
Université de Liège INFO0049-1

Knowledge representation
Tutorial 7

15 November 2013

Correction of proposed exercises

1. Three thieves have robbed a wine barrel of 24 liters. They would like to divide the
wine in three equal parts (8 liters each). Unfortunately, they only have at their disposal
three vessels : one of 5 liters, one of 11 liters and one of 13 liters.

Write a prolog program to solve this decanting problem.

2.
8-puzzle (sliding puzzle) :
The 8-puzzle is a smaller version of the slightly better known 15-puzzle.
The puzzle consists of an area divided into a grid, 3 by 3 for the 8-puzzle (4 by 4 for the
15-puzzle). On each grid square is a tile, expect for one square which remains empty.
Thus, there are eight tiles in the 8-puzzle. A tile that is next to the empty grid square
can be moved into the empty space, leaving its previous position empty in turn. Tiles
are numbered, 1 to 8 for the 8-puzzle, so that each tile can be uniquely identified.

The aim of the puzzle is to get the configuration where all the tiles are ordered from any
given starting configuration.

Write a prolog program to solve this puzzle.
(Hint: the puzzle doesn’t always have a solution !)

3. You are a train driver. Your train is represented by a list of the form [c1, c2, ..., cn]
where ci are the cars. The locomotive is supposed to be on the left of the car c1 but is
not explicitly represented.
You are in a marshalling yard and your task is to rearrange the cars in a specific order.
The marshalling yard has two sorting tracks where you can push or remove cars.

1



Here is a example of the rearrangement of the train [a, b, c] to [b, c, a].

Write a prolog program to compute the movements necessary to rearrange a train.

Exercises

4. Define a predicate listOfPred(+Pred(...), -Ls) that succeeds if the list Ls is a
list where the first element is the predicate Pred and the next are the arguments of the
predicate Pred.

?- listOfPred(between(1, 100, X), Ls).

Ls = [between, 1, 100, X].

5. Define a predicate applyPred(+Pred, +Args) that succeeds if Pred(Args) is true.

6. Define a predicate filter(+L1, +Pred, -L2) that succeeds if L2 is the list of L1’s
elements that satisfy the predicate Pred.

Memoization

7. Define a predicate to compute the function f :

f(n) = n si 0 ≤ n ≤ 2

f(n) = [2f(n− 1) + 3f(n− 2) + 5f(n− 3)] mod (n + 1) si n > 2

2


