Chapter 4: Dynamic Programming

Objectives of this chapter:

(3 Overview of a collection of classical solution methods
for MDPs known as dynamic programming (DP)

[Show how DP can be used to compute value functions,
and hence, optimal policies

[Discuss efficiency and utility of DP

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Evaluation

Policy Evaluation: for a given policy s, compute the
state-value function V"

Recall: State - value function for policyx :

Vi(s)= En{Rx | S; =s} = En{iyk’hkn
=0

s,=s}

Bellman equation for V" :
V7(s) = 2 (s, a)EP;’S,[Rgs, +vy V”(s,)]

— a system of |S| simultaneous linear equations

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Iterative Methods

JU
R e e e
a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

V()< Y a(s,a) P Po[Rivt 1V, ()]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Iterative Policy Evaluation

Input 7, the policy to be evaluated
Initialize V(s) = 0, for all s € ST
Repeat
A0
For each s € S:
v V(s)
V(s) — X0 (5,0) S PL[RE, + 1V ()]
A — max(A, |[v —V(s)])
until A < 6 (a small positive number)
Output V = V7

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A Small Gridworld

8 9 10 (11

actions
12 13 |14

[An undiscounted episodic task
(0 Nonterminal states: 1, 2, . . ., 14;

r=-1
on all transitions

[One terminal state (shown twice as shaded squares)

1 Actions that would take agent off the grid leave state unchanged

[Reward is —1 until the terminal state is reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5
Iterative Policy Eval
L3
for the Small Gridworld Veforte Grascy Poly
Random Policy wrt Vi
00] 00 0.0] 0.0
k=0 0.0{ 0.0/ 0.0] 0.0 random
- 0.0 0.0 0.0] 0.0 policy
0.0] 0.0] 0.0] 0.0
0.0|-1.0]-1.0]-1.0 [~ }
k=1 1.0 1.0[-1.0]-1.0] f i
= T
-1.0[-1.0[-1.0]-1.0) | |
-1.0[-1.0]-1.0] 0.0 | -
7 = equiprobable random action choices 00112020 SRCEES
quip k=2 -1.7]-2.0[-2.0]-2.0 IGEEE
-2.0[-2.0[-2.0[-17]] ol
-2.0{-2.0[-1.7] 00 [-l -
0.0]-2.4]-2.9]-3.0 = e
2.4]-2.9/3.0[2.9) TH
k=3 229502 L
-2.9]-3.0[-2.9)-2.4 15
-3.0{-2.9]-2.4] 0.0 S o[-
0.0]-6.1]-8.4]-9.0 = e
k=10 6.1]-7.7|-8.4] -8.4] T a1 | < optimal
-8.4-84)-7.7)-6.1 RN policy
-9.0]-84]-6.1] 0.0 EREE
00]-14.]-20-22, = e
k=o -14.]-18. 20 -20. T a1y
- 20.[-20.-18.]-14. =
-20.{-20.-] Ind}
R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction -22.-20.]-14.] 0.0 REE

Policy Improvement

Suppose we have computed V" for a deterministic policy 7.

For a given state s,
would it be better to do an action a = () ?

The value of doing a in state s is:
Q(Sv a) = En {’;H + YVH(SHI)

-2 < [Rev+y V()]

s, =54, =a}

It is better to switch to action a for state s if and only if

O (s,a) > V7(s)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Improvement Cont.

Do this for all states to get a new policy s’ that is

greedy with respectto V™ :
7' (s) = argmax Q" (s,a)
= argmax EP;’S,[ot yV”(s’)]

Then V" = V"

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Policy Improvement Cont.

What if V™ = V7" ?
ie, forall s €S, V7 (s)=max ngs/[ngs,+ yVvish] ?
But this is the Bellman Optimality Equation.

