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Batch-mode Supervised Learning (Notations)

I Objects (or observations): LS = {o1, . . . , oN}
I Attribute vector: ai = (a1(oi), . . . , an(oi))

T , ∀i = 1, . . . , N.

I Attribute values: aj = (aj(o1), . . . , aj(oN ))T ∀j = 1, . . . , n.

I Outputs: yi = y(oi) or ci = c(oi), ∀i = 1, . . . , N.

I LS Table
o a1(o) a2(o) . . . an(o) y(o)

1 a11 a12 . . . a1n y1

2 a21 a22 . . . a2n y2

...
...

...
...

...
...

N aN1 aN2 . . . aNn yN

I LS attribute matrix: A = (a1, . . . ,aN ) (n lines, N columns)
I LS ouput column: y = (y1, . . . , yN )T
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Linear regression models

I Output is numerical scalar
I All inputs are numerical scalars
I Linear regression tries to approximate output by

ŷ(o) = w0 +

n∑
i=1

wiai(o)

I Supervised learning problem:
Choose the parameters w0, w1, . . . , wn so as to fit well LS and
have good generalization to unseen objects
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Linear regression models

Linear in the parameters, not necessarily in the original inputs.

ŷ(o) = w0 +

k∑
i=1

wiφi(a(o))

Inputs can come from different sources:
I quantitative measurements
I transformations of quantitative measurements (log, square-root,

etc.)
I basis expansions, such as a2(o) = a21(o), a2(o) = a31(o), etc.
I numeric or “dummy” coding of qualitative inputs

5 / 22



Least mean square error solution

Posing, a0(o) = 1,∀o and denoting by
1. a′(oi) = (a0(oi), a1(oi), . . . , an(oi))

T , and
2. w′ = (w0, w1, . . . , wn)T , square error (SE) at oi is defined by

SE(oi,w
′) = (y(oi)− ŷ(oi))

2 =
(
y(oi)−w′Ta′(oi)

)2
and the total squared error (TSE) by

TSE(LS,w′) =

N∑
i=1

(
y(oi)−w′Ta′(oi)

)2
or in vector notation (denoting by A′ = (a′1, . . . ,a′N ))

TSE(LS,w′) =
(
y −A′Tw′

)T (
y −A′Tw′

)
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Least mean square error solution
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Least mean square error solution: one dimension

Assuming only one input, the solution is computed as:

(w∗
0 , w

∗
1) = arg min

w0,w1

N∑
i=1

(y(oi)− w0 − w1a1(oi))
2

Canceling the derivative with respect to w0 and w1, one gets:

w∗
1 =

∑N
i=1(a1(oi)− a1)(y(oi)− y)∑N

i=1(a1(oi)− a1)2
=

cov(a1, y)

σ2
a1

w∗
0 = y − w∗

1a1

where a1 = N−1
∑N

k=1 a1(ok) and y = N−1
∑N

k=1 y(ok).

Substituting the above into ŷ(o) = w∗
0 + w∗

1a1(o):

ŷ(o)− y
σy

= ρa1,y
a1(o)− a1

σa1

,

with ρa1,y the correlation between a1 and y, and σy, σa1 the standard
deviations of y and a1, all computed on the LS.
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Least mean square error solution: multidimensional case

Choose w′ to minimize

TSE(LS,w′) =
(
y −A′Tw′

)T (
y −A′Tw′

)
.

Differentiating w.r.t. w′ (gradient)

∇w′TSE(LS,w′) = −2A′(y −A′Tw′)

and solving for ∇w′TSE(LS,w′∗) = 0 we obtain

w′∗ =
(
A′A′T

)−1
A′y

Note that ∇2
w′TSE(LS,w′) = 2A′A′T is symmetric positive (semi-) definite.
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Least mean square error solution (...)

Shift invariance: suppose we define new attribute vector by
ac(o) = a(o) + c where c is a constant vector (i.e. independant of
object).

Let (w0,w) be the optimal solution in the original attribute space.
Then it is easy to see that (w0 −wTc,w) is optimal in the new space.

Indeed, we have

ŷc(o) = w0 −wTc + wTac(o) = w0 + wTa(o) = ŷ(o).

Hence, if (w0 −wTc,w) is not optimal in the new space, (w0,w)
couldn’t be optimal in the original space.
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Least mean square error solution (...)

Let us discuss the meaning of the table (A′A′T ): element i, j is
obtained by the scalar product of line i and line j of matrix A′. Thus
we have

A′A′T = N


1 a1 . . . an
a1 g1,1 . . . g1,n
...

...
. . .

...
an gn,1 . . . gn,n


where ai = N−1

∑N
k=1 ai(ok) and gi,j = N−1

∑N
k=1 ai(ok)aj(ok)

Assuming that the attributes have all a zero mean (ai = 0) we have
gi,j = cov(ai, aj)
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Least mean square error solution

In the sequel we will use the notation Σ to denote the covariance
matrix.

