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Supervised learning (i)

Let us assume that one is given:
I A learning sample of N input-output pairs

LS = {(xi , yi )|i = 1, . . . ,N} , xi ∈ X , yi ∈ Y

independently and identically drawn (i.i.d.) from an unknown
distribution p(x , y).

I A loss function
L : Y × Y → R

measuring the discrepancy between its arguments.

One wants to find a function f : X → Y that minimizes the following
expectation (generalization error):

Ex ,y {L(y , f (x))}
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Supervised learning (ii)

There are two types of problems:
- Classification:

L(y , y ′) = 1(y 6= y ′) (error rate)

- Regression:

L(y , y ′) = (y − y ′)2 (square error)
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Learning set randomness

Let us denote by f̂LS the function learned from a learning sample LS by
a given learning algorithm.

The function f̂LS (its prediction at some point x) is a random variable.

Error on the learning sample and test sample for 100 different samples.
Source: [1]
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Two quantities of interest

Given a model f̂LS built from some learning sample, its generalization
error is given by:

ErrLS = Ex ,y

{
L
(
y , f̂LS(x)

)}
⇒ useful for model assessment and model selection.

Given a learning algorithm, its expected generalization error over
random learning samples of size N is given by:

ELS {ErrLS} = ELS

{
Ex ,y

{
L
(
y , f̂LS(x)

)}}
⇒ useful to characterize a learning algorithm.
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Outline

I Bias/variance trade-off: decomposition of the expected error
ELS {ErrLS} that helps to understand overfitting.

I Performance evaluation: procedures to estimate ErrLS or
ELS {ErrLS}.

I Performance measures: common loss functions L for classification
and regression.
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Outline

1 Bias/variance trade-off

2 Performance evaluation

3 Performance measures

4 Further reading
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Bias and variance definitions
Parameters that influence bias and variance
Bias and variance reduction techniques

2 Performance evaluation

3 Performance measures

4 Further reading
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Bias and variance definitions - Outline

I Bias/variance decomposition for a simple regression problem with
no input.

I Extension to regression problems with inputs

I Bias/variance trade-off in classification problems
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A simple regression problem with no input (i)

Goal: predict as well as possible the height of a Belgian male adult.

More formally:
- Choose an error measure (e.g. square error).
- Find an estimation ŷ such that

Ey

{
(y − ŷ)2

}
over the whole population of Belgian male adults is minimized.

180
y

p(y)
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A simple regression problem with no input (ii)

The estimation that minimizes the error can be computed by cancelling
its derivative:

∂

∂y ′
Ey

{(
y − y ′

)2}
= 0

⇔ Ey

{
−2
(
y − y ′

)}
= 0

⇔ Ey{y} − Ey

{
y ′
}

= 0
⇔ y ′ = Ey{y}

Hence, the estimation that minimizes the error is Ey{y}, which is
called the Bayes model.

However, in practice, it is impossible to compute the exact value of
Ey{y}, as this would imply to measure the height of every Belgian
male adult.
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Learning algorithms (i)

As p(y) is unknown, one needs to find an estimation ŷ from a sample
of individuals i.i.d. from the Belgian male adult population:

LS = {y1, . . . , yN}

Examples:
- ŷ1 = 1

N

∑N
i=1 yi

- ŷ2 =
λ180+

∑N
i=1 yi

λ+N , λ ∈ [0,+∞[ (if it is known that the height
is close to 180)
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Learning algorithms (ii)

As learning samples LS are randomly drawn, the prediction ŷ will also
be a random variable:

y

pLS(y)

A good learning algorithm should not be good only on a single learning
sample but on average over all learning samples of size N. One thus
seeks to minimize

E = ELS

{
Ey

{
(y − ŷ)2

}}
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Bias/variance decomposition (i)

Let us analyse this error in more details:

