
Ensemble methods and Feature selection

Pierre Geurts & Louis Wehenkel

Institut Montefiore, University of Liège, Belgium

ELEN062-1
Introduction to Machine Learning

November 15, 2023

Acknowledgment: These slides have been reformatted by Yann Claes in July 2020.
1 / 74

Part I

Ensemble methods

2 / 74

Outline

1 Averaging techniques

2 Boosting techniques

3 Other ensemble approaches

4 Conclusions on ensemble methods

3 / 74

Reminder: bias/variance decomposition

ELS

{
Ey |x

{
(y − ŷ(x))2

}}
= noise(x) + bias2(x) + variance(x)

- noise(x) = Ey |x

{
(y − hB(x))2

}
: quantifies how much y varies

from hB(x) = Ey |x{y} (the Bayes model).

- bias2(x) = (hB(x)− ELS{ŷ(x)})2: measures the error between
the Bayes model and the average model.

- variance(x) = ELS

{
(ŷ − ELS{ŷ(x)})2

}
: quantifies how much

ŷ(x) varies from one learning sample to another.

4 / 74

Reminder: bias and variance reduction techniques

I In the context of a given method:
- Adapt the learning algorithm to find the best trade-off between
bias and variance.

- Not a panacea but the least we can do.
Example: pruning, weight decay.

I Ensemble methods:
- Change the bias/variance trade-off.
- Universal but destroys some features of the initial method.
Example: bagging, boosting.

5 / 74

Ensemble methods

They combine the predictions of several models built with a learning
algorithm in order to improve with respect to the use of a single model.

There exist two main families:
I Averaging techniques: they grow several models independently

and simply average their predictions. They mainly decrease
variance.
Example: bagging, random forests.

I Boosting techniques: they grow several models sequentially. They
mainly decrease bias.
Example: adaboost, gradient boosting.

6 / 74

Outline

1 Averaging techniques
Bagging
Random Forests
Ambiguity decomposition

2 Boosting techniques

3 Other ensemble approaches

4 Conclusions on ensemble methods

7 / 74

Bagging (i)

Suppose that we can generate several learning samples LSi from the
original data distribution P(x , y).

Let us study the following algorithm:
- Draw T learning samples {LS1, LS2, . . . , LST}
- Learn a model ŷLSi from each LSi

- Compute the average model ŷens(x) = 1
T

∑T
i=1 ŷLSi (x)

How do the bias and variance of this algorithm relate to that of the
original algorithm?

8 / 74

Bagging (ii)

The bias/variance decomposition is given by:

ELS{Err(x)} = Ey |x

{
(y − hB(x))2

}
+ (hB(x)− ELS{ŷ(x)})2

+ ELS

{
(ŷ(x)− ELS{ŷ(x)})2

}
Its bias is the same as the original algorithm:

ELS1,...,LST {ŷens(x)} =
1
T

∑
i

ELSi {ŷLSi (x)}

= ELS {ŷLS(x)}
Its variance is divided by T :

ELS1,...,LST {(ŷens(x) −ELS1,...,LST {ŷens(x)})2
}

=
1
T
ELS

{
(ŷ(x)− ELS {ŷ(x)})2

}
⇒ The mean square error decreases.

9 / 74

Bagging (iii)

In practice, one cannot draw several LSi : P(x , y) is unknown.
⇒ Idea: use bootstrap sampling to generate several learning samples.

This is the idea behind bagging (bootstrap aggregating):
- Draw T bootstrap samples {B1,B2, . . . ,BT} from LS

- Learn a model ŷBi
from each Bi

- Build the average model ŷens(x) = 1
T

∑T
i=1 ŷBi

(x)

Variance is reduced but bias increases a bit (because the effective size
of a bootstrap sample is about 30% smaller than the original LS).

10 / 74

Bagging (iv)

LS

LS1 LS2 LST Bootstrap samples. . .

Model 1 Model 2 Model T. . .

ŷ1(x) ŷ2(x) ŷT (x) Outputs. . .

Combine

11 / 74

Bagging (v)

For a regression problem:

ŷens(x) =
1
T

(ŷ1(x) + ŷ2(x) + . . .+ ŷT (x))

For a classification problem, instead, take the majority class in

{ŷ1(x), ŷ2(x), . . . , ŷT (x)}

12 / 74

Bagging (vi)

Usually, bagging reduces very much the variance without increasing too
much the bias.

