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Linear classification model

I Given a LS = {(xk , yk)}Nk=1, where yk ∈ {−1, 1}, and xk ∈ Rn.
I Find a classifier in the form

ŷ(x) = sgn(wT x + b),

which classifies the LS correctly, i.e. that minimizes

N∑
k=1

1(yk 6= ŷ(xk))

I Several methods to find one such classifier: perceptron, linear
discriminant analysis, naive bayes...
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Maximal margin hyperplane

I When the data is linearly separable in the feature space, the
separating hyperplane is not unique

I SVM maximizes the distance from the hyperplane to the nearest
points in LS , i.e.

max
w ,b

min{||x − xk || : wT x + b = 0, k = 1, . . . ,N}.
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Why maximizing the margin?

I Intuitively, it feels safest
I There exist theoretical bounds on the generalization error that

depend on the margin

Err(TS) < O(1/γ),

where γ is the margin. But these bounds are often loose.
I It works very well in practice.
I It yields a convex optimization problem whose solution can be

written in terms of dot-products only. But this is the case with
other criterion as well.
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Some geometry

I w is perpendicular to the line y(x) = wT x + b:

y(xa) = 0 = y(xb)⇒ wT (xA − xB) = 0

I Let x such that y(x) = 0. The distance from the origin to the line
is:

||x ||cos(w , x) = ||x || wT x

||w ||||x ||
=

wT x

||w ||
=
−b
||w ||
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Some geometry

I Any point x can be written as:

x = x⊥ + r
w

||w ||
,

where |r | is the distance from x to the line.
I Multiplying both sides by wT and adding b, one gets:

wT x + b = wT x⊥ + b + r
wTw

||w ||
= 0+ r · ||w || ⇒ r =

y(x)

||w ||
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Optimisation problem formulation

I The optimisation problem can be written:

argmax
w ,b

{
1
||w ||

min
n
[yn · (wT xn + b)]

}
.

I The solution is not unique as the hyperplane is unchanged if we
multiply w and b by a constant c > 0.

I To impose unicity, one typically chooses |wT x + b| = 1 for the
point x that is closest to the surface (support vector).

I The problem is then equivalent to maximizing 1
||w || (or minimizing

||w ||) with the constraints:

yk(w
T xk + b) > 1,∀k = 1, . . . ,N.

(Show that |wT xk + b| = 1 for at least two points xk at the solution)
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Optimisation problem formulation

The SVM problem is
equivalent to

minw ,b E(w , b) = 1
2 ||w ||

2

subject to the N inequality constraints

yk(w
T xk + b) > 1,∀k = 1, . . . ,N.

NB
I ||w || → 1

2 ||w ||
2 for

mathematical convenience
I This is a quadratic

programming problem
I A solution exists only

when the data is linearly
separable
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A brief introduction to constrained optimisation

I Equality constrained optimisation problem
I Minimise (or maximise) f (x) ∈ R, with x ∈ Rn

I subject to p equality constraints ei (x) = 0, i = 1, . . . , p
I Inequality constrained optimisation problem

I Minimise (or maximise) f (x) ∈ R, with x ∈ Rn

I subject to p equality constraints ei (x) = 0, i = 1, . . . , p
I subject to r inequality constraints ij(x) 6 0, j = 1, . . . , r

I Feasibillity: existence of at least one x satisfying all equality and
inequality constraints
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Pictorial view: equality constraints

At the optimum, ∇f (x) + α∇e(x) = 0 and e(x) = 0.
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Pictorial view: active inequality constraint

At the optimum, ∇f (x) + α∇i(x) = 0, i(x) = 0 and α > 0.

13 / 49



Karush-Kuhn-Tucker conditions

I To minimise f (x) ∈ R, with x ∈ Rn, subject to equality
constraints ei (x) = 0, i = 1, . . . , p and inequality constraints
ij(x) 6 0, j = 1, . . . , r , define the Lagrangian

L(x , α, β) = f (x) + αT e(x) + βT i(x) (α ∈ Rp, β ∈ Rr ).

