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Batch-mode Supervised Learning (Notations)

» Objects (or observations): LS = {o1,...,on}
> Attribute vector: a' = (a1(0;),...,a,(0;))7, Vi=1,...,N.
> Attribute values: a; = (a;(01),...,a;(on))" Vi=1,...,n.
» Outputs: 3" = y(0;) or ¢' = ¢(0;), Vi=1,...,N.
» LS Table

o |ai(o) az(o) ... an(o)|y(o)

1 aj az ... a; y?

2| a? a3 ... a y?

N| ayy ay ... ad |y
» LS attribute matrix: A = (a',... a’) (n lines, N columns)

» LS ouput column: y = (y', ... .y")"
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Linear regression models

» OQutput is numerical scalar
» All inputs are numerical scalars

» Linear regression tries to approximate output by

n
;&(O) = WwWo + z '11,'7'(1,'(()>
i=1

» Supervised learning problem:
Choose the parameters wg, w1, . . ., w,, so as to fit well LS and

have good generalization to unseen objects
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Linear regression models

Linear in the parameters, not necessarily in the original inputs.

k
7(0) = wp + Z w;pi(a(o))
i=1
Inputs can come from different sources:
P quantitative measurements

» transformations of quantitative measurements (log, square-root,
etc.)

> basis expansions, such as a5(0) = a?(0),as(0) = a}(0), etc.

» numeric or “dummy” coding of qualitative inputs
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Least mean square error solution

Posing, ay(0) = 1, Vo and denoting by
1. a/(0;) = (ao(0;),a1(0i), ..., an(0;))", and
2. w' = (wp,wy, ..., w,)", square error (SE) at o; is defined by

SE(o5,w') = (y(0:) — §(0:))? = (y(0;) — w'Td'(0:))”

and the total squared error (TSE) by

N
TSE(LS,w') =Y (y( Ta!(0,))°
1=1
or in vector notation (denoting by A’ = (a’', ... a'"))

TSE(LS,w') = (y — A’Tw’)T (y— A’Tw’)
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Least mean square error solution

1

FIGURE 3.1. Linear least squares fitting with X € IR?. We seek the linear
function of X that minimizes the sum of squared residuals from Y .
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Least mean square error solution: one dimension

Assuming only one input, the solution is computed as:
N
- . 2
(wg,wy) = arg min g (y(0;) — wo — wiaz(0;))
)0, W1 £

Canceling the derivative with respect to w, and wy, one gets:

. SN (ar(o) — @) (y(o:) —F)  cov(ar,y)

wy = : : = ‘
Yy (ai(o) — @) T2,

)k — I an¥a
wy = Y—widq

where @, = N5 a(op) and 7 = NS y(op).
Substituting the above into y(0) = w{ + wia;(0):

y(o) =7 ai(o) —a
—— T Pary _
Oy Oay
with p,, , the correlation between «; and y, and o,, o,, the standard

deviations of y and a1, all computed on the LS.
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Least mean square error solution: multidimensional case

Choose w'’ to minimize

TSE(LS,w') = (y — A/T'w/>T (y — A/Tw/) .
Differentiating w.r.t. w’ (gradient)
Vo TSE(LS,w') = —2A'(y — A”Tw')

and solving for V,,TSE(LS, w") = (0 we obtain

wl* _ (A/A/T)fl A/y

Note that V? , T'SE(LS, w') = 2A’A'T is symmetric positive (semi-) definite.
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Least mean square error solution (..)

Shift invariance: suppose we define new attribute vector by
a.(0) = a(o) + c where ¢ is a constant vector (i.e. independant of
object).

Let (wy,w) be the optimal solution in the original attribute space.
Then it is easy to see that (wy — w’ ¢, w) is optimal in the new space.

Indeed, we have
Uc(0) = wg — wle+ w’lva(f(o) = wg + 'wrlia(()) = 79(0).

Hence, if (wy — w’ ¢, w) is not optimal in the new space, (wg, w)

couldn’t be optimal in the original space.
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Least mean square error solution (..)

