Applied inductive learning - Lecture 5
(Deep) Neural Networks

Louis Wehenkel & Pierre Geurts

Department of Electrical Engineering and Computer Science
University of Liege

Montefiore - Liege - December 29, 2018

Find slides: http://montefiore.ulg.ac.be/~Iwh/AIA/

Louis Wehenkel Neural networks (1/57)

http://www.montefiore.ulg.ac.be/~lwh/AIA/

Introduction

Single neuron models
Hard threshold unit (LTU) and the perceptron
Soft threshold unit (STU) and gradient descent
Theoretical properties

Multilayer perceptron
Definition and expressiveness
Learning algorithms
Overfitting and regularization

Other neural network models
Radial basis function networks
Convolutional neural networks
Recurrent neural networks

Conclusion

Louis Wehenkel - Neural networks (2/57)

Introduction

Batch-mode vs Online-mode Supervised Learning

» Objects (or observations): LS = {o1,...,0n}

> Attribute vector: @' = (a1(0;),...,an(0))7, Vi=1,...,N
» Outputs: y' = y(0;) or ¢ = c(0;), Vi=1,...,N
> LS Table

o | ai(o) ax(o) ... an(o)|y(o)

1 al a al yl

2| & & a |y

N|oal L 1A

Focus for this lecture on numerical inputs, and numerical outputs (classes
will be encoded numerically if needed).

Louis Wehenkel Neural networks (3/57)

Introduction

Batch-mode vs online mode learning

» In batch-mode

» Samples provided and processed together to construct model
> Need to store samples (not the model)
» Classical approach for data mining

» |n online-mode

» Samples provided and processed one by one to update model
> Need to store the model (not the samples)
» Classical approach for adaptive systems

» But both approaches can be adapted to handle both contexts

» Samples available together can be exploited one by one
» Samples provided one by one can be stored and then exploited together

Louis Wehenkel Neural networks (4/57)

Introduction

Motivations for Artificial Neural Networks

Intuition: biological brain can learn, so let's try to be inspired by it to build
learning algorithms.

> Starting point: single neuron models

» perceptron, LTU and STU for linear supervised learning
> online (biologically plausible) learning algorithms

» Complexify: multilayer perceptrons

» flexible models for non-linear supervised learning
» universal approximation property
> iterative training algorithms based on non-linear optimization

» ...other neural network models of importance

Louis Wehenkel Neural networks (5/57)

Single neuron models

Single neuron models
Hard threshold unit (LTU) and the perceptron
Soft threshold unit (STU) and gradient descent
Theoretical properties

Louis Wehenkel - Neural networks (6/57)

Single neuron models

Single neuron models

The biological neuron:
= =
~ ——
z -, ‘
Y : L
AT Symapse)
£ %\ o
A NN \ -
© " Dendrite j
/
e y -.\ -

Human brain: 10! neurons, each with 10* synapses
Memory (knowledge): stored in the synapses
(7/57)

Louis Wehenkel Neural networks

Single neuron models Hard threshold unit (LTU) and the perceptron

Hard threshold unit...

A simple (simplistic) mathematical model of the biological neuron

1

ai

g(a(0)) = sgn {wo +w'a(o)}

=sgn{w'"a’(0)}

an Whn

Parameters to adapt to problem: w’

Louis Wehenkel Neural networks (8/57)

Single neuron models Hard threshold unit (LTU) and the perceptron

..and the perceptron learning algorithm

1.
2.
3.
4.

For binary classification: c¢(o) = £1.
Start with an arbitrary initial weight vector, e.g. wj = 0.
Consider the objects of the LS in a cyclic or random sequence.

Let o; be the object at step 7, c(o;) its class and a(o;) its attribute
vector.

Adjust the weight by using the following correction rule,

wiig = wi+ni(c(o)— gi(a(o;)))a' (o).

» w! changes only if o; is not correctly classified
> it is changed in the right direction (n; > 0 is the learning rate)
> at any stage, w! is a linear combination of the a(o;) vectors

Louis Wehenkel Neural networks (9/57)

Single neuron models Hard threshold unit (LTU) and the perceptron

Geometrical view of update equation

a +

wi

/ ag =1 %

Louis Wehenkel Neural networks (10/57)

Single neuron models Hard threshold unit (LTU) and the perceptron

Geometrical view of update equation

a1 +

a(0), c(o) = +1

/ ag =1 %

Louis Wehenkel Neural networks (10/57)

Single neuron models Hard threshold unit (LTU) and the perceptron

Geometrical view of update equation

al +

2na(o)

a(o), c(o) = +1

w; Updated hyperplane

ag =1 i

Louis Wehenkel Neural networks (10/57)

Single neuron models ~ Soft threshold unit (STU) and gradient descent

Soft threshold units (STU)...