Method E Bias Variance
3 Test regression Tree 14.8 11.1 3.7
Bagged (T=25) 11.7 10.7 1.0
Full regression Tree 10.2 3.5 6.7
Bagged (T=25) 5.3 3.8 1.5

Application of bagging to regression trees (on Friedman’s problem).

⇒ Strong variance reduction without increasing the bias (although the
model is much more complex than a single tree).

13 / 74

Bagging (vii)

14 / 74

Other averaging techniques

Another approach is the perturb and combine paradigm:
1. Perturb the data/learning algorithm to obtain several models that

are good on the learning sample
2. Combine the predictions of these models

Usually, these methods decrease the variance (because of averaging)
but slightly increase the bias (because of the perturbation).
Examples:

- Bagging perturbs the learning sample
- Learn several neural networks with random initial weights

Method E Bias Variance
MLP (10-10) 4.6 1.4 3.2
Average of 10 MLPs 2.0 1.4 0.6

- Random forests

15 / 74

Random forests (i)

Random forests is a type of perturb and combine algorithm specifically
designed for trees.

It combines bagging and random attribute subset selection:
- Build the tree from a bootstrap sample
- Instead of choosing the best split among all attributes, select the
best split among a random subset of k attributes.

Note: It is equivalent to bagging when k is equal to the number of
attributes.

There is a bias/variance trade-off with k : the smaller the k , the greater
the reduction of variance but the higher the increase of bias.

16 / 74

Random forests (ii)

Method E Bias Variance
Full regression Tree 10.2 3.5 6.7
Bagging (k = 10) 5.3 3.8 1.5
Random forests (k = 7) 4.8 3.8 1.0
Random forests (k = 5) 4.9 4.0 0.9
Random forests (k = 3) 5.6 4.7 0.9

Application to our illustrative problem.

Another advantage is that it decreases computing times with respect
to bagging since only a subset of all attributes is considered when
splitting a node.

17 / 74

Ambiguity decomposition (i)

Let us assume T models {ŷ1, ŷ2, . . . , ŷT} and their average

ŷens(x) =
1
T

∑
i

ŷi (x)

We have the following decomposition:
1
T

∑
i

Ey |x

{
(y − ŷi (x))2

}
= Ey |x {(y − ŷens(x))2

}
+

1
T

∑
i

(yi (x)− ŷens(x))2

meaning that

Ey |x

{
(y − ŷens(x))2

}
=

1
T

∑
i

Ey |x {(y − ŷi (x))2
}

− 1
T

∑
i

(yi (x)− ŷens(x))2

18 / 74

Ambiguity decomposition (ii)

Hence, the average model is always better than the individual models
in the mean.

However, this is not true in classification!

19 / 74

Application: Kinect

An ensemble of randomized decision trees is used in Microsoft’s Xbox
Kinect for body part labelling.

Source: [1]

Each sample corresponds to a single pixel and is described by depth
differences between neighbouring pixels.

The final model is implemented on GPU to get very fast predictions
(200 frames per second).

20 / 74

Outline

1 Averaging techniques

2 Boosting techniques
Adaboost
Residual fitting
Gradient boosting
Bias/variance trade-off

3 Other ensemble approaches

4 Conclusions on ensemble methods

21 / 74

Motivation

The motivation of boosting is to combine the outputs of many “weak”
models to produce a powerful ensemble of models.

Note: A “weak” model is a model that has a high bias (strictly, in
classification, a model slightly better than random guessing).

Differences with previous ensemble methods:
- Models are built sequentially on modified versions of the data.
- The predictions of the models are combined through a weighted
sum/vote.

22 / 74

Boosting methods (i)

LS

LS1 LS2 LST. . .

Model 1 Model 2 Model T. . .

ŷ1(x) ŷ2(x) ŷT (x). . .

x

Input

23 / 74

Boosting methods (ii)

Regression:

ŷ(x) = β1ŷ1(x) + β2ŷ2(x) + . . .+ βT ŷT (x)

Classification:

ŷ(x) = majority class in {ŷ1(x), . . . , ŷT (x)} according to {β1, . . . , βT}.