ELS

{
Ey

{
(y − ŷ)2

}}
= ELS

{
Ey

{
(y − Ey{y}+ Ey{y} − ŷ)2

}}
= ELS

{
Ey

{
(y − Ey{y})2

}}
+ ELS

{
Ey

{
(Ey{y} − ŷ)2

}}
+ ELS {Ey {2 (y − Ey{y}) (Ey{y} − ŷ)}}
= Ey

{
(y − Ey{y})2

}
+ ELS

{
(Ey{y} − ŷ)2

}
+ ELS {2 (Ey{y} − Ey{y}) (Ey{y} − ŷ)}
= Ey

{
(y − Ey{y})2

}
+ ELS

{
(Ey{y} − ŷ)2

}
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Bias/variance decomposition (ii)

vary{y}

Ey{y}
y

E = Ey

{
(y − Ey{y})2

}
︸ ︷︷ ︸

= residual error = vary{y}

+ELS

{
(Ey{y} − ŷ)2

}

The residual error is the minimal attainable error.
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Bias/variance decomposition (iii)

ELS

{
(Ey{y} − ŷ)2

}
= ELS

{
(Ey{y} − ELS{ŷ}+ ELS{ŷ} − ŷ)2

}
= ELS

{
(Ey{y} − ELS{ŷ})2

}
+ ELS

{
(ELS{ŷ} − ŷ)2

}
+ ELS {2 (Ey{y} − ELS{ŷ}) (ELS{ŷ} − ŷ)}
= (Ey{y} − ELS{ŷ})2 + ELS

{
(ŷ − ELS{ŷ})2

}
+ 2 (Ey{y} − ELS{ŷ}) (ELS{ŷ} − ELS{ŷ})
= (Ey{y} − ELS{ŷ})2 + ELS

{
(ŷ − ELS{ŷ})2

}
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Bias/variance decomposition (iv)

bias2

Ey{y} ELS {ŷ}
y

E = vary{y}+ (Ey{y} −
= average model︷ ︸︸ ︷

ELS {ŷ} )2︸ ︷︷ ︸
= bias2

+ . . .

where the bias is the difference between the average model and the
Bayes model.
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Bias/variance decomposition (v)

varLS {ŷ}

ELS {ŷ}
y

E = vary{y}+ bias2 + ELS

{
(ŷ − ELS {ŷ})2

}
︸ ︷︷ ︸

= estimation variance = varLS {ŷ}

where varLS {ŷ} is a consequence of overfitting.
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Bias/variance decomposition (vi)

The expected generalization error can thus be rewritten as:

E = vary{y}+ bias2 + varLS {ŷ}
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Application to a simple example (i)

Let us first consider a model ŷ1 computing the average height over the
learning sample:

ŷ1 =
1
N

N∑
i=1

yi

One can easily compute:

bias2 = (Ey{y} − ELS {ŷ1})2 = 0

varLS {ŷ1} =
1
N

vary{y}

From statistics, ŷ1 is the best estimate with zero bias.

20 / 95



Application to a simple example (ii)

Let us now consider a model where it is known that the height is close
to 180:

ŷ2 =
λ180 +

∑
yi

λ+ N

One can compute:

bias2 =

(
λ

λ+ N

)2

(Ey{y} − 180)2

varLS {ŷ2} =
N

(λ+ N)2
vary{y}

From these, it can be observed that ŷ1 may not be the best estimator
because of its variance. There is a bias/variance trade-off with
respect to λ.
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Bayesian approach (i)

Let us assume that:
I The average height is close to 180cm:

P(ȳ) = A exp

(
−(ȳ − 180)2

2σ2ȳ

)

I The height of one individual is Gaussian around the mean:

P(yi | ȳ) = B exp

(
(yi − ȳ)2

2σ2y

)

What is the most probable value of ȳ after having seen the learning
sample?

ŷ = arg max
ȳ

P (ȳ | LS)
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Bayesian approach (ii)

ŷ = arg max
ȳ

P(ȳ | LS)

= arg max
ȳ

P(LS | ȳ)P(ȳ) (Bayes theorem and P(LS) is constant)

= arg max
ȳ

P (y1, . . . , yN | ȳ)P(ȳ)

= arg max
ȳ

N∏
i=1

P (yi | ȳ)P(ȳ) (independence of learning cases)

= arg min
ȳ
−

N∑
i=1

log (P (yi | ȳ))− log(P(ȳ))
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Bayesian approach (iii)

= arg min
ȳ

N∑
i=1

(yi − ȳ)2

2σ2y
+

(ȳ − 180)2

2σ2ȳ

= . . .

