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1 Introduction
This document is the electronic appendix of [1]. It is organised as follows. Section 2 gives the
detailed mathematical implementation of the day-ahead decision-making program simulating
day-ahead operation planning and of the Security Constrained Optimal Power Flow (SCOPF)
used to model the behaviour of the control-room operators in real-time. Section 3 briefly
describes the data used in the case study of [1] and Section 4 introduces the supervised learning
algorithms used in the paper and the machine learning setting.

2 Day-ahead and real-time operation models
This section details the implementation of the day-ahead and real-time operation simulators.
It begins with introducing the notations used in the mathematical models, then it presents the
day-ahead decision-making program and finally it describes the real-time SCOPF.

2.1 Notations

Indices

c Index of contingencies
d Index of demands
g Index of generating units
k Index of piece-wise linear dispatchable generation cost curve segments
l Index of transmission elements (lines, cables and transformers)
n Index of nodes
t Index of hours in a day
w Index of wind power generators

Sets

C Set of contingencies
D Set of demands
Dn Subset of demands connected at node n
G Set of dispatchable units
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K Set of piece-wise linear dispatchable generation cost curve segments
L Set of transmission elements (lines, cables and transformers)
N Set of nodes
W Set of wind power generators
Wn Subset of wind power generators connected at node n

Parameters

P forecast
d,t Forecast of load active power of demand d at time t
P forecast
w,t Forecast of generation of wind power generator w at time t
PRT
d,t Realisation of load active power of demand d at time t
PRT
w,t Realisation of generation of wind power generator w at time t
oninit

g Initial status of generating unit g at the beginning of the day-ahead
decision-making (1 if started up, 0 otherwise)

tup,initg Minimum number of time periods generating unit g must stay up at the
beginning of the considered day

tdn,initg Minimum number of time periods generating unit g must stay down at
the beginning of the considered day

tup,min
g Minimum number of time periods generating unit g must stay up once

started up
tdn,min
g Minimum number of time periods generating unit g must stay down once

shut down
cg Redispatch marginal cost of generating unit g
c0g Start-up cost of generating unit g
cincg,k Marginal running cost of generating unit g at the segment k of its piece-

wise linear curve
Pmax
g Capacity of generating unit g
Pmin
g Minimum stable output of generating unit g

∆P−g Ramp-down limit of generating unit g (for 60min)
∆P+

g Ramp-up limit of generating unit g (for 60min)
∆P−,cg Ramp-down limit of generating unit g in case of corrective actions (for

20min)
∆P+,c

g Ramp-up limit of generating unit g in case of corrective actions (for
20min)

P inc,max
g,k Maximum power output of generating unit g at the segment k of its

piece-wise linear curve
vd Voll of demand d in euro/MWh
pw Wind penalty for curtailment of wind power generator w in euro/MWh
R+ Minimum up spinning reserve required per hour for one area
R− Minimum down spinning reserve required per hour for one area
fmax
l Long-term thermal rating of transmission element l
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rl Ratio of the short-term thermal rating to the long-term thermal rating
of transmission element l (rl ≥ 1)

Xl Reactance of transmission element l
βn,l Element of the flow incidence matrix, taking a value of one if node n

is the sending node of element l, a value of minus one if node n is the
receiving node of element l, and a zero value otherwise.

al,c Binary parameter taking a zero value if element l is unavailable under
contingency c.

Variables

PDA
g,t Dispatch of generating unit g at time t as per the day-ahead decision-

making
onDA

g,t Binary variable representing the status of generating unit g as per the
day-ahead decision-making (1 if started up, 0 otherwise)

stupg,t Binary variable indicating when generating unit g is started-up (value 1
when started up, 0 otherwise)

stdng,t Binary variable indicating when generating unit g is shut down (value 1
when shut down, 0 otherwise)

WCDA
w,t Provisional curtailment of wind power generator w at hour t in day-ahead

R+
g,t Upward redispatch flexibility provided by generating unit g at time t in

day-ahead
R−g,t Downward redispatch flexibility provided by generating unit g at time t

in day-ahead
fDA
l,t Power flowing through transmission element l at time t under the pre-

contingency state in day-ahead
fDAST
l,t,c Power flowing through transmission element l at time t following contin-

gency c in day-ahead
θDA
n,t Voltage angle at node n under the pre-contingency state in day-ahead
θDAST
l,t,c Voltage angle at node n following contingency c in day-ahead.