The input/output function g(a) of such a device is computed by

2

g(a(o))

where the activation function f(-) is assumed to be differentiable. Classical
examples of activation functions are the sigmoid

f(wo + wTa(o)) = f(w’Ta’(o))

1

SIngId(X) = H—Tp(—x)’
and the hyperbolic tangent

_ expl(x) — expl(—)
exp(x) + exp(—x)’

tanh(x)

Louis Wehenkel Neural networks (11/57)

Single neuron models ~ Soft threshold unit (STU) and gradient descent

. and gradient descent

Find vector w'T = (wp, w') minimizing the square error (TSE)
2

TSE(LS,w') = > (g(a(0)) = y(0))* = > (F(w'Ta/(0)) - y(0))
o€lS o€lLS

The gradient with respect to w' is computed by

Vw TSE(LS,w') =2) " (g(a(0)) — y(0)) f'(w'"a'(0))a' (o),
o€lS

where f’(-) denotes the derivative of the activation function f(-).

The gradient descent method works by iteratively changing the weight
vector by a term proportional to —V y,» TSE(LS, w').

Louis Wehenkel Neural networks (12/57)

Single neuron models ~ Soft threshold unit (STU) and gradient descent

. and stochastic online gradient descent

Fixed step gradient descent in online-mode:
1. For binary classification: c(o) = £1.
2. Start with an arbitrary initial weight vector, e.g. wy = 0.
3. Consider the objects of the LS in a cyclic or random sequence.
4

. Let o; be the object at step /, c(0;) its class and a(o;) its attribute
vector.

5. Adjust the weight by using the following correction rule,

wi, = w;—nVy SE(oi,w))
= wj+2n[c(o) — gi(a(o:))] f'(wi" &' (07))a' (o),

(SE(o,w’) is the contribution of object o in TSE(LS, w').)

Louis Wehenkel Neural networks (13/57)

Single neuron models Theoretical properties

Theoretical properties

> Convergence of the perceptron learning algorithm

>
>

If LS is linearly separable: converges in a finite number of steps.
Otherwise: converges with infinite number of steps, if n; — 0.

» Convergence of the online or batch gradient descent algorithm

>
>

NB:

>
>

if n; = 0 (slowly), and infinite number of steps, same solution
if £(-) linear, finds same solution as linear regression

slow 1; — 0 means

limpm— 00 Z:mzl 1j = 400
. m
Mmoo Yoy 7 < +00

Louis Wehenkel Neural networks (14/57)

Multilayer perceptron

Multilayer perceptron
Definition and expressiveness
Learning algorithms
Overfitting and regularization

Louis Wehenkel Neural networks

Multilayer perceptron Definition and expressiveness

Multilayer perceptron

» Single neuron models are not more expressive than linear models

Solution: connect several neurons to form a potentially complex non-linear
parametric model

» Most common non-linear ANN structure is multilayer perceptron, i.e.,
multiple layers of neurons, with each layer fully connected to the next.

» E.g., MLP with 3 inputs, 2 hidden layers of 4 neurons each, and 2 outputs

Input layer hidden layers Output layer

Louis Wehenkel Neural networks (16/57)

Multilayer perceptron Definition and expressiveness

Multilayer perceptron: mathematical definition (1/3)

number of layers

» Layer 1 is the input layer
» Layer L is the output layer
> Layers 2 to L — 1 are the hidden layers

(1 <1< L): number of neurons in the /th layer (s1 (= n) is the number of inputs,
s, is the number of outputs)

(1 <1< L1<i<g): the activation (i.e., output) of the ith neuron of layer / for
an object o.

(2 < 1< L): the activation function of layer /

(1 <i<sp41,1 <j<s): the weight of the edge from neuron j in layer / to
neuron i in layer [+1

(1 < i < sp41): the bias/intercept of neuron i in layer [4 1.

