the considered benchmarks
(MNIST, CIFAR). To prevent overfitting, we use 10% of the train set for com-
puting validation losses and likelihoods, as well as to select the final set of
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Algorithm 7.3: State space model sampling.
inputs: x1:C the prompt,

T the final length.
1 Let h0 = 0.
2 Let hC = fϕ(x1:C , h0).
3 for t = C + 1, . . . , T do
4 Let wt = gϕ(ht−1).
5 Sample xt ∼ D(xt|wt).
6 Let ht = fϕ(xt, ht−1).
7 return final sequence x1:T .

Algorithm 7.4: Transformer sampling.
inputs: x1:C the prompt,

T the final length.
1 for t = C + 1, . . . , T do
2 Let wt = fϕ(x1:t−1).
3 Sample xt ∼ D(xt|wt).
4 return final sequence x1:T .

Algorithm 7.5: Variational state space model chunk sampling.
inputs: x1:C the prompt,

T the final length,
W ∈ [1, T − C] the chunk size.

1 Let (v̄1:C , h
par
C ) = fpar

ω (x1:C).
2 Sample zt ∼ D(zt|v̄t), t = 1, . . . , C.
3 Let (w1:C , h

dec
C ) = fdec

ϕ (z1:C).
4 while C ≤ T do
5 Let (v̄C+1:C+W , h

par
C+W ) = fpar

ω (∅C+1:C+W , h
par
C ).

6 Sample zt ∼ D(zt|v̄t), t = C + 1, . . . , C +W .
7 Let (wC+1:C+W , h

dec
C+W ) = fdec

ϕ (zC+1:C+W , h
dec
C ).

8 Sample xt ∼ P(xt|wt), t = C + 1, . . . , C +W .
9 Update C = C +W .

10 return final sequence x1:T .
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weights for evaluation on the test set and generating samples. All three archi-
tectures use 4 layers of dimension 1024 (with a state size of 16 for the SSM and
VSSM, and with 8 heads of dimension 1024/8 = 128 for the Transformer). We
follow the attention block of GPT-2 for the Transformer, and the SSM block
of Mamba for the SSM and VSSM architectures. The SSM and Transformer
architectures output the mean of a Gaussian distribution with fixed variance
(σ = 0.1), and are trained to maximize the log-likelihood. The VSSM gen-
erative model pϕ also outputs the mean of a Gaussian distribution with fixed
variance (σ = 0.1), and is trained along with the posterior qψ to maximize the
ELBO (7.14). Note that the temperature of the Gumbel softmax for computing
∇ψz1:T was fixed to 1. The partial posterior qω is trained jointly with the en-
coder and decoder according to objective (7.23) and does not require to perform
a subsequent training. All learning rates have been selected using a grid search
in (1× 10−2, 5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4).

7.C.2 Evaluation
We evaluate the likelihood by sampling K = 100 latent variables [Burda et al.,
2015] from the posterior, and reweighting by the prior (resp. partial posterior),
in order to measure the likelihood (resp. the partial likelihood),

pϕ(x1:T ) ≈ 1
K

K∑
k=1

pϕ(x1:T |zk1:T ) pϕ(zk1:T )
qψ(zk1:T |x1:T )

, (7.24)

pϕ(xC+1:T |x1:C) ≈ 1
K

K∑
k=1

pϕ(xC+1:T |zk1:T )qω(zk1:T |x1:C)
qψ(zk1:T |x1:T )

. (7.25)

where zk1:T ∼ qψ(zk1:T |x1:T ) in both cases. This expression is known to be a lower
bound on the likelihood in expectation, and it tends towards the true likelihood
as K grows to infinity.

7.D Additional Results
We report additional samples from all models in Figure 7.3a and Figure 7.3b,
sampled randomly and using random prompts from the test set.
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Figure 7.3: Additional samples of the Transformer, state space model and vari-
ational state space model for MNIST and CIFAR datasets. We report random
qualitative examples for all models, for unconditioned sampling (first three rows)
and conditioned on partial realizations (last three rows).
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Chapter 8

Just Looking at the Dice

In this chapter, we expose the promise of future works based on the variational
state space model introduced in Chapter 7. By using a latent world model that
decodes the latent variables of a history in parallel, and by conditioning the
policy on the latent variables of that world model, we allow parallel imagination
in model-based reinforcement learning.