+PRTp
g,t Preventive ramp-up of generator g in real-time at hour t

−PRTp
g,t Preventive ramp-down of generator g in real-time at hour t

LSRTp
d,t Preventive load shedding of demand d in real-time at hour t

WCRT p

w,t Preventive wind curtailment of wind power generator w in real-time at
hour t

+PRTc
g,t Corrective ramp-up of generator g in real-time at hour t

−PRTc
g,t Corrective ramp-down of generator g in real-time at hour t

LSRTc
d,t,c Corrective load shedding of demand d in real-time at hour t

WCRTc
w,t,c Corrective wind curtailment of wind power generator w in real-time at

hour t
fp
l,t Power flowing through transmission element l under the pre-contingency

state
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fST
l,t,c Power flowing through transmission element l following contingency c

and prior to the application of corrective control.
f c
l,t,c Power flowing through transmission element l following contingency c

and the successful application of corrective control.
θpn,t Voltage angle at node n under the pre-contingency state
θSTl,t,c Voltage angle at node n following contingency c and prior to the appli-

cation of corrective control.
θcn,t,c Voltage angle at node n following contingency c and the successful ap-

plication of corrective control.

All the variables are continuous, except for ong,t, stdng,t and st
up
g,t which are binary variables.

Powers flowing through transmission elements and voltage angles are continuous in IR and the
remaining variables are positive.

2.2 Day-ahead decision-making

We simulate day-ahead decision-making with a multi-period SCOPF in order to commit and
dispatch the generating units of the system and also determine the provisional wind curtailment.
We use the DC approximation [2] and consider as reliability criterion the N-1 criterion for
transmission elements only.

The objective function minimizes generation cost as well as provisional wind curtailment:

minimize
24∑
t=1

(∑
g∈G

(
c0g ∗ st

up
g,t +

∑
k∈K

cincg,k ∗ P inc
g,k,t

)
+
∑
w∈W

pw ∗WCDA
w,t

)
. (1)

The first set of constraints (2-12) of the day-ahead program concerns the minimum time a
generating unit must stay up or down, either at the beginning of the day or during the day.

For t = 1, ∀g ∈ G:

stupg,t − stdng,t = onDA
g,t − oninit

g (2)

stupg,t + stdng,t ≤ 1 (3)

∀t = 2, ..., 24, ∀g ∈ G:

stupg,t − stdng,t = onDA
g,t − onDA

g,t−1 (4)

stupg,t + stdng,t ≤ 1 (5)
(6)

∀g ∈ G:

tup,init
g∑
t′=1

(
1− onDA

g,t′

)
= 0 (7)

tdn,init
g∑
t′=1

onDA
g,t′ = 0 (8)

(9)
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∀g ∈ G, ∀t = 1, ...,
(
24− tup,min

g

)
:

t+tup,min
g∑
t′=t

onDA
g,t′ ≥ stupg,t · tup,min

g (10)

(11)

∀g ∈ G, ∀t = 1, ...,
(
24− tdn,min

g

)
:

t+tdn,min
g∑
t′=t

(
1− onDA

g,t′

)
≥ stdng,t · tdn,min

g (12)

(13)

The following set of constraints limits the power output of each generating unit between its
minimum stable output and its maximum capacity and also imposes ramping constraints to go
from one committed dispatch to the one of the next period in one hour:

−PDA
g,t +R−g,t ≤ −Pmin

g ∗ onDA
g,t (14)

PDA
g,t +R+

g,t ≤ Pmax
g ∗ onDA

g,t (15)

PDA
g,t+1 − PDA

g,t ≤ ∆P+
g ∗ onDA

g,t + Pmax
g ∗ (1− onDA

g,t ) (16)

−
(
PDA
g,t+1 − PDA

g,t

)
≤ ∆P−g ∗ onDA

g,t + Pmax
g ∗ (1− onDA

g,t+1) (17)