24 / 74

Boosting methods (iii)

Many boosting methods exist.

First invented by computer scientists (Freund and Schapire, 1995) and
then generalized by statisticians (e.g., Friedman, 2001).

In this lecture:
I Adaboost: specific method for classification
I Residual fitting: specific method for regression
I Gradient boosting: a generic method that can accomodate any

loss function.

25 / 74

Adaboost: main principle

Assume that the learning algorithm accepts weighted objects

{(x1, y1,w1) , (x2, y2,w2) , . . . , (xN , yN ,wN)}

Note: This is the case of many learning algorithms:
- With trees, take the weights into account when counting objects
- In neural networks, minimize the weighted squared error

At each step, Adaboost increases the weights of cases from the
learning sample being misclassified by the last model. Therefore, the
algorithm focuses on the difficult cases from the learning sample.

In the weighted majority vote, Adaboost gives higher influence to the
more accurate models.

26 / 74

Adaboost: algorithm

I Input: a learning algorithm and a learning sample

{(x i , yi) : i = 1, . . . ,N}
I Initialize the weights

wi =
1
N
, i = 1, . . . ,N

I For t = 1 to T :
1. Build a model ŷt(x) with the learning algorithm using weights wi

2. Compute the weighted error

errt =

∑
i wi I (yi 6= ŷt (x i))∑

i wi

3. Compute βt = log(1−errt
errt

)
4. Change the weights according to

wi ← wi exp [βt I (yi 6= ŷt (x i))]

5. Normalize the weights such that
∑

i wi = 1
27 / 74

Adaboost: illustration

Source: [2]

28 / 74

Residual fitting: algorithm

(a specific boosting algorithm for least-square regression)

I Input: a learning sample {(x i , yi) : i = 1, . . . ,N}
I Initialize the model:

ŷ(x) = ŷ0(x) =
1
N

∑
i

yi

I For t = 1 to T :
1. For i = 1 to N, compute the residuals w.r.t the current ŷ :

ri ← yi − ŷ (x i)

2. Build a regression model ŷt from the new learning sample

{(x i , ri) : i = 1, . . . ,N}

3. Update the model: ŷ(x)← ŷ(x) + ŷt(x)

I Return the model ŷ(x).
29 / 74

Residual fitting: illustration

With regression trees:

Gradient Boosting [J. Friedman, 1999]

Statistical view on boosting

•) Generalization of boosting to arbitrary loss functions

Residual fitting

sklearn.ensemble.GradientBoostingClassifier|Regressor

[Source: Louppe, 2014]

30 / 74

A generic boosting algorithm

Goal: Find ŷ(x) = β1ŷ1(x) + β2ŷ2(x) + . . .+ βT ŷT (x) that minimizes∑N
i=1 L (yi , ŷ (x i)).

Forward stage-wise additive modeling:
1. Initialize ŷ(x) = 0
2. For t = 1 to T :

2.1 Compute (βt , ŷt) = arg minβ,ŷ ′
∑

i L (yi , ŷ (x i) + βŷ ′ (x i))
2.2 Set ŷ(x)← ŷ(x) + βt ŷt(x)

Examples:
- L (y , y ′) = (y − y ′)2 ⇒ Least-squares boosting
- L (y , y ′) = exp (−yy ′)⇒ Adaboost (try to prove it)

But step 2.1 is not easy to solve in general ⇒ replace by a gradient
step.

31 / 74

Gradient boosting (Friedman, 2001)

General algorithm:

1. ŷ(x)← arg minγ
∑

i L(yi , γ)

2. For t = 1 to T :
2.1 For all (x i , yi), compute:

r(x i , yi) = −
[
∂L(yi , f (x i))

∂f (x i)

]
f=ŷ

2.2 ŷt ← arg minŷ ′
∑

i (ŷ
′(x i)− r(x i , yi))2

2.3 ŷ(x)← ŷ(x) + µŷt(x), with µ ∈ [0, 1] a learning rate.

Step 2.2 can be solved with any least-square regressor.

Regression trees are the most commonly used base learners (because of
low computational cost and good predictive performances).

