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Chapter 4: Dynamic Programming

❐ Overview of a collection of classical solution methods
for MDPs known as dynamic programming (DP)

❐ Show how DP can be used to compute value functions,
and hence, optimal policies

❐ Discuss efficiency and utility of DP

Objectives of this chapter: 
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Policy Evaluation

State - value function for policy ! :
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Bellman equation for V
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— a system of S  simultaneous linear equations

Policy Evaluation: for a given policy π, compute the 
                                state-value function V!

Recall:
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Iterative Methods
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a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:
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Iterative Policy Evaluation
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A Small Gridworld

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached
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Iterative Policy Eval
for the Small Gridworld
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" =  equiprobable random action choices
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Policy Improvement

Suppose we have computed       for a deterministic policy π.V
!

For a given state s, 
would it be better to do an action                 ? a ! "(s)
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The value of doing a in state s is :

It is better to switch to action a for state s if and only if

                            Q! (s, a) > V ! (s)
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Policy Improvement Cont.
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Do this for all states to get a new policy ! "  that is 

greedy  with respect to V " :

Then V
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Policy Improvement Cont.

What if V ! " = V
"  ?

i.e.,    for all s #S,    V ! " (s) = max
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But this is the Bellman Optimality Equation.

So V ! " = V
# and both " and ! "  are optimal policies.
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Policy Iteration
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Policy Iteration
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Jack’s Car Rental

❐ $10 for each car rented (must be available when request rec’d)
❐ Two locations, maximum of 20 cars at each
❐ Cars returned and requested randomly

 Poisson distribution, n returns/requests with prob
 1st location: average requests = 3, average returns = 3
 2nd location: average requests = 4, average returns = 2

❐ Can move up to 5 cars between locations overnight

❐ States, Actions, Rewards?
❐ Transition probabilities?
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Jack’s Car Rental
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Jack’s CR Exercise

❐ Suppose the first car moved is free
 From 1st to 2nd location
 Because an employee travels that way anyway (by bus)

❐ Suppose only 10 cars can be parked for free at each location
 More than 10 cost $4 for using an extra parking lot

❐ Such arbitrary nonlinearities are common in real problems
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Value Iteration
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Recall the full policy-evaluation backup:
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Here is the full value-iteration backup:
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Value Iteration Cont.
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Gambler’s Problem

❐ Gambler can repeatedly bet $ on a coin flip
❐ Heads he wins his stake, tails he loses it
❐ Initial capital ∈ {$1, $2, … $99}
❐ Gambler wins if his capital becomes $100

loses if it becomes $0
❐ Coin is unfair

 Heads (gambler wins) with probability p = .4

❐ States, Actions, Rewards?
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Gambler’s Problem Solution
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Herd Management

❐ You are a consultant to a farmer managing a herd of cows
❐ Herd consists of 5 kinds of cows:

 Young
 Milking
 Breeding
 Old
 Sick

❐ Number of each kind is the State
❐ Number sold of each kind is the Action
❐ Cows transition from one kind to another
❐ Young cows can be born
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Asynchronous DP

❐ All the DP methods described so far require exhaustive
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like
this:
 Repeat until convergence criterion is met:

– Pick a state at random and apply the appropriate
backup

❐ Still need lots of computation, but does not get locked into
hopelessly long sweeps

❐ Can you select states to backup intelligently? YES: an
agent’s experience can act as a guide.
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Generalized Policy Iteration

Generalized Policy Iteration  (GPI):  
any interaction of policy evaluation and policy improvement, 
independent of their granularity.

A geometric metaphor for
convergence of GPI: 
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Efficiency of DP

❐ To find an optimal policy is polynomial in the number of
states…

❐ BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a
few millions of states.

❐ Asynchronous DP can be applied to larger problems, and
appropriate for parallel computation.

❐ It is surprisingly easy to come up with MDPs for which DP
methods are not practical.
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Summary

❐ Policy evaluation: backups without a max
❐ Policy improvement: form a greedy policy, if only locally
❐ Policy iteration: alternate the above two processes
❐ Value iteration: backups with a max
❐ Full backups (to be contrasted later with sample backups)
❐ Generalized Policy Iteration (GPI)
❐ Asynchronous DP: a way to avoid exhaustive sweeps
❐ Bootstrapping: updating estimates based on other

estimates