We assume a piece-wise linear cost function of |K| segments for the marginal running cost
of a generating unit g, which gives eq. (18) and (20).
∀g ∈ G, ∀k ∈ K, ∀t = 1, ..., 24:

P inc
g,k,t ≤ onDA

g,t · P
inc,max
g,k (18)

(19)

∀g ∈ G, ∀t = 1, ..., 24:

PDA
g,t =

K∑
k=1

P inc
g,k,t (20)

Equation (21) represents the balancing of the system and equations (23)-(25) the transmis-
sion constraints in case of the DC approximation.
∀t = 1, ..., 24, ∀n ∈ N :∑

w∈Wn

(P forecast
w,t −WCDA

w,t ) +
∑
g∈Gn

PDA
g,t −

∑
l∈L

βn,l ∗ fDA
l,t =

∑
d∈Dn

P forecast
d,t (21)

∀t = 1, ..., 24, ∀w ∈ W :

0 ≤ WCDA
w,t ≤ P forecast

w,t (22)

∀t = 1, ..., 24, ∀l ∈ L:
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fDA
l,t −

1

Xl

∑
n∈N

βn,l ∗ θDA
l,t = 0 (23)

fDA
l,t ≤ fmax

l (24)

−fDA
l,t ≤ fmax

l (25)

Equations (26)-(29) force the system to still be secure in the case of the loss of one trans-
mission element.
∀t = 1, ..., 24, ∀c ∈ C,∀n ∈ N :∑

w∈Wn

(P forecast
w,t −WCDA

w,t ) +
∑
g∈Gn

PDA
g,t −

∑
l∈L

βn,l ∗ fDAST
l,t,c =

∑
d∈Dn

P forecast
d,t (26)

∀t = 1, ..., 24, ∀c ∈ C,∀l ∈ L:

fDAST
l,t,c − al,c ∗

1

Xl

∑
n∈N

βn,l ∗ θDAST
l,t,c = 0 (27)

fDAST
l,t,c ≤ al,c ∗ fmax

l (28)

−fDAST
l,t,c ≤ al,c ∗ fmax

l (29)

Equations (30)-(35) determine the minimum size of the up and down spinning reserves per
area in the system (in this work, we have three areas and the same spinning reserve requirements
per area).
∀t = 1, ..., 24, ∀g =∈ G ∑

g∈Garea1

R+
g,t ≥ R+ (30)∑

g∈Garea1

R−g,t ≥ R− (31)∑
g∈Garea2

R+
g,t ≥ R+ (32)∑

g∈Garea2

R−g,t ≥ R− (33)∑
g∈Garea3

R+
g,t ≥ R+ (34)∑

g∈Garea3

R−g,t ≥ R− (35)

2.3 Real-time operation

In order to simulate real-time operation along a system trajectory, we solve sequentially the 24
hourly steps of the trajectory. That is we solve 24 single period problems corresponding to the
24 hours of one day.

We model real-time operation with a SCOPF problem with the N-1 reliability criterion,
again considering only transmission elements. We consider preventive (pre-contingency) as
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well as corrective actions (post-contingency) and we do not forget the intermediate state after
the occurrence of a contingency but before any corrective action can be applied, that we call
short-term post-contingency state.

Note that continuous variables from the day-ahead decision-making program are parameters
for this problem.

2.3.1 Objective function

The objective function (36) minimizes the redispatch cost (upward and downward) as well as
load shedding and wind curtailment, both in preventive and corrective modes. The value of lost
load and wind penalty should be such that load shedding and wind curtailment are used only
where no other solution exists. Note that, in order to favour corrective actions over preventive
ones, we multiply the total preventive cost by a large factor M .

minimize M ∗

(∑
g∈G

cg

(
+PRTp

g,t +− PRTp
g,t

)
+
∑
d∈D

vd ∗ LSRTp
d,t +

∑
w∈W

pw ∗WCRTp
w,t

)

+
∑
c∈C

(∑
d∈D

vd ∗ LSRTc
d,t,c +

∑
w∈W

pw ∗WCRTc
w,t,c +

∑
g∈G

cg
(
+PRTc

g,t,c +− PRTc
g,t,c

)) (36)