=
λ180 +

∑
i yi

λ+ N
with λ =

σ2y
σ2ȳ
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Extension to a problem with inputs (i)

In this case, ŷ(x) is a function of several inputs ⇒ average over the
whole input space.

The error becomes:
Ex ,y

{
(y − ŷ(x))2

}
When averaging over all learning sets:

E = ELS

{
Ex ,y

{
(y − ŷ(x))2

}}
= Ex

{
ELS

{
Ey |x

{
(y − ŷ(x))2

}}}
= Ex

{
vary |x{y}

}
+ Ex

{
bias2(x)

}
+ Ex {varLS {ŷ(x)}}
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Extension to a problem with inputs (ii)

ELS

{
Ey |x

{
(y − ŷ(x))2

}}
= noise(x) + bias2(x) + variance(x)

I noise(x) = Ey |x

{
(y − hB(x))2

}
:

Quantifies how much y varies from hB(x) = Ey |x{y} (Bayes
model).

I bias2(x) = (hB(x)− ELS {ŷ(x)})2:
Measures the error between the Bayes model and the average
model.

I variance(x) = ELS

{
(ŷ(x)− ELS {ŷ(x)})2

}
:

Quantifies how much ŷ(x) varies from one learning sample to
another.
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Illustration (i)

Let us consider the following problem:
- A single input x , which is a uniform random variable drawn in

[0, 1].
- y = h(x) + ε where ε ∼ N (0, 1).
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Illustration (ii)

A low variance and high bias method leads to underfitting.
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Illustration (iii)

A low bias and high variance method leads to overfitting.
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Illustration (iv)

No noise doesn’t imply no variance, rather less variance.
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Bias/variance trade-off in classification problems (i)

The mean misclassification error corresponds to:

E = ELS

{
Ex ,y {1 (y 6= ŷ(x))}

}
The best possible model is the Bayes model:

hB(x) = arg max
c

P(y = c | x)

The “average” model is:

arg max
c

P (ŷ(x = c | x))

Unfortunately, there is no such decomposition of the mean
misclassification error into a bias and variance terms. Nevertheless, the
same phenomena can be observed.
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Bias/variance trade-off in classification problems (ii)

Single test node Fully grown tree

0

1

0 1
0

1

0 1

0

1

0 1
0

1

0 1

Decision tree classifiers on two different data sets (top and bottom).
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Bias/variance trade-off in classification problems (iii)

0

1

0 1
0

1

0 1

The bias is a systematic error component, which is independent of the
learning sample. Rather, it depends on the learning algorithm.

The variance is the error due to the variability of the model with
respect to the learning sample randomness.

There are errors due to bias and errors due to variance.
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Parameters that influence bias and variance - Outline

I Complexity of the model
I Complexity of the Bayes model
I Noise
I Learning sample size
I Learning algorithm
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Illustrative problem

Let us consider the following artificial problem:
- 10 inputs, all uniform random variables drawn in [0, 1].
- The true function depends only on 5 inputs:

y(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 6x5 + ε

where ε is a random variable drawn in N (0, 1).

The following experimentations are conducted:
1. ELS → Average over 50 learning sets of size 500.
2. Ex ,y → Average over 2 000 cases
⇒ Estimate bias and variance, as well as the residual error.
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Complexity of the model

Usually, the bias is a decreasing function of the complexity, while the
variance is an increasing function of the complexity.
Note: the residual error is included in the bias term.
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Complexity of the model - Neural networks

Error, bias and variance w.r.t. the number of neurons in the hidden layer.
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Complexity of the model - Regression trees

Error, bias and variance w.r.t. the number of test nodes.
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Complexity of the model - kNN

Error, bias and variance w.r.t. the number of neighbors.
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Complexity of the Bayes model

At fixed model complexity, the bias increases with the complexity of
the Bayes model. Nevertheless, the effect on variance is difficult to
predict.
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Noise

Variance increases with noise while bias remains mainly unaffected.

Influence of noise on full regression trees.
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Learning sample size (i)

At fixed model complexity, bias remains constant and variance
decreases with the learning sample size.

