Course motivation and organisation

Louis Wehenkel & Pierre Geurts

Institut Montefiore, University of Liège, Belgium

ELEN062-1 Introduction to Machine Learning September 18, 2024

2 Background and prerequisites

3 Teaching methodology, material, exams, contacts

Problems addressed in this course

How can we design and/or make use of algorithms in order to extract from (possibly very large) datasets good decision strategies, predictive models, explanations and interpretations ?

- $\Rightarrow {\rm Batch-mode \ supervised \ learning} \qquad ({\rm The \ main \ building \ block})$
- \Rightarrow Classical algorithms (Decision trees, nearest-neighbor, neural nets etc.)
- $\Rightarrow Theory \qquad \qquad (Sampling, likelihood, bias/variance, statistical learning theory)$
- \Rightarrow Advanced algorithms (Ensemble methods, kernel-based methods)
- \Rightarrow Diverse learning protocols (SSL, RL, ActL, USL, on-line learning etc.)

Problems addressed in this course

How can we design and/or make use of algorithms in order to extract from (possibly very large) datasets good decision strategies, predictive models, explanations and interpretations ?

- $\Rightarrow \mbox{ Batch-mode supervised learning} \qquad (\mbox{The main building block})$
- $\Rightarrow \mbox{ Theory} \qquad \qquad (\mbox{Sampling, likelihood, bias/variance, statistical learning theory})$
- \Rightarrow Advanced algorithms (Ensemble methods, kernel-based methods)
- \Rightarrow Diverse learning protocols (SSL, RL, ActL, USL, on-line learning etc.)

- NB.
 Many practical problems are concerned
 - Most are related to complex and uncertain environments
 - Scalability considerations are important

- Way of thinking:
 - probability theory, information theory, logic
- Mathematical analysis tools:
 - linear algebra, calculus, optimization theory, statistics
- Problem solving attitude:
 - algorithmics, complexity theory, intuition

Teaching methodology, material, exams

- Lectures: mandatory every Wednesday AM
 - ▶ 9:0-12:00
- Personal work:
 - 3 mandatory projects by groups of two or three students with written report
- Material: slides of lectures and selected chapters of reference textbooks
- Evaluation: projects (40%); oral exam (60%) (January)

Contacts persons:

- P.Geurts@uliege.be, L.Wehenkel@uliege.be: any question related to the course
- sacha.lewin@uliege.be, y.claes@uliege.be: any question related to the projects

Lecture topics

- Introduction to machine learning
- Supervised learning
 - Decision trees
 - Linear models
 - Nearest-neighbor methods
 - Neural networks
 - Sampling, bias and variance, model assessment and selection
 - Ensemble methods and feature selection
 - Support vector machines and kernel-based methods
- Unsupervised learning
 - Clustering
 - Dimensionality reduction
- Plus a few special lectures related to the projects: introduction to scikit-learn, project explanations and corrections.

Today