Chapter 4: Dynamic Programming

Objectives of this chapter:

(3 Overview of a collection of classical solution methods
for MDPs known as dynamic programming (DP)

[ Show how DP can be used to compute value functions,
and hence, optimal policies

[ Discuss efficiency and utility of DP
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Policy Evaluation

Policy Evaluation: for a given policy s, compute the
state-value function V"

Recall:  State - value function for policyx :

Vi(s)= En{Rx | S; =s} = En{iyk’hkn
=0

s,=s}

Bellman equation for V" :
V7(s) = 2 (s, a)EP;’S,[Rgs, +vy V”(s,)]

— a system of |S| simultaneous linear equations
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Iterative Methods

JU
R e e e
a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

V()< Y a(s,a) P Po[Rivt 1V, ()]
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Iterative Policy Evaluation

Input 7, the policy to be evaluated
Initialize V(s) = 0, for all s € ST
Repeat
A0
For each s € S:
v V(s)
V(s) — X0 (5,0) S PL[RE, + 1V ()]
A — max(A, |[v —V(s)])
until A < 6 (a small positive number)
Output V = V7
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A Small Gridworld

8 9 10 (11

actions
12 13 |14

[ An undiscounted episodic task
(0 Nonterminal states: 1, 2, . . ., 14;

r=-1
on all transitions

[ One terminal state (shown twice as shaded squares)

1 Actions that would take agent off the grid leave state unchanged

[ Reward is —1 until the terminal state is reached
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Policy Improvement

Suppose we have computed V" for a deterministic policy 7.

For a given state s,
would it be better to do an action a = () ?

The value of doing a in state s is:
Q(Sv a) = En {’;H + YVH(SHI)

-2 < [Rev+y V()]

s, =54, =a}

It is better to switch to action a for state s if and only if

O (s,a) > V7(s)
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Policy Improvement Cont.

Do this for all states to get a new policy s’ that is

greedy with respectto V™ :
7' (s) = argmax Q" (s,a)
= argmax EP;’S,[ ot yV”(s’)]

Then V" = V"
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Policy Improvement Cont.

What if V™ = V7" ?
ie, forall s €S, V7 (s)=max ngs/[ngs,+ yVvish] ?
But this is the Bellman Optimality Equation.

So V™ = V* and both and s’ are optimal policies.
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Policy Iteration

431

JL’O%V”O%JLH% en*evxen*

e

policy evaluation policy improvement
“greedification”
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Policy Iteration

1. Initialization
V(s) € R and 7 (s) € A(s) arbitrarily for all s € S

2. Policy Evaluation
Repeat
A0
For each s € S:
v—V(s)
V(s) — X PR [RIS + 9V (s)]
A — max(A, v —V(s)])
until A < 6 (a small positive number)

3. Policy Improvement
policy-stable «— true
For each s € S:
b— 7(s)
7(s) « argmax, >y P, ['Rfjs, + 'yV(s’)J
If b # 7 (s), then policy-stable — false
If policy-stable, then stop; else go to 2
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Jack’s Car Rental

[ $10 for each car rented (must be available when request rec’d)
(O Two locations, maximum of 20 cars at each
[ Cars returned and requested randomly

= Poisson distribution, n returns/requests with prob %e‘*

= Istlocation: average requests = 3, average returns =3

= 2nd location: average requests = 4, average returns = 2

[ Can move up to 5 cars between locations overnight

(3 States, Actions, Rewards?
[ Transition probabilities?
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Jack’s Car Rental

20

#Cars at first location

=]
O #Cars at second location 2
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Jack’s CR Exercise

[ Suppose the first car moved is free
= From Ist to 2nd location
= Because an employee travels that way anyway (by bus)
[ Suppose only 10 cars can be parked for free at each location
= More than 10 cost $4 for using an extra parking lot

[ Such arbitrary nonlinearities are common in real problems

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14




Value Iteration

Recall the full policy-evaluation backup:

Vi) = D (s, @) RPL[RE+ 7 Vi(s")]

Here is the full value-iteration backup:

Vi (5) < max YPL R4y V()]
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Value Iteration Cont.

Initialize V arbitrarily, e.g.,V(s) =0, for all s € ST

Repeat
A0
For each s € &:
v V(s)
V(s) « max, g P[RRy + 7V (5)]
A «— max(A, [v — V(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, 7, such that
7(s) = argmax, > gs,[ 0y T+ ny(s’)]
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Gambler’s Problem

™ Gambler can repeatedly bet $ on a coin flip

(3 Heads he wins his stake, tails he loses it
1 Initial capital € {$1, $2, ... $99}

[ Gambler wins if his capital becomes $100
loses if it becomes $0

(A Coin is unfair

= Heads (gambler wins) with probability p = .4

(3 States, Actions, Rewards?
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Gambler’s Problem Solution

Value
estimates

Final
policy
(stake)

14
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40
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Herd Management

1 You are a consultant to a farmer managing a herd of cows
A Herd consists of 5 kinds of cows:
= Young
= Milking
= Breeding
=« Old
= Sick
(3 Number of each kind is the State
(A Number sold of each kind is the Action
[ Cows transition from one kind to another

[ Young cows can be born
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Asynchronous DP

1 All the DP methods described so far require exhaustive
sweeps of the entire state set.

[ Asynchronous DP does not use sweeps. Instead it works like
this:
= Repeat until convergence criterion is met:

— Pick a state at random and apply the appropriate
backup

1 Still need lots of computation, but does not get locked into
hopelessly long sweeps

[ Can you select states to backup intelligently? YES: an
agent’s experience can act as a guide.
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Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,

independent of their granularity.

evaluation

V—V"

g %4
si—>greedy(V)
improvement

*
aa——
N e—= V"
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A geometric metaphor for
convergence of GPI:

starting
Vr
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Efficiency of DP

[ To find an optimal policy is polynomial in the number of

states...

[ BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

[ In practice, classical DP can be applied to problems with a

few millions of states.

[ Asynchronous DP can be applied to larger problems, and
appropriate for parallel computation.

1 It is surprisingly easy to come up with MDPs for which DP

methods are not practical.
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Summary

1 Policy evaluation: backups without a max

[ Policy improvement: form a greedy policy, if only locally
[ Policy iteration: alternate the above two processes

[ Value iteration: backups with a max

3 Full backups (to be contrasted later with sample backups)
[ Generalized Policy Iteration (GPI)

[ Asynchronous DP: a way to avoid exhaustive sweeps

1 Bootstrapping: updating estimates based on other
estimates
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