I At the optimum, there must exist some α ∈ Rp and β ∈ Rr such
that the following conditions hold:

∇xL = 0 → ∇x f (x) + αT∇xe(x) + βT∇x i(x) = 0
∇αL = 0 → ei (x) = 0, ∀i = 1, . . . , p
∇βL 6 0 → ij(x) 6 0, ∀j = 1, . . . , r

βj ij(x) = 0, (complementary slackness conditions)
βj > 0.
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Convex optimization problems

If the optimization problem is convex (ie. f and ij , j = 1, . . . , r are
convex and ei , i = 1, . . . , p are affine (linear) functions) and some
conditions on the constraints are satisfied, we have (roughly):
I KKT conditions are necessary and sufficient conditions for

optimality ⇒ in some cases, an optimum x∗ may be obtained
analytically from these conditions

I Let W(α, β) = minx L(x , α, β) and let α∗ and β∗ be the solution
of the (Lagrange) dual problem:

maxα,βW(α, β)
subject to βj > 0,∀j = 1, . . . , r ,

then the minimizer x∗ of L(x , α∗, β∗) is the solution of the original
optimization problem.
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Back to the optimisation problem formulation

I The SVM optimization problem is formulated as:

minw ,b E(w , b) = 1
2 ||w ||

2

subject to the N inequality constraints

yk(w
T xk + b) > 1,∀k = 1, . . . ,N.

I Let αk > 0, k = 1, . . . ,N and let us construct the Lagrangian

L(w , b, α) = 1
2
||w ||2 −

N∑
k=1

αk(yk(w
T xk + b)− 1)

This function must be minimized w.r.t. w and b, and maximized
w.r.t. α.
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Lagrangian equations

By deriving the Lagrangian

L(w , b, α) = 1
2
||w ||2 −

N∑
k=1

αk(yk(w
T xk + b)− 1)

according to the primal variables w and b, we obtain the following
optimality conditions:{

∂L
∂w

= 0 → w =
∑N

j=1 αjyjxj
∂L
∂b = 0 →

∑N
k=1 αkyk = 0

(with αk > 0).
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Dual problem

Substituting in the Lagrangian

L(w , b, α) = 1
2
||w ||2 −

N∑
k=1

αk(yk(w
T xk + b)− 1)

the expressions w =
∑N

j=1 αjyjxj and
∑N

k=1 αkyk = 0 yields the dual
(quadratic) maximisation problem

maxαW(α) =
∑N

k=1 αk − 1
2
∑N

i ,j=1 αiαjyiyjx
T
i xj

subject to the N inequality constraints

αk > 0, ∀k = 1, . . . ,N.
and one equality constraint∑N

i=1 αiyi = 0
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Support vectors

Back to the primal problem:

L(w , b, α) = 1
2
||w ||2 −

N∑
k=1

αk(yk(w
T xk + b)− 1)

According to the KKT complementary conditions, the solution vector w
is such that:

αk(yk(w
T xk + b)− 1) = 0,∀k = 1, . . . ,N

I αk = 0 if the constraint is satisfied as a strict inequality
yk(w

T xk + b) > 1 because this is the way to maximize L
I αk > 0 if the constraint is satisfied as an equality

yk(w
T xk + b) = 1, in which case xk is a support vector
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Final model

Once the optimal values of α have been determined, the final model
may be written as

ŷ(x) = sgn

(
N∑
i=1

yiαix
T
i x + b

)
,

where the αk values that are different from zero (i.e. strictly positive)
are corresponding to the support vectors.

NB: b is computed by exploiting the fact that for any αk > 0 we have
necessarily yk(w

T xk + b)− 1 = 0.
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Leave-one-out bound

I Having a small set of support vectors is computationally efficient
as only those vectors xk and their weights αk and class labels yk
need to be stored for classifying new examples

f (x) = sgn

 ∑
i |αi>0

yiαix
T
i x + b

 ,

I Moreover, if a non-support vector x ′ is removed from the learning
sample or moved around freely (outside the margin region), the
solution would be unchanged.