Louis Wehenkel Neural networks (17/57)

Multilayer perceptron Definition and expressiveness

Multilayer perceptron: mathematical definition (2/3)

Predictions can be computed recursively:
(1) — 4 - i
a;’(o) = ao), Vi:1<i<n

"oy = FW Z 0 5{ Vi</i<L1<i<s
=1

(1)
Or in matrix notation:
a(o) a(o),
a*) = W' Na (o)) Vi<l<lL,

with W) ¢ |Rs1%+1 defined as (W’(l));yj = W,-(L-)_l and a’ defined as
previously.

Louis Wehenkel Neural networks (18/57)

Multilayer perceptron Definition and expressiveness

Multilayer perceptron: mathematical definition (3/3)

Inputlayer hidden layers Output layer
wo w®
() a? (o) o) W

a(l)(o) a? (o) a®(0) a™ (o)

a(’+1)(o) - f(/+1)(W'(/)a/(/)(o))

(W,.(B weights are omitted from all figures)

Louis Wehenkel Neural networks (19/57)

Multilayer perceptron Definition and expressiveness

Representation capacity of MLP: classification (1/2)

» Geometrical insight in the representation capacity
» Two hidden layers of hard threshold units

> First hidden layer: can define a collection of hyperplanes/semiplanes
» Second hidden layer: can define arbitrary intersections of semiplanes
» Qutput layer: can define abitrary union of intersections of semi-planes

» Conclusion: with a sufficient number of units, very complex regions can
be described

» Soft threshold units:

» hidden layers can distort the input space to make the classes linearly
separable by the output layer

Louis Wehenkel Neural networks (20/57)

Multilayer perceptron Definition and expressiveness

Representation capacity of MLP: classification (2/2)

[BN]

7
L

Input Hidden Output
&) (2 sigmoid) (1 sigmoid)

(lecun et al., Nature, 2015)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Louis Wehenkel Neural networks (21/57)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Multilayer perceptron Definition and expressiveness

Representation capacity of MLP: regression

» Function approximation insight
» One hidden layer of soft threshold units
» One-dimensional input space illustration
» Hidden layer defines K offset and scale parameters «;, B;,i =1...K:
responses f(a;x + [3;)
> Output layer (linear): y(x) = by + Z,K:1 bif (aix + ;)
» Theoretical results:
» Every bounded continuous function can be approximated with arbitrary
small error
» Any function can be approximated to arbitrary accuracy by a network
with two hidden layers

http://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

Louis Wehenkel Neural networks (22/57)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html

Multilayer perceptron Learning algorithms

Learning algorithms for multilayer perceptrons

Main idea:

> Define a loss function that compares the output layer predictions (for an
object o) to the true outputs (with W all network weights):

L(g(a(0): W), y(0))

» Training = finding the parameters WV that minimizes average loss over the
training data

" 1
W = argmin > L(g(a(0); W), y(0))
o€lLS
» Use gradient descent to iteratively improve an initial value of W.
Require to compute the following gradient (for all 7, j, /, o):
0

mL(g(a(O); W), y(0))

iJ

Louis Wehenkel Neural networks (23/57)

Multilayer perceptron Learning algorithms

Backpropagation of derivatives

» These derivatives can be computed efficiently using the backpropagation
algorithm.

» Let us derive this algorithm in the case of a single regression output, square
error, and assuming that all activation functions are similar:

L(g(a(o): W) ¥(0)) = 5 (8(a(0);W) ~ y(0))’ = 3((0) ~ ¥(0))

> In the following, we will denote by z,-(l)(o) (1< /<L 1<i<s) the values
sent through the activation functions:

Si—1

(0 (/ 1) +Z (1-1) (/ (o) 20(0) = W=D a=1)(0) (2)

(We thus have a\”(0) = £(z"(0)))

Louis Wehenkel Neural networks (24/57)

Multilayer perceptron Learning algorithms

Backpropagation of derivatives

Using the chain rule of partial derivatives, we havel:

O | (g(a;w),y) = 2 9al'™V 9z(*V
aTi(,? gla; YY) = aa’(/+1) 8Zi(l+1) 8W’(’.Il)

Given the definitions of aEIH) and z,-(/H), the last two factors are computed as:

aa(l+1) 8Z_(I+1)

_ D L0 (with o) — 1
az’.(H_]_) (i) 8W,(,3) J (0)
and thus: 5 oL)
_ s) erg _(IH1)N (D)
P L(...)= (D f'(z)aj . (3)
IN] i

]'Object argument ((0)) is omitted to simplify the notations

Louis Wehenkel Neural networks (25/57)