Influence of the learning sample size on linear regression.
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Learning sample size (ii)

When the complexity of the model is dependent on the learning sample
size, both bias and variance decrease with the learning sample size.

Influence of the learning sample size on regression trees.
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Learning algorithms - Linear regression

Method E 2 bias2 +noise var

Linear regression 7.0 6.8 0.2
kNN (k = 1) 15.4 5.0 10.4
kNN (k = 10) 8.5 7.2 1.3
MLP (10) 2.0 1.2 0.8
MLP (10 - 10) 4.6 1.4 3.2
Regression tree 10.2 3.5 6.7

Linear regression has few parameters. Therefore, it has a small variance.
However, since the true function is non-linear, it has a high bias.
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Learning algorithms - kNN

Method E 2 bias2 + noise var

Linear regression 7.0 6.8 0.2
kNN (k = 1) 15.4 5.0 10.4
kNN (k = 10) 8.5 7.2 1.3
MLP (10) 2.0 1.2 0.8
MLP (10 - 10) 4.6 1.4 3.2
Regression tree 10.2 3.5 6.7

For small values of k , there is a high variance and a moderate bias. For
high values of k , the variance decreases but bias increases.
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Learning algorithms - MLP

Method E 2 bias2 +noise var

Linear regression 7.0 6.8 0.2
kNN (k = 1) 15.4 5.0 10.4
kNN (k = 10) 8.5 7.2 1.3
MLP (10) 2.0 1.2 0.8
MLP (10 - 10) 4.6 1.4 3.2
Regression tree 10.2 3.5 6.7

In both cases, the bias is low. However, variance increases with the
model complexity.
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Learning algorithms - Regression tree

Method E 2 bias2 + noise var

Linear regression 7.0 6.8 0.2
kNN (k = 1) 15.4 5.0 10.4
kNN (k = 10) 8.5 7.2 1.3
MLP (10) 2.0 1.2 0.8
MLP (10 - 10) 4.6 1.4 3.2
Regression tree 10.2 3.5 6.7

Regression trees have a small bias. Indeed, a complex enough tree can
approximate any non-linear function. However, it has a high variance.
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Bias and variance reduction techniques - Outline

I Introduction
I Dealing with the bias/variance trade-off of one algorithm
I Ensemble methods
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Bias and variance reduction techniques

In the context of a given method, adapting the learning algorithm to
find the best trade-off between bias and variance is a solution, but not
a panacea.
Examples: pruning, weight decay.

Ensemble methods change the bias/variance trade-off, but destroy
some features of the original method.
Examples: bagging, boosting.
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Variance reduction for a given model (i)

Idea: reduce the ability of the learning algorithm to fit the learning
sample.

I Pruning: reduces the model complexity explicitly
I Early stopping: reduces the amount of search
I Regularization: reduces the size of the hypothesis space.

Example: weight decay in neural networks consists in penalizing
high weight values.
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Variance reduction for a given model (ii)

The selection of the optimal level of fitting can be done:
- a priori (not optimal)
- by cross-validation (less efficient):
→ bias2 ≈ error on the learning set.
→ E ≈ error on an independent test set.
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Variance reduction for a given model (iii)

Source: [1]
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Variance reduction for a given model (iv)

Examples:
- Post-pruning of regression trees.
- Early stopping of MLP by cross-validation.

Method E Bias Variance
Full regression tree (250) 10.2 3.5 6.7
Pruned regression tree (45) 9.1 4.3 4.8
Full learned MLP 4.6 1.4 3.2
Early stopped MLP 3.8 1.5 2.3

As expected, variance decreases but bias increases.
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Ensemble methods (i)

Ensemble methods combine the predictions of several models built with
a learning algorithm in order to improve with respect to the use of a
single model.

There are two main families:
1. Averaging techniques: they grow several models independently

and average their predictions. They mainly decrease variance.
Examples: bagging, random forests.

2. Boosting type algorithms: they grow several models
sequentially. They mainly decrease bias.
Examples: adaboost, MART.
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Ensemble methods (ii)

Examples: bagging, boosting, random forests.