I The proportion of support vectors in the learning sample gives a
bound on the leave-one-out error:

Errloo 6
|{k |αk > 0}|

N
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Soft margin

I Due to noise or outliers, the samples
may not be linearly separable in the
feature space

I Discrepancies with respect to the
margin is measured by slack variables
ξi > 0 with the associated relaxed
constraints yi (wT xi + b) > 1− ξi

I By making ξi large enough, the
constraints can always be met
I if 0 < ξi < 1 the margin is not

satisfied but xi is still correctly
classified

I if ξi > 1 then xi is misclassified
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1-Norm soft margin optimization problem

Primal problem:

minw ,ξ
1
2 ||w ||

2 + C
∑N

i=1 ξi
subject to

yi (w
T xi + b) > 1− ξi , ξi > 0,∀i = 1, . . . ,N

where C is a positive constant balancing the objective of maximizing
the margin and minimizing the margin error

Dual problem:

maxαW(α) =
∑N

k=1 αk − 1
2
∑N

i ,j=1 αiαjyiyjx
T
i xj

subject to

0 6 αk 6 C ,∀k = 1, . . . ,N. (box constraints)∑N
i=1 αiyi = 0
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Effect of C
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Dot products

The quadratic optimization problem (hard and soft margin):

max
α
W(α) =

N∑
k=1

αk −
1
2

N∑
i ,j=1

αiαjyiyjx
T
i xj

and the decision function:

ŷ(x) = sgn

(
N∑
i=1

yiαix
T
i x + b

)

make use of the learning samples xi only through dot products.

Moreover the number of parameters to be estimated only depends on
the number of training samples and is thus independent of the
dimension of the input space (number of attributes).
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Non-linear support vector machines

I The training samples may not be linearly separable in the input space
(the above optimization problem does not have a solution)

I Consider a non-linear mapping φ to a new feature space
φ(x) = [z1, z2, z3]

T = [x2
1 , x

2
2 ,
√
2x1x2]

T

I The dual problem becomes
maxαW(α) =

∑N
k=1 αk − 1

2

∑N
i,j=1 αiαjyiyjφ(xi )

Tφ(xj)
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The kernel trick

I Instead of explicitly defining a mapping φ, we can directly specify
the dot product φT (x)φ(x ′) and leave the mapping implicit

I It is possible to characterise mathematically the functions K (x , x ′)
defined on pairs of objects that correspond to the dot product
φT (x)φ(x ′) for some implicit mapping φ (see next slides)
⇒ Such function k is called a (positive or Mercer) kernel

I It can be thought of as a similarity measure between x and x ′

I The kernel trick: Any learning algorithm that uses the data only
via dot products can rely on this implicit mapping by replacing
xT x ′ with K (x , x ′)
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Kernel-based SVM classification

Assuming that we use a kernel K (x , x ′) corresponding to the
vectorisation map φ(x), we obtain straightforwardly

ŷ(x) = sgn

(
N∑

k=1

ykαkφ(xk)
Tφ(x) + b

)
= sgn

(
N∑

k=1

ykαkK (x , xk) + b

)
,

where the αk can be determined by solving the following quadatric
maximisation problem:

maxαW(α) =
∑N

k=1 αk − 1
2
∑N

i ,j=1 αiαjyiyjK (xi , xj)

subject to the N inequality constraints

αk > 0,∀k = 1, . . . ,N.
and one equality constraint∑N

i=1 αiyi = 0
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Mathematical notion of Kernel (with values in R)

I Let U be a nonempty set of objects, then a function K (·, ·),

K (·, ·) : U × U 7→ R

such that for all N ∈ N and all o1, . . . , oN ∈ U the N × N matrix

K : Ki ,j = K (oi , oj)

is symmetric and positive (semi)definite, is called a positive kernel.
I Example: let φ(·) be a function defined on U with values in Rm

(for some fixed m). Then

Kφ(o, o
′) = φT (o)φ(o ′)

is a positive kernel. NB: φ(o) is a vector representation of o.

30 / 49



Mathematical notion of Kernel (with values in R)

I The general result is as follows:
For any positive kernel K defined on U, there exists a scalar
product space V and a function φ(·) : U 7→ V, such that

K (o, o ′) = φ(o)× φ(o ′),

where the operator × denotes the scalar product in V.

