

Knowledge representation

Tutorial 2

4 October 2013

Operations on Lists

1. Define a predicate `rep(+Xs, -Ys)` that succeeds if the list `Ys` is the list `Xs` in which consecutive duplicates of elements have been eliminated.

```
?- rep([1, 1, 1, 2, 2, 2, 2, 4, 4, 1, 7], X).
```

```
X = [1, 2, 4, 1, 7] ;  
false.
```

2. Define a predicate `pack(+Ls, -Zs)` that succeeds if the list `Zs` is the list `Ls` in which consecutive duplicates elements have been replaced by a sublist containing all these elements.

```
?- pack([a, a, a, a, b, c, c, a, a, d, e, e, e, e], X).
```

```
X = [[a, a, a, a], [b], [c, c], [a, a], [d], [e, e, e, e]] ;  
false.
```

3. Define a predicate `encode(+Ls, -Zs)` that succeeds if the list `Zs` is the list `Ls` in which consecutive duplicates elements have been replaced by a list of two elements `[N, E]` where `N` is the number of duplicates of the element `E`.

```
?- encode([a, a, a, a, b, c, c, a, a, d, e, e, e, e], X).
```

```
X = [[4, a], [1, b], [2, c], [2, a], [1, d], [4, e]] ;  
false.
```

4. Define a predicate `decode(+Ls, -Zs)` that succeeds if the list `Ls` is an encoded version (as specified in the previous problem) of the list `Zs`.

Arithmetic

5. Define a predicate `gcd(+A, +B, -C)` that succeeds if C is the GCD (greatest common divisor) of the two positive integer numbers A and B .

6. Define a predicate `prime(+A)` that succeeds if A is a prime number.

Proposed exercise

7. Goldbach's conjecture is one of the most famous facts in number theory that has not been proved to be correct in the general case.

It says that : *Every positive even number greater than 2 is the sum of two prime numbers.*

Example: $28 = 5 + 23$.

Define a predicate `goldbach(+X, -Y, -Z)` that succeeds if $X = Y + Z$ where X is an even integer greater than 2 and Y, Z two prime numbers.