8.1 Variational State Space Model
In this section, we recall the variational state space model (VSSM) [Lambrechts
et al., 2024b], which is a structured variational autoencoder (VAE) [Kingma
and Welling, 2014] based on state space models (SSM) [Gu et al., 2022b], where
we select, given a target space X ,

• A discrete latent space of Z components of cardinality N each,

Z = {1, . . . , N}Z , (8.1)

• A uniform prior distribution

pϕ(z0:T ) =
T∏
t=1

pϕ(zt|z0:t−1) =
T∏
t=1

pϕ(zt) =
T∏
t=1

1
NZ

, (8.2)

• A generative distribution,

pϕ(x0:T |z0:T ) =
T∏
t=1

pϕ(xt|z0:t) =
T∏
t=1
P(xt|fdec

ϕ (z0:t)), (8.3)

where P(xt|wt)1 is a distribution of parameters wt = fdec
ϕ (z0:t) outputted

by a stacked SSM,

1Gaussian of mean wt and fixed variance for continuous X or discrete distribution of
probabilities wt for discrete X .
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• A posterior distribution,

qψ(z0:T |x0:T ) =
T∏
t=1

qψ(zt|x0:t) =
T∏
t=1
D(zt|f enc

ψ (x0:t)), (8.4)

where D(zt|vt) is a discrete distribution of probabilities vt = f enc
ψ (x0:t)

outputted by a stacked SSM.

Because of the proposed conditional independences and thanks to the paralleliz-
ability of SSMs, the prior, posterior and generative models can be sampled in
parallel along the time dimension [Lambrechts et al., 2024b].

8.2 Variational State Space World Model
In this section, we introduce an interesting usage of the VSSM in reinforcement
learning (RL) for partially observable Markov decision processes (POMDP).
Let us consider a POMDP P = (S,A,O, T,R,O, P, γ), with unobserved state
st ∈ S, actions at ∈ A and observation ot ∈ O, as defined in Chapter 2. Given
the fact that the initial observation comes without reward nor previous action,
let us conveniently define r−1 = 0 the null reward and a−1 = 0 the null action.
Taking a sequence of t actions in the POMDP conditions its execution and
provides the history ht = (o0, a0, . . . , ot) ∈ H, where H is the set of histories
of arbitrary length. A history-dependent world model aims at approximating
the distribution p(r, o′|h, a) for a given distribution p(h, a) over the histories and
actions. In practice, p(h, a) is often chosen to the empirical distribution obtained
when interacting with the POMDP using a policy that is jointly optimized with
the world model.

Let us now introduce the variational state space world model (VSSWM) as a
conditional VSSM with the following generative and posterior distributions,

• A generative distribution conditioned on the actions,

pϕ(r−1:T−1, o0:T |z0:T , a−1:T−1) =
T∏
t=0

pϕ(rt−1, ot|z0:t, a−1:t−1) (8.5)

=
T∏
t=0
P(rt−1, ot|fdec

ϕ (z0:t, a−1:t−1)), (8.6)

where P(rt−1, ot|wt) is a distribution of parameters wt = fdec
ϕ (z0:t, a−1:t−1)

outputted by a stacked SSM,

• A posterior distribution conditioned on the actions,

qψ(z0:T |r−1:T−1, o0:T ) =
T∏
t=0

qψ(zt|r−1:t−1, o0:t) (8.7)

=
T∏
t=0
D(zt|f enc

ψ (r−1:t−1, o0:t)), (8.8)

where D(zt|vt) is a discrete distribution of probabilities vt = f enc
ψ (r−1:t−1,

o0:t) outputted by a stacked SSM.
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This can simply be viewed as a standard VSSM, where xt = (rt−1, ot), but
where the decoder is also conditioned on the previous action at−1 together with
the latent zt at every time step.

8.3 Latent Policies and Parallel Imagination
Given a sequence of actions a−1:T−1, the VSSWM is able to generate all rewards
r−1:T−1 and observations o0:T , all in parallel, like a SSM-based world model
[Samsami et al., 2024]. However, when training a policy in imagination [Hafner
et al., 2020, Samsami et al., 2024], the sequence of actions in not known in
advance. Indeed, we need the observation at time t for choosing the action at
time t, which is in turn necessary for sampling the next observation at time
t+1. This intrinsic sequentiality is characteristic of closed-loop control and RL.

