
Supplementary material of paper

Supervised learning of convex piecewise linear

approximations of optimization problems

Laurine Duchesne, Quentin Louveaux and Louis Wehenkel

University of Liege - Dept of EE&CS

Liege - Belgium

1 Introduction

This document provides a supplementary material for [1]. It is organized as
follows.

In section 2, we provide the mathematical proof that the approximated prob-
lem

min{f(x)} s.t. x ∈ D̃λ,

with f(x) piecewise linear and convex and D̃λ a convex feasible set approximation
built according to the method described in [1], can be written as a linear program,
in the case of piecewise linear, convex, and non-decreasing activation functions.

In section 3, we describe how we adapted the loss function of the ICNN
in order to improve the quality of the approximation in regions close to the
optimum.

2 Proof: min
x∈D̃λ

f(x) can be reduced to a linear program

We consider a convex ICNN classifier used to approximate the feasible set D
of an optimization problem. Let us show that if the objective function f(x)
is piecewise linear and convex, and if all the activation functions gi used in
the ICNN are piecewise linear, convex, and non-decreasing functions (such as
ReLU(x) = max(0, x), or leaky − ReLU(x) = max(0.01x, x)), the resulting
optimization problem

min{f(x)} s.t. x ∈ D̃λ,

reduces to a linear program. We first notice that if f(x) is piecewise linear and
convex, then

min{f(x)} s.t. x ∈ D̃λ

may also be rewritten as

min{z} s.t. z ≥ aTj x+ bj , ∀j = 1, . . . , l;x ∈ D̃λ,

where the set of inequalities z ≥ aTj x + bj , ∀j = 1, . . . , l represent the epigraph

of f(x). We thus need only to prove that D̃λ may itself also be represented by
a set of linear (in)equalities.



For simplicity, we prove this in the case of ReLU activation functions but
the result can be extended to any other choice of piecewise linear, convex and
non-decreasing activation functions.

First, let us consider the domain P which is the set of points (x, z0, . . . , zk−1)
such that

z0 = 0, (1)

and
∀i = 0, . . . k − 2 : zi+1 = max(W z

i × zi +W x
i × x+ bi, 0) (2)

and

(W z,1
k−1

−W z,0
k−1

)× zk−1 + (W z,1
k−1

−W x,0
k−1

)× x+ b1k−1 − b0k−1 ≤ λ. (3)

Note that the projection on x of the domain P , projx(P ), corresponds to D̃λ.
When the max function is replaced with a set of equations, the equivalent for-
mulation of the constraints in P becomes

(W z,1
k−1

−W z,0
k−1

)× zk−1 + (W z,1
k−1

−W x,0
k−1

)× x+ b1k−1 − b0k−1 ≤ λ, (4)

zi+1 = 0 + s0i for i = 0, . . . , k − 2 (5)

zi+1 = W z
i × zi +W x

i × x+ bi + szi for i = 0, . . . , k − 2 (6)

s0i s
z
i = 0 for i = 0, . . . , k − 2 (7)

s0i , s
z
i ≥ 0 for i = 0, . . . , k − 2 (8)

z0 = 0, (9)

where we introduce slack variables s·i to express that zi+1 is either equal to 0 or
to W z

i × zi +W x
i × x+ bi for i = 0, . . . , k − 2.

All the constraints in P are linear, except equation (7). However, we can show
that this nonlinear equation is not necessary regarding our purpose because the
projection on x of a relaxed version of the domain P , that we call Q and for
which all the constraints defining Q correspond to a set of linear equations, is
also equal to D̃λ.

Lemma 1. We are given the parameters of an ICNN using ReLU as activation
functions and learnt to build a convex approximation D̃λ of the feasible set D.
Consider the set P defined as

P =
{

(x, z1, . . . , zk−1, s
0
0, . . . , s

0
k−2, s

z
0, . . . , s

z
k−2)|

(W z,1
k−1

−W z,0
k−1

)× zk−1 + (W z,1
k−1

−W x,0
k−1

)× x+ b1k−1 − b0k−1 ≤ λ, (10)

zi+1 = 0 + s0i ∀i = 0, . . . , k − 2, (11)

zi+1 = W z
i × zi +W x

i × x+ bi + szi ∀i = 0, . . . , k − 2, (12)

s0i s
z
i = 0 ∀i = 0, . . . , k − 2, (13)

s0i , s
z
i ≥ 0 ∀i = 0, . . . , k − 2, (14)

z0 = 0} . (15)



The set Q, which is defined as P but where constraint (13) is removed, i.e.
defined as