32 / 74

Illustration (with regression trees)

Y = sin(X) + sin(2 ∗ X) + ε, avec X ∼ U([0, 10]) et ε ∼ N(0, 2)

Example
from sklearn.ensemble import GradientBoostingRegressor

est = GradientBoostingRegressor(n_estimators=2000, max_depth=1).fit(X, y)

for pred in est.staged_predict(X):

plt.plot(X[:, 0], pred, color=’r’, alpha=0.1)

Source: https://github.com/pprett/pydata-gbrt-tutorial

33 / 74

https://github.com/pprett/pydata-gbrt-tutorial

Illustration: impact of the number of trees

Unlike Bagging or Random forests, Gradient boosting can overfit with
the number of trees

Model complexity & Overfitting
test_score = np.empty(len(est.estimators_))

for i, pred in enumerate(est.staged_predict(X_test)):

test_score[i] = est.loss_(y_test, pred)

plt.plot(np.arange(n_estimators) + 1, test_score, label=’Test’)

plt.plot(np.arange(n_estimators) + 1, est.train_score_, label=’Train’)

Regularization

GBRT provides a number of knobs to control
overfitting

• Tree structure

• Shrinkage

• Stochastic Gradient Boosting

Source: https://github.com/pprett/pydata-gbrt-tutorial

34 / 74

https://github.com/pprett/pydata-gbrt-tutorial

Regularization

Many techniques exist to avoid overfitting:
I Shrinkage: use a learning rate µ < 1.
I Reduce tree complexity: constrain depth, minimum number of

samples per leaf, or number of (test) nodes.
I Stochastic gradient boosting: introduce randomization à la

Bagging/Random forests (e.g., feature and sample subsampling)

Each technique introduces a hyper-parameter that regulates some
bias/variance trade-off.

They interact with each other and tuning them requires special care.

35 / 74

Illustration

Impact of constraining leaf sizes

Regularization: Tree structure

• The max depth of the trees controls the degree of features interactions

• Use min samples leaf to have a su�cient nr. of samples per leaf.

Source: https://github.com/pprett/pydata-gbrt-tutorial

36 / 74

https://github.com/pprett/pydata-gbrt-tutorial

Illustration

Impact of learning rate:

Regularization: Shrinkage

• Slow learning by shrinking tree predictions with 0 < learning rate <= 1

• Lower learning rate requires higher n estimators

Lower learning rates requires more trees.

Source: https://github.com/pprett/pydata-gbrt-tutorial

37 / 74

https://github.com/pprett/pydata-gbrt-tutorial

Illustration

Impact of subsampling

Regularization: Stochastic Gradient Boosting
• Samples: random subset of the training set (subsample)

• Features: random subset of features (max features)

• Improved accuracy – reduced runtime

Runtime is furthermore reduced by half.
Source: https://github.com/pprett/pydata-gbrt-tutorial

38 / 74

https://github.com/pprett/pydata-gbrt-tutorial

Random forests (RF) vs gradient boosting with trees (GBT)

GBT uses ensembling for reducing bias (mostly), while RF uses ensembling
for reducing variance (only).

GBT’s benefits:

I Often yields better predictive performance than RF.

I Can be adapted more easily to any (differentiable) loss.

I Builds smaller trees/ensembles.

RF’s benefits:

I Requires much less hyperparameter tuning. Works out of the box.

I Embarrassingly parallel.

I Requires less trick to be implemented efficiently.

I Better understood theoretically.

39 / 74

Bias/variance trade-off

Method E Bias Variance
Full regression tree 10.2 3.5 6.7
Regression tree with 1 test 18.9 17.8 1.1
+ GBT (T = 50) 5.0 3.1 1.9
+ Bagging (T = 50) 17.9 17.3 0.6
Regression tree with 5 tests 11.7 8.8 2.9
+ GBT (T = 50) 6.4 1.7 4.7
+ Bagging (T = 50) 9.1 8.7 0.4

Application to our illustrative problem.

Boosting reduces the bias but increases the variance. However, with
respect to full trees, it decreases both bias and variance.

40 / 74

XGBoost (EXtreme Gradient Boosting) (chen and Guestrin, 2016)

A popular implementation of Gradient boosting with trees.