So V™ = V* and both and s’ are optimal policies.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

Policy Iteration

431

JL’O%V”O%JLH% en*evxen*

e

policy evaluation policy improvement
“greedification”

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Policy Iteration

1. Initialization
V(s) € R and 7 (s) € A(s) arbitrarily for all s € S

2. Policy Evaluation
Repeat
A0
For each s € S:
v—V(s)
V(s) — X PR [RIS + 9V (s)]
A — max(A, v —V(s)])
until A < 6 (a small positive number)

3. Policy Improvement
policy-stable «— true
For each s € S:
b— 7(s)
7(s) « argmax, >y P, ['Rfjs, + 'yV(s’)J
If b # 7 (s), then policy-stable — false
If policy-stable, then stop; else go to 2

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Jack’s Car Rental

[$10 for each car rented (must be available when request rec’d)
(O Two locations, maximum of 20 cars at each
[Cars returned and requested randomly

= Poisson distribution, n returns/requests with prob %e‘*

= Istlocation: average requests = 3, average returns =3

= 2nd location: average requests = 4, average returns = 2

[Can move up to 5 cars between locations overnight

(3 States, Actions, Rewards?
[Transition probabilities?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Jack’s Car Rental

20

#Cars at first location

=]
O #Cars at second location 2

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Jack’s CR Exercise

[Suppose the first car moved is free
= From Ist to 2nd location
= Because an employee travels that way anyway (by bus)
[Suppose only 10 cars can be parked for free at each location
= More than 10 cost $4 for using an extra parking lot

[Such arbitrary nonlinearities are common in real problems

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Value Iteration

Recall the full policy-evaluation backup:

Vi) = D (s, @) RPL[RE+ 7 Vi(s")]

Here is the full value-iteration backup:

Vi (5) < max YPL R4y V()]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

15

Value Iteration Cont.

Initialize V arbitrarily, e.g.,V(s) =0, for all s € ST

Repeat
A0
For each s € &:
v V(s)
V(s) « max, g P[RRy + 7V (5)]
A «— max(A, [v — V(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, 7, such that
7(s) = argmax, > gs,[0y T+ ny(s’)]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

16

Gambler’s Problem

™ Gambler can repeatedly bet $ on a coin flip

(3 Heads he wins his stake, tails he loses it
1 Initial capital € {$1, $2, ... $99}

[Gambler wins if his capital becomes $100
loses if it becomes $0

(A Coin is unfair

= Heads (gambler wins) with probability p = .4

(3 States, Actions, Rewards?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

17

Gambler’s Problem Solution

Value
estimates

Final
policy
(stake)

14

0.8
0.6 sweep 32
0.4
0.2
= sweep 3
0— /_/ T pl
1 25 50 75 99
Capital
50
40
30
20
10
1
T T T T]
1 25 50 75 99
Capital

R. S. Sutton and A. G. Barto: Reintorcement Learning: An introaucuon

18

Herd Management

1 You are a consultant to a farmer managing a herd of cows
A Herd consists of 5 kinds of cows:
= Young
= Milking
= Breeding
=« Old
= Sick
(3 Number of each kind is the State
(A Number sold of each kind is the Action
[Cows transition from one kind to another

[Young cows can be born

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

19

Asynchronous DP

1 All the DP methods described so far require exhaustive
sweeps of the entire state set.

[Asynchronous DP does not use sweeps. Instead it works like
this:
= Repeat until convergence criterion is met:

— Pick a state at random and apply the appropriate
backup

1 Still need lots of computation, but does not get locked into
hopelessly long sweeps

[Can you select states to backup intelligently? YES: an
agent’s experience can act as a guide.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

20

10

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,

independent of their granularity.

evaluation

V—V"

g %4
si—>greedy(V)
improvement

*
aa——
N e—= V"

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A geometric metaphor for
convergence of GPI:

starting
Vr

21

Efficiency of DP

[To find an optimal policy is polynomial in the number of

states...

[BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

[In practice, classical DP can be applied to problems with a

few millions of states.

[Asynchronous DP can be applied to larger problems, and
appropriate for parallel computation.

1 It is surprisingly easy to come up with MDPs for which DP

methods are not practical.

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

22

11

Summary

1 Policy evaluation: backups without a max

[Policy improvement: form a greedy policy, if only locally
[Policy iteration: alternate the above two processes

[Value iteration: backups with a max

3 Full backups (to be contrasted later with sample backups)
[Generalized Policy Iteration (GPI)

[Asynchronous DP: a way to avoid exhaustive sweeps

1 Bootstrapping: updating estimates based on other
estimates

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

23

12