Thus if all the attributes are centered, we have

w′∗ =

(
N−1 0
0 N−1Σ−1

)(
1
A

)
y.

In particular, w∗0 = N−1
∑N

k=1 y
k = N−1

∑N
k=1 y(ok) = y.

In other words, if both ai and y are centered, w∗0 = 0.
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Least mean square error solution

Assuming that the attributes have zero mean and unit variance
(gi,i = 1), we have

A′A′T = N


1 0 . . . 0

0 ρ1,1 . . . ρ1,n
...

...
. . .

...
0 ρn,1 . . . ρn,n


Note that ρi,i = 1;∀i = 1, . . . , n.

- In this case the correlation and covariance matrices are identical.
- Pre-whiten the attributes before solving the linear system.
- Below, we assume attributes are pre-whitened and drop suffix ′.
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Least mean square error solution

Let us take a non-singular n× n matrix B and define the transformed
attribute vector by aB(o) = Ba(o).

For the transformed attributes, matrix A becomes matrix BA, and
solution becomes:
wB = ((BA)(BA)T )−1BAy = (BT )−1(AAT )−1B−1BAy = BT−1w

In other words,
ŷB = wT

Bab = (BT−1w)TBa = wTB−1Ba = wTa.

⇒ Invariance with respect to (non-singular) linear transformation
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Least mean square error solution

Discussion of matrix NΣ = AAT : computation, singularity, inversion.
1. It is easy to see that NΣ =

∑N
i=1 a(oi)a

T (oi).
2. Therefore, rank of Σ is at most N .
3. Thus, if n > N , Σ is rank deficient (and hence singular).
4. If Σ is singular, unicity of optimal solution is lost, but existence is

preserved.
5. Need to impose other criteria to find unique solution, i.e. to build

algorithm.
6. Several such solutions are discussed in the reference book, in

particular regularization.
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Regularization of least mean square error solution

Instead of choosing w to minimize

TSE(LS,w) =
(
y −ATw

)T (
y −ATw

)
.

Let us minimize w.r.t. w and for given λ > 0

TSER(LS, λ,w) =
(
y −ATw

)T (
y −ATw

)
+ λwTw

Differentiating w.r.t. w yields (I denotes the n× n identity matrix)

∇wTSER(LS,w, λ) = −2A
(
y −ATw

)
+ 2λIw

in other words
w∗(λ) =

(
AAT + λI

)−1
Ay

which has a unique solution, ∀λ > 0!
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Illustration: effect of λ on CV error and optimal weights
62 3. Linear Methods for Regression
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Ridge Regression
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Principal Components Regression
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Partial Least Squares

FIGURE 3.7. Estimated prediction error curves and their standard errors for
the various selection and shrinkage methods. Each curve is plotted as a function
of the corresponding complexity parameter for that method. The horizontal axis
has been chosen so that the model complexity increases as we move from left to
right. The estimates of prediction error and their standard errors were obtained by
tenfold cross-validation; full details are given in Section 7.10. The least complex
model within one standard error of the best is chosen, indicated by the purple
vertical broken lines.

(See Figures 3.7 and 3.8 in reference book)

df(λ) = n when λ = 0 and df(λ)→ 0 when λ→∞
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Algorithmics

Computational complexity:
I Building the covariance matrix: in the order of Nn2 operations
I Solving the system for w∗: in the order of n3 operations

Various alternative techniques exist to solve system.

Some will be discussed in the sequel.
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Other regularizations

I The above regularization method is called Ridge Regression. It
belongs to the family of shrinkage methods.

I Other regularization for linear regression models:
I LASSO: a shrinkage method replacing

∑
i w

2
i < t by

∑
i |wi| < t

(discussed later in the course).
I Subset selection: select an optimal subset of input attributes on

which to regress. Various heuristics exist to determine the subset.
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Residual fitting (a.k.a. Forward-Stagewise Regression)

Residual fitting: alternative algorithm, of general interest
I Start by computing w0 for the no-variable case: w0 = y

I Introduce attributes (assumed of zero mean, unit variance)
progressively, one at the time
I Define residual at step k by

∆ky(o) = y(o)− w0 −
∑k−1

i=1 wiai(o)

I Find best fit of residual with only attribute ak:
wk = ρak,∆kyσ∆ky.

(since residuals have zero mean, and attributes are pre-whitened)

Note that this algorithm is in general suboptimal w.r.t. to the direct solution given

previously, but it is linear in the number of attributes.
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References

Chapter 3 from the reference book (Hastie et al., 2009):
I Section 3.2: Linear regression models and least squares
I Section 3.4.1: Ridge regression
I Section 3.3.3: Forward-stagewise regression
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Frequently asked questions

I How to choose a value for λ ?
I Asymptotic (N →∞) properties of LR and Ridge-regression
I Discuss LASSO vs Ridge regression
I Discuss computational complexity and interpretability
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