I In general, the space V is not necessarily of finite dimension.
I The kernel defines a “scalar product”, hence a “norm” and a

“distance” measure over U, which are inherited from V:

d2
U(o, o

′) = d2
V(φ(o), φ(o

′)) = (φ(o)− φ(o ′))T (φ(o)− φ(o ′))
= φ(o)× φ(o) + φ(o ′)× φ(o ′)− 2φ(o)× φ(o ′)
= K (o, o) + K (o ′, o ′)− 2K (o, o ′).
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Examples of Kernels

I A trivial kernel: the constant kernel
I K (o, o′) ≡ 1

I Linear kernel defined on numerical attributes
I K (o, o′) = aT (o)a(o′)

I Hamming kernel for discrete attributes:
I K (o, o′) =

∑m
i=1 δai (o),ai (o′)

I Text kernel
I number of common substrings in o and o′

(infinite dimension if text size is not a priori bounded)
I Combinations of kernels:

I The sum of several (positive) kernels is also a (positive) kernel
I The product of several kernels is also a kernel
I Polynomial kernels:

∑n
i=0 ai (K (x , x ′))i if ∀i : ai > 0
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Examples of Kernels (for numerical attributes)

I Consider the kernel K (x , x ′) = (xT x ′)2.
I We have in dimension 2, posing x = (x1, x2) and x ′ = (x ′1, x

′
2):

I xT x ′ = x1x
′
1 + x2x

′
2, and thus

I (xT x ′)2 = (x1x
′
1 + x2x

′
2)

2 = x2
1 x
′
1
2
+ 2x1x2x

′
1x
′
2 + x2

2x ′2
2.

I Hence, posing φ(x) = (x2
1 ,
√
2x1x2, x

2
2 )

T

I we have (xT x ′)2 = φ(x)Tφ(x ′),
I K (x , x ′) corresponds to the scalar product in the space of degree 2

products of the original features.

I In general K (x , x ′) = (xT x ′)d corresponds to the scalar product in
the space of all degree d product features.

I Another useful kernel
I Gaussian kernel: K (x , x ′) = exp

(
−(x−x′)T (x−x′)

2σ2

)
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Effect of the kernel
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Kernel methods

I Modular approach: decouple the algorithm from the representation

I Many algorithms can be “kernelized”: ridge regression, fischer
discriminant, PCA, k-means, etc.

I Kernels have been defined for many data types: time series,
images, graphs, sequences

I Main interests of kernel methods:
I We can work in very high dimensional spaces (potentially infinite)

efficiently as soon as the inner product is cheap to compute
I Can apply classical algorithms on general, non-vectorial, data types

(e.g. to build a linear model on graphs)
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Ridge regression problem

I Let us assume that we are given a learning set

LS = {(xk , yk)}Nk=1,

and have chosen a kernel K (x , x ′) defined on the input space,
corresponding to a vectorisation mapping

φ(x) ∈ Rn i.e. φ(x)Tφ(x ′) = K (x , x ′).

I Least squares ridge regression consists in building a regression
model in the form ŷ(x) = wTφ(x) + b, by minimising w.r.t.
w ∈ Rn and b ∈ R the error function (γ > 0):

ERR(w , b) =
1
2
wTw +

1
2
γ

N∑
k=1

(
yk − (wTφ(xk) + b)

)
2.
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Equality-constrained formulation of ridge regression

I We can restate the unconstrained minimisation problem

min
w ,b

ERR(w , b) =
1
2
wTw +

1
2
γ

N∑
k=1

(
yk − (wTφ(xk) + b)

)
2,

as an (equality) constrained minimisation problem, namely

minw ,b,e E(w , b, e) = 1
2w

Tw + 1
2γ
∑N

k=1 ek
2

subject to N equality constraints

yk − (wTφ(xk) + b) = ek , k = 1, . . . ,N
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Lagrangian formulation of kernel-based ridge regression

The optimisation problem to be solved:

minw ,b,e E(w , b, e) = 1
2w

Tw + 1
2γ
∑N

k=1 e
2
k

subject to the N equality constraints

yk = wTφ(xk) + b + ek , k = 1, . . . ,N.