Method E Bias Variance
Full regression tree 10.2 3.5 6.7
Bagging 5.3 3.8 1.5
Random forests 4.9 4.0 0.9
Boosting 5.0 3.1 1.9

55 / 95



Discussion

The notions of bias and variance are very useful to predict how
changing the (learning and problem) parameters will affect accuracy.
This explains why very simple methods can work much better than
more complex ones on very difficult tasks.

Variance reduction is a very important topic: reducing bias is easy, while
keeping variance low is not as easy. It is especially important when
machine learning is applied in domains that require complex models:
time series analysis, computer vision, natural langage processing, . . .

All learning algorithms are not equal in terms of variance. Trees are
among the worse methods according to this criterion.
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Outline

1 Bias/variance trade-off

2 Performance evaluation
Model assessment and selection
Cross-validation
Bootstrap
CV-based model selection

3 Performance measures

4 Further reading
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Estimating the performance of a model

Given a model learned from some data set of size N, how to estimate
its performance from this data set?

What for?
I Model selection: choosing the best model among several models.

Example: determining the right complexity of a model or choosing
between different learning algorithms.

I Model assessment: having chosen a final model, it consists in
estimating its performance on new data.
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Large data sets: test set method

Idea: randomly divide the data set into two parts: a learning set and
a test set.
Example: 70%− 30%

TSLS

Method:
1. Fit the model on the learning set
2. Test it on the test set

The resulting estimate is an estimate of the error of a model learned on
the whole data set.
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Small data sets

In this case, the test set error is unreliable because it is based on a
small sample: 30% of an already small data set.

It is also pessimistically biased as an estimate of the error of a model
built on the whole data set: for small sample sizes, a model learned on
70% of the data is significantly less good than a model learned on the
whole data.

Learning curve: performance vs learning set size
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k-fold cross-validation

Idea: randomly divide the data set into k subsets (e.g. k = 10).

TS

Method:
- For each subset:

1. Learn the model on the objects that are not in the subset.
2. Compute a prediction with this model for the points in the subset.

- Report the mean error over these predictions.

When k = N, the method is called leave-one-out cross-validation.
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Choosing a value for k

I k = N:
- Unbiased: removing one object does not change much the size of
the learning sample.

- High variance: highly data set dependent.
- Slow: requires to train N models.

I k = 5, 10:
- Lower variance and faster: only 5− 10 models on fewer data.
- Potentially biased: see learning curve.
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Exercise

Source: [2]

In this classification problem
with two inputs:
I What is the resubstitution

error (LS error) of 1-NN?
I What is the LOO error of

1-NN?
I What is the LOO error of

3-NN?
I What is the LOO error of

22-NN?
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Bootstrap (i)

Bootstrap sampling consists in sampling with replacement.

1 2 3 4 5 6 7 8 9 10

3 7 2 9 3 10 1 8 6 10

Some objects do not appear and some others appear several times:

P(oi ∈ bootstrap) = 1− (1− 1
N

)N ≈ 1− 1
e

= 0.632
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Bootstrap (ii)

Let us define the bootstrap error estimate method:
- For i = 1 to B :

1. Take a bootstrap sample Bi from the data set.
2. Learn a model fi on it.

- For each object, compute the expected error of all models that
were built without it (about 30%).

- Average over all objects.

Some improvements:
I “.632 bootstrap”, which corrects for the learning curve.
I “.632+ bootstrap”, which corrects for overfitting.
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Conditional vs Expected test errors

Conditional test error (for a given model f̂LS):

ErrLS = Ex ,y

{
L
(
y , f̂LS(x)

)}
Expected test error:

ELS {ErrLS} = ELS

{
Ex ,y

{
L
(
y , f̂LS(x)

)}}

Only the test set method estimates the first error. Cross-validation
estimates the second one (even leave-one-out).
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Model selection: typical scenario

Given a data set of N objects (input-output pairs), how to best exploit
this data set to obtain:
I The best possible model (e.g. among regression trees and k-NN)
→ model selection

I An estimate of its prediction error → model assessment

Again, the solution depends on the size N of the data set.
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Large data sets: test set method

Idea: randomly divide the data set into 3 parts:
1. A learning set LS
2. A validation set VS
3. A test set TS

Example: 50%− 25%− 25%

LS VS TS

1. Fit the models to compare on the learning set, using different
algorithms or different complexity values.

2. Select the best one based on its performance on the validation set.
3. Retrain this model on LS + VS .
4. Test it on the test set → performance estimate.
5. Retrain this model on LS + VS + TS . This yields the finally

chosen model.
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Small data sets: cross-validation

Idea: use two stages of k-fold cross-validation.