Multilayer perceptron Learning algorithms

Backpropagation of derivatives

For the last (output) layer, we have:

L(...) _
0" oal (L

5 L@~y = (@ - y)

For the inner (hidden) layers, we have (1 </ < L):

aL(...) it 8L() aZj(’H) Si41 aL(..) aaj(_/+1) azj(/+1)
D D G e) s o Co RN
! ! = J j i

S|
B i aL(£(/+1))
- (/+1)

J

Defining 0\ = 8;;,-)#'(2,(”), we have? (2 </ < L):

i

SI+1

89 (0) = (a7 (0) — y(o))f' (2P (0)) 8"(0 426’*”)f'(2(0)) (4)

2 Reintroducing object argument

Louis Wehenkel Neural networks (26/57)

Multilayer perceptron Learning algorithms

Backpropagation of derivatives

Or in matrix notations:

8(0) = (alP(0) - y(0))f'(z!M(0))
6V0) = (WMNTsHD () (2 (0)) 2< /<L,

with W) ¢ IRs=1%5 defined as (W) ; = w!”

Louis Wehenkel Neural networks (27/57)

Multilayer perceptron Learning algorithms

Backpropagation of derivatives: summary

To compute all partial derivatives) for a given object o:

i

0]

i

(o) and z-(l)(o) for all neurons using (1) and (2)

1. compute a ;
(forward propagation)

2. compute 5,(1)(0) for all neurons using (4)
(backward propagation)

3. Compute (using (3)):

8L(g(a(;l:/;;)\/),y(0)) = 50(0)a(0)

NB: Backpropagation can be adapted easily to other (differentiable) loss
functions and feedforward (i.e., without cycles) network structure

Louis Wehenkel Neural networks (28/57)

Multilayer perceptron Learning algorithms

Backpropagation of derivatives: illustration

Forward propagation

aV(0) — a®(0) — a¥P(0) — a™ (o)

a(l+1)(o) _ f-(l—‘rl)(W/(I)a/(l)(o))

Louis Wehenkel Neural networks (29/57)

Multilayer perceptron Learning algorithms

Backpropagation of derivatives: illustration

Backward propagation

(a{ (0) = y(0)) F'D (2P (0))

"y |) (4)
(a5’ (0) —y(0)) /M (25" (0))

Louis Wehenkel Neural networks (29/57)

Multilayer perceptron Learning algorithms

Online or batch gradient descent with backpropagation

1. Choose a network structure and a loss function L.

2. lInitialize all network weights w()

appropriately.
3. Repeat until some stopping criterion is met:

3.1 Using backpropagation, compute either (batch mode):

W 9L(g(a(0); W), y(0))
N oclLs K?W,-(?
or (online mode):
Al PLE(a(0) W), y(o)
J

(9W/,<I}
for a single object 0 € LS chosen at random or in a cyclic way.
3.2 Update the weights according to:

W ~pawd,
with 7 €]0, 1], the learning rate.

Louis Wehenkel | Neural networks (30/57)

Multilayer perceptron Learning algorithms

Between online and batch gradient descent

Mini-batch is commonly used
» Compute each gradient over a small subset of g objects
> Between stochastic (g = 1) and batch (g = N) gradient descent
> Sometimes can provide a better tradeoff in terms of optimality and speed.

» One gradient computation is called an iteration, one sweep over all training
examples is called an epoch.

> It's often beneficial to keep original class proportion in mini-batches

Initial values of the weights:
» They have an influence on the final solution
» Not all to zero to break symetry

» Typically: small random weights, so that the network first operates close to
linearity and then its non-linearity increases when training proceeds.

Louis Wehenkel Neural networks (31/57)

Multilayer perceptron Learning algorithms

More on backpropagation and gradient descent

» Will find a local, not necessarily global, error minimum.

» Computational complexity of gradient computations is low (linear w.r.t.
everything) but training can require thousands of iterations.

» Any general technique to make gradient descent converge faster or better
can be applied to MLP training (second-order techniques, conjugate
gradient, learning rate adaptation, etc.).