Counterintuitively, we propose to avoid this sequentiality by simply coupling a
latent policy implemented by an SSM with the parallelizable VSSWM. Let us
define the deterministic history-dependent latent policy η : H → A, such that,

at = fact
ϕ (z0:t), (8.9)

with fact
ϕ a stacked SSM. The parallelizability of SSMs allows obtaining the

complete sequence a0:T in parallel based on all latent variables z0:T sampled
from the prior pϕ(z0:T ). Since the latent variables encode all information about
the realization of the interaction, the policy can indeed be conditioned on these
sole variables. As a bonus, the rewards outputted by the world model are differ-
entiable with respect to the parameters of the policy, at the condition that the
actions are sampled in a differentiable way, for example with the reparametriza-
tion trick. It enables a direct reward maximization using stochastic gradient
ascent for optimizing the policy without relying on standard RL techniques.

8.4 Conclusion
These ideas and their implications motivates the empirical investigation of such
algorithms, that could unlock parallel imagination in model-based RL. More-
over, parallelizing the imagination could unlock new frontiers in terms of the
imagination horizon, which could help in learning policies that have a long plan-
ning horizon. Similarly, a more efficient imagination could unlock new frontiers
in meta-learning when we want to train the policy on many environments in
parallel. While not developed here, it would also be interesting to adapt the
autoregressive version of the VSSM, so as to be able to resume imagination
without reprocessing the complete history. This project probably also present
some limitations, since the results previously obtained with the VSSM were lim-
ited, and since this approach puts a heavy workload on the policy, which needs
to internally decode the latent variables of the world model.
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Chapter 9

A Matter of Abstractions

By considering perception as the inception of decision making, this thesis has
explored the intricate relationships between abstractions, memory, predictions
and decisions, when learning to act optimally. Rooting this research project in
the optimal control theory allowed a deep understanding of the desired solu-
tion, which motivated the analyses and contributions of this thesis. We notably
demonstrated the importance of explicitly considering the structure of the solu-
tion, moving beyond the simplistic view of the history Markov decision process.
We highlighted the similarity between the abstractions learned by such unin-
formed approaches and the sufficient representations prescribed by theory. We
also explored the possibility of fostering abstractions of the perception that are
as predictive as these sufficient representations. More broadly, our research
has argued in favor of entangling the task of processing of the past and the
task of planning for the future, but also in favor of their separate considera-
tion through different objectives, acknowledging their different nature. These
conclusions were developed in three thematic parts that studied reinforcement
learning (RL) in partially observable Markov decision processes (POMDP).

The first part of the thesis studied the role of memory when learning to act
optimally. We showed empirically that recurrent neural networks, when trained
to act optimally in a POMDP, implicitly learn representations that are related
to the belief, that is the posterior distribution over the states given the history.
The similarity of these learned representations with the belief also motivated
representations objectives that foster the memory to embed such information,
which was explored in the second part of this thesis. We also demonstrated the
ability of history-dependent RL in POMDP to learn to discard the belief of ir-
relevant state variables from their representations and to only focus on relevant
variables for optimal control. Furthermore, we also demonstrated the decisive
importance of memory for learning efficiently. More precisely, we introduced an
initialization procedure to maximize the multistability of a recurrent neural net-
work. We showed empirically that it could endow any recurrent neural network
with long-lasting memorization abilities, improving its ability to learn in the
presence of long time dependencies. In summary, these findings highlighted the
importance of learning good representations of the past, and motivated to ex-
plicitly learn such representations. It also highlighted the importance of having
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representations that encode a lot of information at the initial stages of learning.

The second part of the thesis addressed the challenge of explicitly learning
sufficient representations of the history, by leveraging eventual additional in-
formation about the state to learn from. We started by relaxing the usual
asymmetric learning formalization, by allowing any information about the state
to be considered for improving the learning process. Then, noticing that model-
based methods embed representation objectives by learning statistics that are
predictive of future observations, we extended these methods to learn statistics
that are predictive of all available state information. It resulted in the informed
Dreamer algorithm, allowing to predict information about the state, instead of
explicitly predicting observations, while still allowing to learn latent policies in
imagination with the informed world model. By leveraging both the additional
information and the efficiency of model-based RL, it touched on the state-of-the-
art for learning policies in POMDPs. Then, convinced by the empirical merits
of the asymmetric RL approach, we questioned its theoretical foundations. Ex-
isting methods were theoretically sound in the sense that they provide optimal
history-dependent policies after convergence, but they still lacked a justification
for their potential benefits. By analyzing a simple version of the asymmetric
actor-critic algorithm, we demonstrated a possible reason for the effectiveness
of such an algorithm, compared to its symmetric counterpart. The finite-time
convergence analysis of the asymmetric algorithm showed that it eliminates an
error arising from insufficient history representations when performing temporal
difference learning, compared to the symmetric algorithm.