(W z,1
k−1

−W z,0
k−1

)× zk−1 + (W z,1
k−1

−W x,0
k−1

)× x+ b1k−1 − b0k−1 ≤ λ, (16)

zi+1 = 0 + s0i ∀i = 0, . . . , k − 2, (17)

Q ={(x, z1, . . . , zk−1, s
0
0, . . . , s

0
k−2, s

z
0, . . . , s

z
k−2)| (18)

zi+1 = W z
i × zi +W x

i × x+ bi + szi ∀i = 0, . . . , k − 2, (19)

s0i , s
z
i ≥ 0 ∀i = 0, . . . , k − 2, (20)

z0 = 0}, (21)

is therefore a relaxation of P . We now prove that the projection on x of the set
P is equal to the projection on x of the set Q:

projx(P ) = projx(Q). (22)

Proof. 1. projx(P ) ⊆ projx(Q) is obvious since Q is a relaxation of P .

2. We now prove projx(P ) ⊇ projx(Q). Consider (x, z, s0, sz) ∈ Q. If
(x, z, s0, sz) ∈ P , the result follows. Assume now that (x, z, s0, sz) /∈ P . It
is always possible, by following Algorithm 1, to build from a set of points
(x, z, s0, sz) in Q but not in P , a set of points (x, z̄, s̄0, s̄z) in P with the
same x, which proves the result.

Algorithm 1: Update (x, z, s0, sz) ∈ Q such that (x, z̄, s̄0, s̄z) ∈ P .

Result: (x, z̄, s̄0, s̄z) in P
// Initialization

(x, z̄, s̄0, s̄z) = (x, z1, . . . , zk−1, s
0
0, . . . , s

0
k−2

, sz0, . . . , s
z
k−2

) ;

for j = 0 : k − 2 do

if s̄0j > 0 and s̄zj > 0 then

∆ := min(s̄0j , s̄
z
j );

ŝ0j = s̄0j −∆;

ŝzj = s̄zj −∆;

ẑj+1 = 0 + ŝ0j ;

// or ẑj+1 = W z
j × z̄j +W x

j × x+ bj + ŝzj
if j < k − 2 then

ŝzj+1 = s̄zj+1 +W z
j+1(z̄j+1 − ẑj+1);

(z̄j+1, s̄
0
j , s̄

z
j , s̄

z
j+1) = (ẑj+1, ŝ

0
j , ŝ

z
j , ŝ

z
j+1);

else

(z̄j+1, s̄
0
j , s̄

z
j ) = (ẑj+1, ŝ

0
j , ŝ

z
j );

end

end

end



Let us show that (x, z̄, s̄0, s̄z), built from (x, z, s0, sz) ∈ Q with Algo-
rithm 1, belongs to P . For that we proceed iteratively and we show that
at each iteration, the updated vector still belongs to Q. At the end of
the iterations, since by construction (x, z̄, s̄0, s̄z) satisfies constraint (13),
(x, z̄, s̄0, s̄z) ∈ P .

Let j be the smallest index such that s0j > 0 and szj > 0.

Consider the point (x, z̄, s̄0, s̄z), obtained after j iterations with Algorithm
1. We can readily see that this point belongs to Q. Indeed, compared to
the point (x, z, s0, sz) ∈ Q, the only constraint with a different realization
of the left-hand-side or right-hand-side is constraint (19) for i = j and
i = j + 1. The constraint is nevertheless still valid in both cases:

• i = j: By definition of z̄j+1, the constraint holds with equality.

• i = j + 1: We have that z̄j+1 < zj+1 since s̄·j < s·j by construction.
Furthermore, given that W z

j+1 > 0, W z
j+1 × zj+1 > W z

j+1 × z̄j+1.
Therefore,

zj+2 ≥ W z
j+1×zj+1+W x

j+1×x+bj+1 > W z
j+1×z̄j+1+W x

j+1×x+bj+1

and the constraint holds.

Note that in case j = k − 2, the right-hand-side of constraint (16) is also
impacted. However, since (W z,1

k−1
−W z,0

k−1
) ≥ 0,

(W z,1
k−1

−W z,0
k−1

)z̄k−1 < (W z,1
k−1

−W z,0
k−1

)zk−1 ≤ λ,

where the last inequality holds because (x, z, s0, sz) ∈ Q. Therefore,
(x, z̄, s̄0, s̄z) ∈ Q.

Observe that, if (x, z̄, s̄0, s̄z) /∈ P , there exists j̄ > j such that s0
j̄
> 0 and

sz
j̄
> 0. We can again decrease the value of zj̄+1 in order to make one of the

slacks tight. We obtain the result by applying the procedure repeatedly.
Since there is a finite number of indices, the procedure can be applied at
most k − 1 times until we obtain (x, z̄, s̄0, s̄z) ∈ P .