Some specificities:
I Instead of fitting the gradient, it fits a second order taylor

expansion of the loss.
I Instead of using standard regression trees, the impurity measure is

adapted to the loss.
I The loss (and thus the impurity) includes a term that penalises for

complexity, which results in automatic tree pruning:

Ω(T) = γNleaf +
λ

2

Nleaf∑
l=1

w2
l

I Numerical inputs are potentially binned and only splits between
bins are scored.

I Support GPU acceleration.
41 / 74

Outline

1 Averaging techniques

2 Boosting techniques

3 Other ensemble approaches

4 Conclusions on ensemble methods

42 / 74

Other ensemble approaches (i)

Bayesian model averaging:

P(y | x , LS) =
∑
h∈H

P(y | h, LS)P(h | LS)

with

P(h | LS) ∝ P(h)P(LS | h)

∝ P(h)
∑
θ

P(LS | θ, h)P(θ | h)

where:
- P(h) is the prior knowledge about models (e.g. simple models are
more probable)

- P(LS | h) is the quality of the fit

43 / 74

Other ensemble approaches (ii)

Stacking:

Learn a model to combine the models
- Let LS = {(x i , yi) | i = 1, . . . ,N}
- Let At , t = 0, . . . ,T be T + 1 learning algorithms
- For t = 1, . . . ,T :

1. Construct a model: ŷ t = At(LS)
2. Compute predictions: ŷ t

i = ŷ t(x i)

- Set LS0 =
{(

x0i , yi
)}

with x0i = (ŷ ti)Tt=1

- Return ŷ = A0(LS0)

44 / 74

Outline

1 Averaging techniques

2 Boosting techniques

3 Other ensemble approaches

4 Conclusions on ensemble methods
Interpretability and efficiency
Conclusion

45 / 74

Interpretability and efficiency

Since we average several models, we lose the intepretability of the
combined models and some efficiency.

However:
- With trees, we can still use the ensembles to compute variable
importance by averaging over all trees. Actually, this even
stabilizes the estimates.

- Averaging techniques can be parallelized and boosting type
algorithms use smaller trees. Hence, the increase of computing
times is not so detrimental.

46 / 74

Experiments on Golub’s microarray data

I Input: 72 objects, 7129 numerical attributes (gene expressions), 2
classes (ALL and AL)

I Leave-one-out error with several variants
Method Error
1 decision tree 22.2%(16/72)

Random forests (k = 85, T = 500) 9.7%(7/72)

Extra-trees (sth = 0.5, T = 500) 5.5%(4/72)

Adaboost (1 test node, T = 500) 1.4%(1/72)

I Variable importance with boosting

47 / 74

Conclusion

Ensemble methods are very effective techniques to reduce bias and/or
variance. They can transform a not-so-good method to a competitive
method in terms of accuracy.

Random forests and gradient boosting with trees are two very
competitive methods, with the first easier to use and the second often
more accurate.

Interpretability of the model and efficiency of the method are difficult
to preserve if we want to reduce variance significantly.

There are other ways to tackle the variance/overfitting problem:
- Bayesian approaches (∼ averaging techniques)
- Support vector machines, which maintain a low variance by
maximizing the classification margin

48 / 74

Machine learning challenges

Machine learning challenges are commonly won by ensemble solutions:
I Netflix prize ($1M reward): best solution combines 107 models

obtained from different methods (stacking)
I Yahoo! 2011 KDD Cup ($5 000 reward): best solution uses two

levels of stacking

Data Set

Single models
RMSE = 22.80

Val-Set Blending

RMSE = 21.36

Test-Set Blending

RMSE = 21.02

Post-Processing
RMSE = 21.01

49 / 74

Further reading and software

Further reading:
I Hastie et al.: 8.7, 8.8, 10.1-4, 15 (not in detail)

Software:
I Many ensemble methods are available in common ML libraries

(scikit-learn, R)
I Boosting:

- XGBoost: http://xgboost.readthedocs.io/
- Light-GBM: https://github.com/Microsoft/LightGBM

I Demos:
- http://arogozhnikov.github.io/2016/07/05/gradient_boosting_

playground.html
- https://cs.stanford.edu/~karpathy/svmjs/demo/demoforest.html

50 / 74

http://xgboost.readthedocs.io/
https://github.com/Microsoft/LightGBM
http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html
https://cs.stanford.edu/~karpathy/svmjs/demo/demoforest.html

Part II

Feature selection

51 / 74

Outline

1 Motivation and formalization

2 Filter techniques

3 Embedded techniques

4 Wrapper methods

5 Selection bias

6 Further reading

52 / 74

Motivation

Feature selection is a technique to reduce the number of features used
by the learning algorithm.