The third part of the thesis explored future avenues where the interplays between
representations, memory, predictions and decisions are completely entangled.
We first introduced the variational state space model, a novel sequence model-
ing architecture that enables parallel generation while retaining the benefits of
recurrent models. This model was shown to compete with classical autoregres-
sive models such as transformers and state space models on toy benchmarks,
while generating samples in a fraction of the time, thanks to its parallelizabil-
ity along the time dimension. We then proposed its use as a world model in
model-based RL, by presenting the theoretical advantages of such a method,
but without studying it empirically. By conditioning parallelizable policies on
latent representations of past and future realizations of such world models, this
line of research could eliminate the sequential nature of the closed-loop control
paradigm of RL. It goes in the direction motivated by this thesis, which is to
entangle the processing of the past and the prediction of the future, by shar-
ing representations between the world model and the policy, while still keeping
distinct learning objectives to exploit the structure of the solution.

As a conclusion, this thesis established a clear motivation for the particular at-
tention that should be given to the problem of abstracting the past, for then
forming its decision. For this purpose, this thesis has studied, and improved a
variety of RL methods, humbly improving the intelligent behaviors that can be
learned from interaction with a POMDP. This thesis also motivates many un-
explored future works, such as (i) learning sufficient statistics in an asymmetric
setting using contrastive learning or mutual information maximization, (ii) de-
signing recurrent neural networks that have nonlinear and multistable dynamics
while being parallelizable along the time dimension, (iii) improving asymmetric
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world models with contrastive representation learning to design minimal repre-
sentations of the additional information that are relevant to the control task,
(iv) empirically studying the aliasing in symmetric and asymmetric recurrent
actor-critic algorithms, and (v) improving variational state space models using
more expressive generative models and considering their usage as a world model,
to quote only one idea from each paper.

As a closing remark, I want to highlight that we did not considered the ultimate
decision making problem that RL aims at solving, which is the problem of
acting optimally across the distribution of all problems that can be encountered.
This generalization problem, which consists in learning to act for any situation,
can elegantly be formalized as a POMDP. Intuitively, the problem of acting
optimally over a distribution of unknown decision processes indeed amounts to
inferring the current control problem from perception, for then adjusting its
decisions and acting optimally in the future. More formally, the parameters
characterizing the actual process we are currently tasked with controlling can
be seen as a state variable, whose belief can be inferred from perception. It
should moreover be noted that the solution of this particular POMDP probably
has an interesting structure, where the state variables that describe the current
control problem have a particular dynamic. We view as a wonderful future work
the application of the findings of this thesis, and more broadly the findings of
the literature on partial observability, to this generalization problem.
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Appendix A

Belief Recurrence

In this appendix, we demonstrate the recurrence of the belief update [Ho and
Lee, 1964]. More formally, we consider a partially observable Markov decision
process (POMDP) P = (S,A,O, T,R,O, P, γ) with discrete state space S, dis-
crete action space A and discrete observation space O. Let bt+1 ∈ B be the
belief of a history ht+1 ∈ H. The belief bt+1 = f(ht+1) can be written as,

bt+1(st+1) = Pr(st+1|ht+1) (A.1)
= Pr(st+1|ht, at, ot+1) (A.2)

= Pr(st+1, ot+1|ht, at)
Pr(ot+1|ht, at)

(A.3)

= Pr(st+1, ot+1|ht, at)∑
st+1∈S Pr(st+1, ot+1|ht, at)

(A.4)

= Pr(ot+1|st+1, ht, at) Pr(st+1|ht, at)∑
st+1∈S Pr(ot+1|st+1, ht, at) Pr(st+1|ht, at)

(A.5)

= Pr(ot+1|st+1) Pr(st+1|ht, at)∑
st+1∈S Pr(ot+1|st+1) Pr(st+1|ht, at)

(A.6)

= O(ot+1|st+1) Pr(st+1|ht, at)∑
st+1∈S O(ot+1|st+1) Pr(st+1|ht, at)

. (A.7)

Let us now focus on Pr(st+1|ht, at), which can be developed as follows,

Pr(st+1|ht, at) =
∑
st∈S

Pr(st+1, st|ht, at) (A.8)

=
∑
st∈S

Pr(st+1|st, ht, at) Pr(st|ht, at) (A.9)

=
∑
st∈S

Pr(st+1|st, at) Pr(st|ht) (A.10)