2.3.2 Pre-contingency state

The following equations determine the preventive actions.The possible redispatch of generating
units is limited by maximum and minimum output power of generating units as well as by
ramping constraints of one hour. Equations (41) and (42) also impose that with the re-dispatch
of a unit g, it is still possible to go in one hour to the dispatch of the generating unit g at time
t+ 1 as per the day-ahead decision-making.
∀g ∈ G:

PDA
g,t + (+PRTp

g,t −− P
RTp
g,t ) ≥ Pmin

g ∗ onDA
g,t (37)

PDA
g,t + (+PRTp

g,t −− P
RTp
g,t ) ≤ Pmax

g ∗ onDA
g,t (38)

+PRTp
g,t −− P

RTp
g,t ≤ ∆P+

g (39)

−(+PRTp
g,t −− P

RTp
g,t ) ≤ ∆P−g (40)

PDA
g,t+1 −

(
PDA
g,t + (+PRTp

g,t −− P
RTp
g,t

)
≤ ∆P+

g (41)

−
(
PDA
g,t+1 −

(
PDA
g,t ++ PRTp

g,t −− P
RTp
g,t

))
≤ ∆P−g (42)

The next constraints correspond to the classical DC approximation and limits on maximum
load shedding and wind curtailment.
∀n ∈ N :∑
w∈Wn

(PRT
w,t −WCDA

w,t −WCRT p

w,t ) +
∑
g∈Gn

(
PDA
g,t + (+PRTp

g,t −− P
RTp
g,t )

)
−
∑
l∈L

βn,l ∗ fp
l,t

=
∑
d∈Dn

(PRT
d,t − LSRT p

d,t ) (43)

∀l ∈ L:
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fp
l,t −

1

Xl

∑
n∈Nn

βn,l ∗ θpl,t = 0 (44)

fp
l,t ≤ fmax

l (45)

−fp
l,t ≤ fmax

l (46)

Finally, we ensure that we do not shed more load and wind generation than what is possible:
∀d ∈ D:

0 ≤ LSRT p

d,t ≤ PRT
d,t (47)

∀w ∈ W :

0 ≤ WCDA
w,t +WCRT p

w,t ≤ PRT
w,t (48)

2.3.3 Short-term post-contingency state

In this stage, a contingency occurred but the operator did not react yet. Since we are in
emergency state, the line thermal ratings correspond to the short-term ones.
∀c ∈ C,∀n ∈ N :∑
w∈Wn

(PRT
w,t −WCDA

w,t −WCRT p

w,t ) +
∑
g∈Gn

(
PDA
g,t + (+PRTp

g,t −− P
RTp
g,t )

)
−
∑
l∈L

βn,l ∗ fST
l,t,c

=
∑
d∈Dn

(PRT
d,t − LSRT p

d,t ) (49)

∀c ∈ C,∀l ∈ L:

fST
l,t,c − al,c ∗

1

Xl

∑
n∈Nn

βn,l ∗ θSTl,t,c = 0 (50)

fST
l,t,c ≤ al,c ∗ rl ∗ fmax

l (51)

−fST
l,t,c ≤ al,c ∗ rl ∗ fmax

l (52)

2.3.4 Corrective control

Finally, corrective actions can be applied to keep the system secure.
∀c ∈ C,∀g ∈ G:

PDA
g,t + (+PRTp

g,t −− P
RTp
g,t ) + (+PRTc

g,t,c −− PRTc
g,t,c ) ≥ Pmin

g ∗ onDA
g,t (53)

PDA
g,t + (+PRTp

g,t −− P
RTp
g,t ) + (+PRTc

g,t,c −− PRTc
g,t,c ) ≤ Pmax

g ∗ onDA
g,t (54)

+PRTc
g,t,c −− PRTc

g,t,c ≤ ∆P+,c
g (55)

−(+PRTc
g,t,c −− PRTc

g,t,c ) ≤ ∆P−,cg (56)

∀c ∈ C,∀n ∈ N :∑
w∈Wn

(PRT
w,t −WCDA

w,t −WCRT p

w,t −WCRT c

w,t,c) +
∑
g∈Gn

(
PDA
g,t + (+PRTp

g,t −− P
RTp
g,t ) + (+PRTc

g,t,c −− PRTc
g,t,c )