It has several advantages:
- Avoid overfitting and improve model performance
- Improve interpretability
- Provide faster and more cost-effective models
- Reduce overall computing times, if the feature selection technique
is fast

53 / 74

Feature selection vs Ranking

Feature selection:
Find a small (or the smallest) subset of features that maximizes
accuracy.

Feature ranking:
Sort the variables according to their relevance at predicting the output.

There exist techniques in both families.

Note: Feature selection can be obtained from feature ranking, e.g. by
selecting the top k features in a ranking.

54 / 74

Formalization

Let Y denote the class variable and V = {X1, . . . ,Xp} the set of input
variables.
A feature Xi is:

- strongly relevant iff P(Y | Xi ,V \ Xi) 6= P(Y | V \ Xi)

- weakly relevant iff it is not strongly relevant and
P(Y | Xi , S) 6= P(Y | S) for some subset S ⊂ V

- irrelevant otherwise
A subset M ⊆ V of variables is a Markov boundary for Y if it is
minimal and P(Y | M,V \M) = P(Y | M): features in M are either
weakly or strongly relevant. They are all strongly relevant when the
distribution P is strictly positive.

Feature selection is often formulated as finding a Markov boundary M
for Y .
Note: All variables in a Markov boundary do not necessarily appear in
the Bayes model (depending on the loss function).

55 / 74

Feature selection

There are three main approaches:
I Filter techniques: a priori selection of the variables, i.e.

independently of the supervised learning algorithm.
I Embedded techniques: feature selection is embedded in the

learning algorithm.
I Wrapper methods: use cross-validation to find the optimal set of

features for a given algorithm.

56 / 74

Filter techniques

Idea: associate a relevance score to each feature and remove the
low-scoring ones.

Univariate scoring (often used):
I Any score measures used in decision trees
I Statistical test (t-test, chi-square, etc.)

Multivariate scoring:
I Relief
I Markov blanket filter
I Decision trees
I . . .

The optimal number of features can be determined by cross-validation.

57 / 74

Univariate scoring vs Multivariate scoring

Each feature is useless alone (low univariate scoring) but together they
perfectly explain the classification.

58 / 74

Conclusions

Advantages:
I Univariate scoring is fast and scalable.
I Independent of the supervised learning algorithm.

Drawbacks:
I It ignores the supervised learning algorithm.
I Univariate scoring ignores feature dependencies.
I Multivariate scoring is slower than univariate scoring.

59 / 74

Embedded techniques

Some supervised learning methods embed feature selection. The search
for an optimal subset of features is built into the learning algorithm.

Examples:
- Decision tree node splitting is a feature selection technique.
- Tree ensemble variable importance measures.
- Absolute weights in a linear SVM model:

ŷ(x) = sgn(
∑
i

wixi + b)

60 / 74

LASSO

Linear model learned with L1 penalization.

min
β

N∑
i=1

(yi − (β0 +
∑
j

βjxj))2 + λ
∑
j

|βj |

LASSO Ridge

Influence of λ.

61 / 74

Conclusions

Advantages:
I Usually computationally efficient.
I Well integrated within the learning algorithm.
I Multivariate.

Drawbacks:
I Specific to the learning algorithm.

62 / 74

Wrapper methods

Idea: Try to find a subset of features that maximizes the quality of the
model induced by the learning algorithm. The quality is assessed by
cross-validation.

As the number of subsets of p features is 2p, all subsets can usually not
be evaluated, and heuristics are necessary.

Many approaches exist:
- Forward/Backward selection: add (resp. remove) the variable that
most decreases (resp. less increases) the error.

- Optimization by genetic algorithms.

63 / 74

Recursive feature elimination (i)

It is a popular wrapper, especially in bioinformatics.