This problem can be solved by defining the Lagrangian

L(w , b, e;α) = 1
2
wTw +

1
2
γ

N∑
k=1

e2k −
N∑

k=1

αk

(
wTφ(xk) + b + ek − yk

)
and stating the optimality conditions

∂L
∂w

= 0;
∂L
∂b

= 0;
∂L
∂ek

= 0;
∂L
∂αk

= 0.
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Lagrangian equations

In other words, we have

L(w , b, e;α) = 1
2
||w ||2 + 1

2
γ

N∑
k=1

e2k−
N∑

k=1

αk

(
wTφ(xk) + b + ek − yk

)
yielding the optimality conditions

∂L
∂w

= 0 → w =
∑N

j=1 αjφ(xj)
∂L
∂b = 0 →

∑N
k=1 αk = 0

∂L
∂ek

= 0 → αk = γek , ∀k = 1, . . . ,N
∂L
∂αk

= 0 → wTφ(xk) + b + ek − yk = 0, ∀k = 1, . . . ,N
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Lagrangian equations

Solution:
∂L
∂w

= 0 → w =
∑N

j=1 αjφ(xj)
∂L
∂b = 0 →

∑N
k=1 αk = 0

∂L
∂ek

= 0 → αk = γek , ∀k = 1, . . . ,N
∂L
∂αk

= 0 → wTφ(xk) + b + ek − yk = 0, ∀k = 1, . . . ,N

Substituting w from the first equation in the last one we can express ek
as

ek = yk − b −
N∑
j=1

αjφ
T (xj)φ(xk) = yk − b −

N∑
j=1

αjK (xj , xk),

which allows us to eliminate ek from the third equation.
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Matrix equation for the unknowns α and b

We have to solve the following equations for α1, . . . , αN and b∑N
k=1 αk = 0

αk = γek i.e. αk = γ
(
yk − b −

∑N
j=1 αjK (xj , xk)

)
in other words

0 1 · · · 1
1
...
1

K + γ−1I




b

α1
...
αN

 =


0
y1
...
yN

 ,

where the matrix K is defined by Ki ,j = K (xi , xj).
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Kernel based ridge regression: discussion

I The model

ŷ(x) = b +
N∑
i=1

αiK (x , xi )

is expressed purely in terms of the Kernel function.
I Learning algorithm uses only the values of K (xi , xj) and yk to

determine α and b.
I We don’t need to know φ(x).
I Order N3 operations for learning, and order N operations for

prediction.
I Refinements:

I Sparse approximations
I Prune away the training points which correspond to small values of

α.
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Conclusion

I Support vector machines are based on two very smart ideas:
I Margin maximization (to improve generalization)
I The kernel trick (to handle very high dimensional or complex input

spaces)

I SVMs are quite well motivated theoretically
I SVMs are among the most successful techniques for classification
I There exist very efficient implementations that can handle very

large problems
I Drawbacks:

I Essentially black-box models
I The choice of a good kernel is difficult and critical to reach good

accuracy
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Conclusion

I Kernel methods are very useful tools in machine learning
I Several generic frameworks have been proposed to define kernels

for various data types
I Many algorithms have been kernelized
I Especially interesting in complex application domains like

bioinformatics
I Convex optimization is a very useful tool in machine learning

I Many machine learning problems can be formulated as convex
optimization problems

I Often, a unique solution implies a more stable model
I Can benefit from the huge work made on optimization algorithms

to focus on designing good objective functions
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Further reading

I Bishop: Chapter 7 (7.1 and 7.1.1), Appendix E
I Hastie et al.: 12.2, 12.3 (12.3.1)
I Ben-Hur, A., Soon Ong, C., Sonnenburg, S., Schölkopf, B.,

Rätsch, G. (2008). Support vector machines and kernels for
computational biology. PLOS Computational biology 4(10).
http://www.ploscompbiol.org/
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Softwares

I LIBSVM & LIBLINEAR
http://www.csie.ntu.edu.tw/~cjlin/libsvm

I SVMlight

http://svmlight.joachims.org/
I SHOGUN

http://www.shogun-toolbox.org/
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