TS1 First stage

TS2 Second stage

The first stage is used for the assessment of the final model, while the
second one is used for model selection.
Note: we could also combine test set and cross-validation.
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Why do we need a validation set/second stage? (i)

How well does the second stage (resp. validation set) error estimate
the true error?

When comparing many complex models, the probability of finding a
good only one by chance is high.

Therefore, this estimated error is expected to be overly optimistic.
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Why do we need a validation set/second stage? (ii)

Let us consider the following example:
- N = 50
- 1 000 input variables
- Input variables are unrelated to the class. Their values are i.i.d.
from N (0, 1).

⇒ any model should have a 50% generalization error rate.

Let us now compare 1 000 learning algorithms: the i-th algorithm learns
a decision tree on the i-th feature only. For each of them, the 10-fold
cross-validation error is computed.
→ 10-fold cross-validation error of the best model ≈ 16%
→ Its error on a test sample of 5 000 cases ≈ 48%
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Why do we need a validation set/second stage? (iii)

This is the idea behind selection bias.

General rule: any choice made using the output should be inside a
cross-validation loop.

Let us consider another example on the same data set:
I Select the 10 attributes that are the most correlated with the

output in the learning set.
I Estimate the error rate of a tree built with these 10 attributes

using 10-fold cross-validation on the same learning set: 20%
I Estimate the error of this model on a sample of 5 000 cases: 51%
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Analytical methods for model selection

Idea: find the model that minimizes a criterion, typically of the form:

Err(LS) +G (Complexity)

where G is a monotonically increasing function.

The criterion is derived from theoretical arguments.
Example: the minimum description length approach is motivated from
coding theory.

Advantage:
- Cheap: no need for retraining

Drawbacks:
- OK for model selection but not for model assessment.
- May miss the true optimum in the finite sample case.
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Outline

1 Bias/variance trade-off

2 Performance evaluation

3 Performance measures
Classification
Regression
Loss functions for learning

4 Further reading
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Performance criteria

Which of these two models is
the best? The choice of an
error or quality measure is
highly application-dependent.
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Binary classification (i)

Results can be summarized in a contingency table, also called
confusion matrix.

Predicted class
Actual class Positive Negative Total
Positive True Positive False Negative P
Negative False Positive True Negative N

→ Error rate = FP+FN
P+N

→ Accuracy = TP+TN
P+N = 1− Error rate
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Binary classification (ii)

The simplest criterion to compare model performances is the error rate
or the accuracy:
Example:

Predicted class
Actual class Positive Negative Total
Positive 5 1 6
Negative 3 6 9

Model 1

→ Error rate = 4
15 = 27%

→ Accuracy = 11
15 = 73%

Predicted class
Actual class Positive Negative Total
Positive 3 3 6
Negative 2 7 9

Model 2

→ Error rate = 5
15 = 33%

→ Accuracy = 10
15 = 66%
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Limitations of the error rate

Predicted class
Actual class Positive Negative Total

Positive 0 10 P
Negative 0 90 N

Error rate = 10%

Model 1

Predicted class
Actual class Positive Negative Total

Positive 10 0 P
Negative 10 80 N

Error rate = 10%

Model 2

Predicted class
Actual class Positive Negative Total

Positive 0 50 P
Negative 0 50 N

Error rate = 50%

Model 3

This criterion does not convey any information about the error
distribution across classes: the first two models have the same error
rates but different error distributions. It is also sensitive to changes in
the class distribution in the test sample.
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Sensitivity and specificity (i)

For medical diagnosis, more appropriate measures are:
- Sensitivity (or recall) = TP

P

- Specificity = TN
TN+FP = 1− FP

N
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Sensitivity and specificity (ii)