Assume that we have a learning algorithm that can rank the features
(e.g. linear SVM, decision trees).
Iterate:
1. Learn a model from the current feature set.
2. Rank the features with the model.
3. Remove the feature with the smallest ranking.
→ Keep the feature set that yields the lowest cross-validation error.

64 / 74

Recursive feature elimination (ii)

65 / 74

Conclusions

Advantages:
I Custom-tailored to the learning algorithm.
I Find interactions and remove redundant variables.

Drawbacks:
I Prone to overfitting: it is often easy to find a small subset of

noisy features that discriminates perfectly the classes.
I Expensive: we have to build a model for each subset of variables.

66 / 74

Selection bias (i)

We often see this experiment:
- Select the N top variables using some filter on the full dataset.
- Evaluate an algorithm that uses these N variables as inputs by
cross-validation (e.g. LOO) on the dataset.

What is wrong with this protocol?

67 / 74

Selection bias (ii)

Dataset composed of 250 objects. Each object has 1 000 features and a single
class. Each feature is randomly drawn from N (0, 1), and the class is selected
at random.

68 / 74

Selection bias (iii)

Let us consider two trials:
- Tree bagging without feature selection → 10-fold cross-validation
error ≈ 52%

- Tree bagging with 20 top features (t-test) → 10-fold
cross-validation error ≈ 35%

One could conclude that there are 20 interesting variables, and that,
from them, one can classify better than at random.

However, on a new set of 250 samples, the error is 52%.

69 / 74

Selection bias (iv)

We have both selected the variables and tested the model on the basis
of the whole training set ⇒ the CV error estimate is too optimistic
(overfitting).

A correct protocol to assess the model would be:
- Divide the learning sample into 10 folds.
- For i = 1 to 10:

1. Remove the i-th fold from the learning sample.
2. Select the top 20 variables from the remaining objects.
3. Learn the model using the 20 variables and the remaining objects.
4. Test the model on the i-th fold.

70 / 74

Selection bias (v)

I AE = error on the learning
set

I CV1IE = internal LOO
I CV10E = external 10-fold

cross-validation
I TE = error on an

independent test set
I B.632+ = another unbiased

error estimate Source: [3]

71 / 74

Outline

1 Motivation and formalization

2 Filter techniques

3 Embedded techniques

4 Wrapper methods

5 Selection bias

6 Further reading

72 / 74

Further reading and software

Further reading:
- Hastie et al.: chapter 18.
- Guyon and Elisseeff, An introduction to variable and feature
selection.
http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf

http://clopinet.com/fextract-book/IntroFS.pdf

- Saeys et al. A review of feature selection techniques in
bioinformatics.
http://dx.doi.org/10.1093/bioinformatics/btm344

Software:
I Many feature selection methods (filters, embedded or wrappers)

are implemented in common ML libraries (scikit-learn, R).
I For example: https://scikit-learn.org/stable/modules/

feature_selection.html.

73 / 74

http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
http://clopinet.com/fextract-book/IntroFS.pdf
http://dx.doi.org/10.1093/bioinformatics/btm344
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html

References

Jamie Shotton, Andrew Fitzgibbon, Andrew Blake, Alex Kipman,
Mark Finocchio, Bob Moore, and Toby Sharp.
Real-time human pose recognition in parts from a single depth
image.
In CVPR. IEEE, June 2011.
Best Paper Award.

Christopher M Bishop.
Pattern recognition and machine learning.
springer, 2006.

Christophe Ambroise and Geoffrey J McLachlan.
Selection bias in gene extraction on the basis of microarray
gene-expression data.
Proceedings of the national academy of sciences,
99(10):6562–6566, 2002.

74 / 74

	Ensemble methods
	Averaging techniques
	Bagging
	Random Forests
	Ambiguity decomposition

	Boosting techniques
	Adaboost
	Residual fitting
	Gradient boosting
	Bias/variance trade-off

	Other ensemble approaches
	Conclusions on ensemble methods
	Interpretability and efficiency
	Conclusion

	Feature selection
	Motivation and formalization
	Filter techniques
	Embedded techniques
	Wrapper methods
	Selection bias
	Further reading