» Common improvement of SGD: Momentum update (with p € [0, 1])

0] (! (). 0] () 0]
Ai’j — MA,',J' — ’I’]AW,-J, W[< w + A,.)j

Louis Wehenkel Neural networks (32/57)

Multilayer perceptron Learning algorithms

Multi-class classification

» One-hot encoding: k classes are encoded through k numerical
outputs, with y;j(o) = 1 if o belongs to the ith class, 0 otherwise

» Loss function could be average square error over all outputs

> A better solution:
» Transform neural nets outputs using softmax:

exp(ai”(0))
> exp(al? (o))

(such that pj(0) € [0;1] and), pi(0) = 1).
» Use cross-entropy as a loss function:

pi(o) =

L(g(a(o); W Zy,) log pi(0)

Louis Wehenkel | Neural networks (33/57)

Multilayer perceptron Learning algorithms

Activation functions

As for STU, common activation functions are sigmoid and hyperbolic tangent.
A recent alternative is ReLU (rectifier linear unit):

f(x) = max(0, x).
(or its smooth approximation, softplus: f(x) = In(1 4+ €¥))

Several advantages:

. . 5
> Sparse activation (some —siomid
neurons are inactive) #/l—ReLu '
= softplus
3
> Efficient gradient /
propagation (avoid vanishing : /
or exploding gradient) 1 7
e
» Efficient computation °

(comparison, addition, and 5 0 5
multiplication only)

Louis Wehenkel Neural networks (34/57)

Multilayer perceptron Overfitting and regularization

Overfitting

Too complex networks will clearly overfit.

One could select optimal network size using cross-validation but better
results are often obtained by carefully training complex networks instead.

Louis Wehenkel Neural networks (35/57)

Multilayer perceptron Overfitting and regularization

Avoiding overfitting with neural networks

Early stopping:
> Stop gradient descent iterations before convergence, by controlling the error

on an independent validation set

» If initial weights are small, the more iterations, the more non-linear becomes
the model.

Validation

2
a o

Training

5 [“) CRET R = [a) Caa—

Iteration

Source: http://www.turingfinance.com/misconceptions-about-neural-networks/

Louis Wehenkel | Neural networks (36/57)

http://www.turingfinance.com/misconceptions-about-neural-networks/

Multilayer perceptron Overfitting and regularization

Avoiding overfitting with neural networks

Weight decay:
> Add an extra-term to the loss function that penalizes too large weights:

—1s41 5

W*:argr%n%ZL(g(a(o);) +A5 ZZZ 'J :

o€lLS lllljl

>) controls complexity (since larger weights mean more non-linearity) and
can be tuned on a validation set

> Modified weight update: W(/) — W(I) (AW-(Z,-) +)\W,.(,j.))

> Alternative: L1 penalization: (,()) = |W |
Makes some weights exactly equal to zero (a form of edge pruning).

Louis Wehenkel Neural networks (37/57)

Overfitting and regularization

Multilayer perceptron

Avoiding overfitting with neural networks

Weight decay:
Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

]
!
'
;
i
H
1
!
i
i
i
v

Training Error: 0.100 Training Error: 0.160
Test Error: 0.259 Test Error: 0.223
Bayes Error: 0.210 Bayes Error: 0.210

Source: Figure 10.4, Hastie et al., 2009

Louis Wehenkel | Neural networks (38/57)

Multilayer perceptron Overfitting and regularization

Avoiding overfitting with neural networks

Dropout: (Srivastava et al., JMLR, 2011)

» Randomly drop neurons from each layer with probability ® and train only
the remaining ones

> Make the learned weights of a node more insensitive to the weights of the
other nodes.

» This forces the network to learn several independent representations of the
patterns and thus decreases overfitting.

45 02

0.6 0. 10
Probability of retaining a unit (p)

(a) Standard Neural Net (b) After applying dropout.

Louis Wehenkel | Neural networks (39/57)

Multilayer perceptron Overfitting and regularization

Avoiding overfitting with neural networks

Unsupervised pretraining:
» Main idea:
» Train each hidden layer in turn in an unsupervised way, so that it allows

to reproduce the input of the previous layer.

» Introduce the output layer and then fine-tune the whole system using
backpropagation

> Allowed in 2006 to train deeper neural networks than before and to
obtain excellent performance on several tasks (computer vision,
speech recognition).

» Unsupervised pretraining is especially useful when the number of
labeled examples is small.