)
−
∑
l∈L

βn,l ∗ f c
l,t,c =

∑
d∈Dn

(PRT
d,t − LSRT p

d,t − LSRT c

d,t,c )

(57)
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∀c ∈ C,∀d ∈ D:

0 ≤ LSRT p

d,t + LSRT c

d,t,c ≤ PRT
d,t (58)

∀c ∈ C,∀w ∈ W :

0 ≤ WCDA
w,t +WCRT p

w,t +WCRT c

w,t,c ≤ PRT
w,t (59)

∀c ∈ C,∀l ∈ L:

f c
l,t,c − al,c ∗

1

Xl

∑
n∈Nn

βn,l ∗ θSTl,t = 0 (60)

f c
l,t,c ≤ al,c ∗ fmax

l (61)
−f c

l,t,c ≤ al,c ∗ fmax
l (62)

3 Case study: the IEEE-RTS96 - short description of the
data

In [1], we test our methodology on the IEEE-RTS96 benchmark [3], where 19 windfarms have
been added as in [4].

We consider in this case study the first day of the year, with a peak demand per area of
3135MW. Demand, generating units and line ratings data come from [3], while the forecast
wind generation (’favorable’) as well as the initial states of the generating units are borrowed
from [4]. Note that line ratings have been reduced by a factor of 20%.

Concerning the reliability criterion, we use the N-1 criterion for transmission elements only
(transmission lines, cables and transformers) and thus we have 120 contingencies. It is impor-
tant to note that for the real-time simulator we do not consider contingencies of lines 49 and
82 in order to avoid islanding of nodes 207 and 307. Therefore, we have only 118 contingencies
in the real-time problem.

We choose as minimum up and down spinning reserve per area 300 MW. The wind penalty
is 300e/MWh and the voll is an average of the coefficients from [5] converted in e and is thus
equal to 4018.2e/MWh.

Concerning the objective function of the real-time simulator, we set M=150(> |C|) in order
to be sure that corrective actions will always be favoured over preventive ones.

4 Machine learning settings and predictors
In this section, we begin by introducing briefly the learning algorithms used in the paper, then
we describe the procedure used to train and test the models and we list the values of the
meta-parameters tested to improve the performance of our models.

4.1 Two regression algorithms: extremely randomized trees and neu-
ral networks

We tested two types of predictors : extremely randomized trees (ET) [6] and artificial neural
network (NN)[7].
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The ET algorithm is a Random Forest algorithm [8]. It is an ensemble of regression trees
where each tree is built with some randomness. The final prediction is the average of the
predictions of each tree in the forest. This method as three meta-parameters: the number of
trees in the forest, the number k of features selected randomly at each split and the minimum
number of samples required to split a node nmin.

The artificial neural network we studied is a multi-layer perceptron with a ReLU activation
function. We tuned the number of hidden layers and the number of neurons per layer.

4.2 Description of the learning procedure

In order to avoid overfitting, we divide the dataset randomly into two sets: a learning set and
a test set. Each model is learnt with the learning set and its performances are assessed on the
test set. It allows to see how well each model generalises on unseen data. The measure used to
compare each model is the R2-score (coefficient of determination), which is computed on the
basis of N cases by [10]:

R2(y, ŷ) = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

,

where yi is the true output of case i, ŷi is the predicted output, and ȳ is the mean of the N
true values. The best possible score is 1 and corresponds to a model that perfectly predicts all
the target output values of the dataset used to estimate its value.

As said in the previous section, each model has some meta-parameters that we can tune in
order to improve their performance. In order to select the best meta-parameters, we use a 5-fold
cross validation. For the ET algorithm, we tested the following parameters: k = 1, p/3, p/2, p,
where p is the total number of features and nmin = 2, 4, 6, 8, 10, 20. The number of trees was
set to 1000, which is good trade-off between performance and time needed to train and predict.
For the NN algorithm, we tried the following configurations: two or three hidden layers with
10, 50 or 100 neurons per layer. The best meta-parameters vary in function of the output we
want to predict or the setting used.
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