We can thus state that projx(P ) = projx(Q).

Note that this lemma can be extended to other activation functions, as long
as they are convex, piecewise linear and non-decreasing. It can thus be applied to
leaky-ReLU activation functions. It is also still valid at the limit, for an infinite
number of pieces and so it is valid for any smooth convex and non-decreasing
activation function.

Consequently to Lemma 1, given an objective function that only depends on
x, we have the following result.



Corollary 2. Given an ICNN using ReLU as activation functions and learnt to
build a convex approximation D̃λ of the domain D,

min f(x)

s.t. (W z,1
k−1

−W z,0
k−1

)× zk−1 + (W z,1
k−1

−W x,0
k−1

)× x+ b1k−1 − b0k−1 ≤ λ

zi+1 = max(W z
i × zi +W x

i × x+ bi, 0) for i = 0, . . . , k − 2

z0 = 0 (23)

is equivalent to

min f(x)

s.t. (W z,1
k−1

−W z,0
k−1

)× zk−1 + (W z,1
k−1

−W x,0
k−1

)× x+ b1k−1 − b0k−1 ≤ λ

zi+1 ≥ 0 for i = 0, . . . , k − 2

zi+1 ≥ W z
i × zi +W x

i × x+ bi for i = 0, . . . , k − 2

z0 = 0. (24)

Indeed, the domain P is equivalent to the feasible set of problem (23) while Q
is equivalent to the feasible set of problem (24). Since the projection of these two
sets on the x space is equivalent, i.e. projx(P ) = projx(Q), then the feasible set
of solutions regarding x and thus the optimal solution x∗ of the two optimization
problems are the same.

Therefore, minx∈D̃λ
f(x) reduces to a linear program if the objective function

f(x) is (piecewise) linear (and convex), and if all the activation functions gi used
in the ICNN are piecewise linear, convex, and non-decreasing functions.

3 Experiments: considering an objective function values

when learning the ICNN

We detail in this section how the training-loss function can be adapted to con-
sider the value of the optimization objective function when training the ICNN
classifier, in order to improve the quality of the approximation D̃0 in regions close
to the optimum. Notice that in order to implement these methods, we assume
that for each element i of the training set, we also know the value fi = f(xi) of
the objective function (in addition to the input xi and the output yi indicating
constraint satisfaction of xi w.r.t. D).

In order to force the learnt approximation D̃0 to be better in regions where
the constrained optimum might be located, we give a higher weight in the loss
function to input-output samples with smaller associated values of f . Thus, the
loss function for an observation x of class y and corresponding to an objective
value f would be given by:

loss(θ, x, y, f) = wy,f ×

[

− log

(

exp(hy(θ, x))

exp(h0(θ, x)) + exp(h1(θ, x))

)]

,

where wy,f would depend both on the true class of the sample and on the value
of the objective function for this sample.



We tested two methods to compute the weights wy,f .
The first method is such that the weights vary linearly between two bounds

with the objective function:

wy,f = wmin
y +

fmax
y − f

fmax
y − fmin

y

(wmax
y − wmin

y ),

where fmax
y and fmin

y are respectively the maximum and minimum values of the

objective function among the training samples with label y, and wmin
y and wmax

y

for y ∈ {0, 1} are four hyper-parameters that can be tuned.
The other method that we tested is such that the weights wy,f take only two

values per class y, a high value when the (x, y, f) tuple corresponds to a “small
enough” value of the objective function f(x), and a lower value otherwise:

wy,f = 1Ay
(f)wmax

y + (1− 1Ay
(f))wmin

y ,

where wmax
y and wmin

y are the two values the weights of the training samples with
label y can take and 1Ay

(·) is the indicator function indicating if the sample
corresponds to a “small enough” value of f for class y. On can imagine various
possibilities to define each one of the two sets Ay so that it focuses on the “small
enough” f -values of the corresponding class y.

In the paper, only the results of the second method are shown. In these
computations, the set A0 (of elements of class 0 with “small enough” f) was
defined so as to contain the 10% training elements of class 0 (x ∈ D) showing the
smallest values of f ; this comes together with a weight wmax

0 = 1 and wmin
0 = 0.2.

On the other hand, for class 1, we used wmax
1 = wmin

1 = 1 so that the choice of
the set A1 has no impact in this case.

References

[1] Laurine Duchesne, Quentin Louveaux, and Louis Wehenkel. Supervised learning of convex
piecewise linear approximations of optimization problems. 2021. Submitted for publication.