=
∑
st∈S

T (st+1|st, at)bt(st), (A.11)

with bt = f(ht) and where the penultimate line holds at the condition that
the actions are conditionally independent of the state given the history, that is
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Pr(st|ht, at) = Pr(st|ht), which is the case when considering history-dependent
policies π : H → ∆(A). By substituting equation (A.11) in equation (A.7), we
obtain,

bt+1(st+1) =
O(ot+1|st+1)

∑
st∈S T (st+1|st, at)bt(st)∑

st+1∈S O(ot+1|st+1)
∑
st∈S T (st+1|st, at)bt(st)

. (A.12)
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Appendix B

Belief Markov Decision
Processes

In this appendix, we demonstrate how partially observable Markov decision pro-
cesses (POMDP) can be reduced to Markov decision processes (MDP) using the
recurrent belief update [Åström, 1965]. More formally, we derive the equation
of the equivalent belief MDP M′ = (S ′,A, T ′, R′, P ′, γ) for a given POMDP
P = (S,A,O, T,R,O, P, γ). The belief MDP state is S′ = B, where B is the
set of attainable belief in the POMDP. The initial belief distribution P ′ ∈ ∆(B)
over the set of beliefs is given by,

P ′(b0) =
∑
o0∈O

∑
s0∈S

Pr(b0, s0, o0) (B.1)

=
∑
o0∈O

∑
s0∈S

Pr(b0|s0, o0) Pr(o0|s0) Pr(s0) (B.2)

=
∑
o0∈O

∑
s0∈S

Pr(b0|o0) Pr(o0|s0) Pr(s0) (B.3)

=
∑
o0∈O

Pr(b0|o0)
∑
s0∈S

Pr(o0|s0) Pr(s0) (B.4)

=
∑
o0∈O

δf0(h0)(b0)
∑
s0∈S

O(o0|s0)P (s0). (B.5)

The transition distribution T ′ : B ×A → ∆(B) is given by,

T ′(bt+1|bt, at) =
∑

ot+1∈O

∑
st+1∈S

∑
st∈S

Pr(bt+1, st+1, ot+1, st, bt, at) (B.6)

=
∑

ot+1∈O

∑
st+1∈S

∑
st∈S

Pr(bt+1|bt, at, st+1, ot+1, st)

× Pr(ot+1|bt, at, st+1, st) Pr(st+1|bt, at, st) Pr(st|bt, at) (B.7)

=
∑

ot+1∈O

∑
st+1∈S

∑
st∈S

Pr(bt+1|bt, at, ot+1)

× Pr(ot+1|st+1) Pr(st+1|at, st) Pr(st|bt) (B.8)
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=
∑

ot+1∈O
Pr(bt+1|bt, at, ot+1)

∑
st+1∈S

Pr(ot+1|st+1)

×
∑
st∈S

Pr(st+1|at, st) Pr(st|bt) (B.9)

=
∑

ot+1∈O
δu(bt,at,ot+1)(bt+1)

∑
st+1∈S

O(ot+1|st+1)
∑
st∈S

T (st+1|at, st)bt(st).

(B.10)

The reward distribution R′ : B ×A → ∆(R) is given by,

R′(rt|bt, at) =
∑
st∈S

Pr(rt, st|bt, at) (B.11)

=
∑
st∈S

Pr(rt|bt, at, st) Pr(st|bt, at) (B.12)

=
∑
st∈S

Pr(rt|at, st) Pr(st|bt) (B.13)

=
∑
st∈S

R(rt|at, st)bt(st). (B.14)
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Appendix C

Piecewise Linearity and
Convexity of the Belief
Q-function

In this appendix, we demonstrate the piecewise linearity and convexity of the
belief Q-function with a finite horizon [Smallwood and Sondik, 1973], for the
Markov decision processes (MDP) described in Appendix B, which we called
belief MDPs. Let us assume that, for a given horizon N ∈ N0, the Q-function
QN with finite-time horizon N is piecewise linear and convex in the belief vector,

QN (b, a) = max
α∈Aa

N

∑
s∈S

α(s)b(s), (C.1)

where AaN is the set of α-vectors for representing the piecewise linear and convex
function QN (·, a). We thus need |A| such sets to represent QN . Let us now study
the Q-function QN+1 with finite-time horizon N + 1, defined as,

QN+1(b, a) = E
[
R+ γmax

a′∈A
QN (B′, a′)

∣∣∣∣B = b, A = a

]
(C.2)

= R′(b, a) + γE
[
max
a′∈A

QN (B′, a′)
∣∣∣∣B = b, A = a

]
. (C.3)