Let us discuss the meaning of the table (A’ A’"): element i, j is
obtained by the scalar product of line i and line j of matrix A’. Thus
we have

1| a ... a,

|l a1 911 - Gipm
AAT=N| T T

[ gn,1 -+ GInn

where a; = N~! Z,}:l ai(oy) and g;; = N ! 21}:1 ai(og)a;(ox)

Assuming that the attributes have all a zero mean (a; = 0) we have

gi,j = cov(a;, aj)
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Least mean square error solution

In the sequel we will use the notation > to denote the covariance
matrix.

Thus if all the attributes are centered, we have

. N1 0 1
W= o0 nNn1ixp! A )Y

In particular, wj = N-157 " yF = NS y(op) = 7.

In other words, if both @; and v are centered, w(; = 0.
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Least mean square error solution

Assuming that the attributes have zero mean and unit variance
(g:: = 1), we have

fllr/llT - N ( P11 --- Pln

‘ Pn,1 - Pnn

Note that p;; = 1;Vi = 1,

In this case the correlation and covariance matrices are identical.
- Pre-whiten the attributes before solving the linear system.
- Below, we assume attributes are pre-whitened and drop suffix /
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Least mean square error solution

Let us take a non-singular n x n matrix B and define the transformed
attribute vector by az(0) = Ba(o).

For the transformed attributes, matrix A becomes matrix B4, and

solution becomes:
wp = (BA)(BA)T)"'BAy = (BT)"}(AAT)"'B~'BAy = BT 'w

In other words,

AT 7-1
U = wpay, = (B

w)'Ba = w' B 'Ba = w'a.

= Invariance with respect to (non-singular) linear transformation
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Least mean square error solution

Discussion of matrix N> = AA”: computation, singularity, inversion.

1.

It is easy to see that N = Z}\;] a(o;)a” (0;).

2. Therefore, rank of > is at most V.
3.
4

. If 3 is singular, unicity of optimal solution is lost, but existence is

Thus, if n > N, ¥ is rank deficient (and hence singular).

preserved.

Need to impose other criteria to find unique solution, i.e. to build
algorithm.

Several such solutions are discussed in the reference book, in
particular regularization.
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Regularization of least mean square error solution

Instead of choosing w to minimize

TSE(LS,w) = (y — ATw)T (y — ATw).
Let us minimize w.r.t. w and for given A\ > 0
TSER(LS, N\, w) = (y — ATw)" (y — ATw) + Mw"w
Differentiating w.r.t. w yields (I denotes the n x n identity matrix)
VuTSER(LS,w,\) = —2A (y — ATw) + 2\ [w

in other words 1

w*(\) = (AAT + A1) Ay

which has a unique solution, YA > 0!
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lllustration: effect of A on CV error and optimal weights
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Degrees of Freedom df(\)

(See Figures 3.7 and 3.8 in reference book)

df(\) =n when A =0 and df(\) — 0 when A — oo
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Algorithmics

Computational complexity:
» Building the covariance matrix: in the order of Nn” operations
» Solving the system for w*: in the order of n* operations

Various alternative techniques exist to solve system.

Some will be discussed in the sequel.
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Other regularizations

» The above regularization method is called Ridge Regression. It
belongs to the family of shrinkage methods.
» Other regularization for linear regression models:

> LASSO: a shrinkage method replacing >, w? < ¢ by > |w;| <t
(discussed later in the course).

» Subset selection: select an optimal subset of input attributes on
which to regress. Various heuristics exist to determine the subset.
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Residual fitting (a.k.a. Forward-Stagewise Regression)

Residual fitting: alternative algorithm, of general interest

» Start by computing wq for the no-variable case: wy =7

» Introduce attributes (assumed of zero mean, unit variance)
progressively, one at the time

> Define residual at step & by
Ary(o) = y(o) — wy — Zf;ll w;a;(0)
> Find best fit of residual with only attribute ay:

Wk = Pak,ApyTAgy-
(since residuals have zero mean, and attributes are pre-whitened)

Note that this algorithm is in general suboptimal w.r.t. to the direct solution given

previously, but it is linear in the number of attributes.
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References

Chapter 3 from the reference book (Hastie et al., 2009):
» Section 3.2: Linear regression models and least squares
» Section 3.4.1: Ridge regression

» Section 3.3.3: Forward-stagewise regression
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Frequently asked questions

» How to choose a value for \ 7
» Asymptotic (N — oo) properties of LR and Ridge-regression
» Discuss LASSO vs Ridge regression

» Discuss computational complexity and interpretability
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