Predicted class
Actual class Positive Negative Total

Positive 0 10 10
Negative 0 90 90

Model 1

→ Error rate = 10%
→ Sensitivity = 0

10 = 0%

→ Specificity = 90
90 = 100%

Predicted class
Actual class Positive Negative Total

Positive 10 0 10
Negative 10 80 90

Model 2

→ Error rate = 10%
→ Sensitivity = 10

10 = 100%

→ Specificity = 80
90 = 89%

Predicted class
Actual class Positive Negative Total

Positive 0 50 P
Negative 0 50 N

Model 3

→ Error rate = 50%
→ Sensitivity = 0

50 = 0%

→ Specificity = 50
50 = 100%
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Sensitivity and specificity (iii)

Predicted class
Actual class Positive Negative Total

Positive 5 1 6
Negative 3 6 9

Model 1

→ Sensitivity = 5
6 = 83%

→ Specificity = 6
9 = 66%

Predicted class
Actual class Positive Negative Total

Positive 3 3 6
Negative 2 7 9

Model 2

→ Sensitivity = 3
6 = 50%

→ Specificity = 7
9 = 78%

Determining which model is the best one depends on the application.
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Receiver Operating Characteristic (ROC) Curve (i)

Where are:
I The best classifier?
I A classifier that always

says positive?
I A classifier that always

says negative?
I A classifier that randomly

guesses the class?
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ROC Curve (ii)

Often, the output of a classification algorithm is a number, e.g. a class
probability. In this case, a threshold may be chosen in order to balance
sensitivity and specificity.

A ROC curve plots sensitivity versus 1− specificity values for different
thresholds.
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ROC Curve (iii)

84 / 95



ROC Curve (iv)
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Area under the ROC curve

The area under the ROC curve summarizes a ROC curve by a single
number. It can be interpreted as the probability that two objects
randomly drawn from the sample are well ordered by the model, i.e. the
positive has a higher score than the negative.

However, it does not tell the whole story.
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Precision and recall (i)

Other frequently used measures are:
I Precision = TP

TP+FP = proportion of good predictions among all
the positive predictions

I Recall = TP
TP+FN = proportion of positives that are detected

I F-measure = 2× Precision×Recall
Precision + Recall
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Precision and recall (ii)

Predicted class
Actual class Positive Negative Total

Positive 10 0 10
Negative 50 950 1000

Model 1

→ Sensitivity = 10
10 = 100%

→ Specificity = 950
1000 = 95%

→ Precision = 10
60 = 17%

→ Recall = 10
10 = 100%

→ F-measure = 29%

Predicted class
Actual class Positive Negative Total

Positive 10 0 10
Negative 10 990 1000

Model 2

→ Sensitivity = 10
10 = 100%

→ Specificity = 990
1000 = 99%

→ Precision = 10
20 = 50%

→ Recall = 10
10 = 100%

→ F-measure = 66%
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Precision/recall vs ROC curve

89 / 95



Regression performance (i)

I Mean squared error

1
N

N∑
i=1

(yi − ŷi )
2

→ MSE1 = 53.38
→ MSE2 = 249.6

I Mean absolute error

1
N

N∑
i=1

|yi − ŷi |

→ MAE1 = 4.3
→ MAE2 = 14.6
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Regression performance (ii)

I Pearson correlation∑
i

(
yi − 1

N

∑
j yj

)(
ŷi − 1

N

∑
j ŷj

)
(N − 1)sy sŷ

I Spearman rank correlation

1− 6
∑

i d
2
i

N (N2 − 1))

with di the difference of rank of yi
and ŷi
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Performance measures for training

Performance measures for training can be different from performance
measures for testing. There are several reasons for that:
I Algorithmic:

- A differentiable measure is amenable to gradient optimization.
- A decomposable measure is amenable to online training.
Examples: the error rate and MAE are not derivable, the AUC is
not decomposable.

I Overfitting:
- For training, the loss function often incorporates a penalty term for
model complexity, which is irrelevant at test time.

- Some measures are less prone to overfitting (e.g. margin).
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Outline

1 Bias/variance trade-off

2 Performance evaluation

3 Performance measures

4 Further reading
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Further reading

I Hastie et al., chapter 2 & 7, [1]:
- Bias/variance trade-off (2.5, 2.9, 7.2, 7.3)
- Model assessment and selection (7.1, 7.2, 7.3, 7.10, 7.11)
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