The first term is the expected immediate reward in the belief MDP, defined as,

R′(b, a) = E[R|B = b, A = a] (C.4)

=
∑
s∈S

b(s)R(s, a), (C.5)

where R(s, a) is the expected immediate reward in the underlying MDP. It can
also be noted that Q1(b, a) = R(b, a). This expression is linear in the belief
vector, which is a particular case of a piecewise linear and convex function. It
can thus be represented with |A| singletons Aa1 = {R(·, a)}.
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As far as the second term is concerned, let us first notice that the maximum
over |A| piecewise linear and convex functions is also a piecewise linear and
convex function, with at most |A| times more linear pieces. As a result, the
value function VN (b′) = maxa′∈A QN (b′, a′) is given by,

VN (b′) = max
α∈AN

∑
s∈S

α(s)b′(s). (C.6)

where AN =
⋃
a∈A A

a
N . Starting from this piecewise linearity and convexity of

VN (b′) in b′, let us show the piecewise linearity and convexity of E[VN (B′)|B = b,
A = a] in the previous belief b,

E [VN (B′)|B = b, A = a] =
∑
b′∈B

Pr(b′|b, a)VN (b′) (C.7)

=
∑
b′∈B

∑
o′∈O

Pr(b′, o′|b, a)VN (b′) (C.8)

=
∑
b′∈B

∑
o′∈O

Pr(o′|b, a) Pr(b′|b, a, o′)VN (b′) (C.9)

=
∑
o′∈O

Pr(o′|b, a)
∑
b′∈B

Pr(b′|b, a, o′)VN (b′) (C.10)

=
∑
o′∈O

Pr(o′|b, a)
∑
b′∈B

δu(b,a,o′)(b′)VN (b′) (C.11)

=
∑
o′∈O

Pr(o′|b, a)VN (u(b, a, o′)) (C.12)

Using the belief recurrence proof of Appendix A, we have,

VN (u(b, a, o′)) = VN

(
O(o′|·)

∑
s∈S T (·|s, a)b(s)

Pr(o′|b, a)

)
(C.13)

= max
α∈AN

∑
s′∈S

α(s′)
O(o′|s′)

∑
s∈S T (s′|s, a)b(s)

Pr(o′|b, a) (C.14)

= 1
Pr(o′|b, a) max

α∈AN

∑
s′∈S

α(s′)O(o′|s′)
∑
s∈S

T (s′|s, a)b(s). (C.15)

Substituting equation (C.15) into equation (C.12), we obtain,

E [VN (B′)|B = b, A = a] =
∑
o′∈O

max
α∈AN

∑
s′∈S

α(s′)O(o′|s′)
∑
s∈S

T (s′|s, a)b(s)

(C.16)

=
∑
o′∈O

max
α∈AN

∑
s∈S

∑
s′∈S

α(s′)O(o′|s′)T (s′|s, a)b(s)

(C.17)

=
∑
o′∈O

max
α∈Aa,o

′
N

∑
s∈S

α(s)b(s), (C.18)

where Aa,o
′

N =
{∑

s′∈S α(s′)O(o′|s′)T (s′|·, a)
∣∣α ∈ AN}, which is a sum of piece-

wise linear and convex functions. Such a sum is also piecewise linear and convex,
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and at any given point, the dominating α-vector could be the sum of any combi-
nation of vectors of each of the piecewise linear and convex functions composing
the sum. Let us then define the set Aa,+N of sums of every combination of
α-vector chosen in A

a,o′
1

N , . . . , A
a,o′

|O|
N as,

Aa,+N =
{∑
o′∈O

αo
′
(·)
∣∣∣∣∣αo′

1 ∈ Aa,o
′
1

N , . . . , αo
′
|O| ∈ A

a,o′
|O|

N

}
. (C.19)

From there, we have,

E [VN (B′)|B = b, A = a] =
∑
o′∈O

max
α∈Aa,o

′
N

∑
s∈S

α(s)b(s) (C.20)

= max
α∈Aa,+

N

∑
s∈S

α(s)b(s), (C.21)

which is indeed piecewise linear and convex.

Finally, substituting back equation (C.5) and equation (C.21) in equation (C.3),

QN+1(b, a) =
∑
s∈S

b(s)R(s, a) + γ max
α∈Aa,+

N

∑
s∈S

α(s)b(s) (C.22)

= max
α∈Aa

N+1

∑
s∈S

α(s)b(s), (C.23)

where AaN+1 =
{
R(·, a) + γα(·)

∣∣α ∈ Aa,+N }
.
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