Louis Wehenkel Neural networks (40/57)

Other neural network models

Other neural network models
Radial basis function networks
Convolutional neural networks
Recurrent neural networks

Louis Wehenkel - Neural networks (41/57)

Other neural network models

Other neural network models

Beyond MLP, many other neural network structures have been proposed in
the literature, among which:

» Radial basis function networks

» Convolutional networks

» Recurrent neural networks

» Restricted Boltzman Machines (RBM)

» Kohonen maps (see lecture on unsupervised learning)
>

Auto-encoders (see lecture on unsupervised learning)

Louis Wehenkel Neural networks (42/57)

Other neural network models

Radial basis function networks

Radial basis functions networks

A neural network with a single hidden layer with radial basis functions
(RBF) as activation functions

Output is of the following form:

202
k=1

s2 MW (o) — w'V2
g0) = + 3 exp <||a (0) — w H)

Louis Wehenkel Neural networks (43/57)

Other neural network models Radial basis function networks

Radial basis function networks

» Training:

» Input layer: vectors wEl) are trained by unsupervised clustering
techniques (see later) and o commonly set to d/+/(2s>), with d the
maximal euclidean distance between two weight vectors.

» Output layer: can be trained by any linear method (least-square,

perceptron...).
P Size s, of hidden layer is determined by cross-validation.

» Much faster to train than MLP
» Similar to the k-NN method

Louis Wehenkel Neural networks (44/57)

Other neural network models Convolutional neural networks

Convolutional neural networks (ConvNets)

> A (feedforward) neural network structure initially designed for images

» But can be extended to any input data composed of values that can be

arranged in a 1D, 2D, 3D or more structure. E.g., sequences, texts, videos,
etc.

» Built using three kinds of hidden layers: convolutional, pooling, and
fully-connected

» Neurons in each layer can be arranged into a 3D structure.

| i Convolutional Poolinglayer
nputimage layer depth Output layer
Soo00r "
"
- ~ Q0O ~
OOOOOK vidth

Source: http://cs231n.github.io/convolutional-networks/

Louis Wehenkel Neural networks

(85/57)

http://cs231n.github.io/convolutional-networks/

Other neural network models Convolutional neural networks

Convolutional layer

» Each neuron is connected only to a local region (along width and
height, not depth) in the previous layer (the receptive field of the
neuron)

» The receptive field of neurons at the same depth are slided by some
fixed stride along width and height.

» All neurons at the same depth share the same set of weights (and
thus detect the same feature at different locations)

— 32x32x3 image activation maps

 5x5x3 filter
2

28

&

00O
convolve (slide) over all
spatial locations

3
3 1
Source: http://cs231n.github.io/convolutional-networks/

Louis Wehenkel Neural networks (46/57)

http://cs231n.github.io/convolutional-networks/

Other neural network models Convolutional neural networks

Pooling (or subsampling) layer

» Each neuron is connected only to a local region (along width and
height) at the same depth as its own depth in the previous layer.

» The receptive field of neurons at the same depth are slided by some
fixed stride along width and height (stride> 1 means subsampling).

» Output of the neuron is an aggregation of the values in the local
region. E.g., the maximum or the average in that region.

224x224x64

Bl Single depth slice
pol g | |1]1]|2]4
Il"‘ max pool with 2x2 filters
56|78 and stride 2 6|8
l I 3(2|1(0 3[4
112 (3]4
224 downsampling ! e
12 _—
224 y

Source: http://cs231n.github.io/convolutional-networks/

Louis Wehenkel Neural networks (47/57)

http://cs231n.github.io/convolutional-networks/

Other neural network models Convolutional neural networks

Fully connected layer

> Width and height are equal to 1
» Each neuron is connected to all neurons of the previous layer

> At least, the output layer is a fully connected layer, with one neuron

per OUtpUt
; Convolutional Poolinglayer
Inputimage faver glay Output layer
b S— depth
S0 "
+ ~ 00000 ~
OCOOOOW vidth
Source: http://cs231n.github.io/convolutional-networks/
Louis Wehenkel Neural networks

(48/57)

http://cs231n.github.io/convolutional-networks/

Other neural network models Convolutional neural networks

Why convolutional networks?

> It's possible to compute the same ouputs in a fully connected MLP,
but:

» The network would be much harder to train.
» Convolutional networks have much less parameters due to weight
sharing.
» They are less prone to overfitting.
> |t makes sense to detect features (by convolution) and to combine
them (by pooling). Max pooling allows to detect shift-invariant
features.

P It's possible to draw analogy with the way our brain works.

Louis Wehenkel Neural networks (49/57)

Other neural network models Convolutional neural networks

(Lecun et al., 1998)

C3: f. maps 16@10x10
INPUT C1.1§i§usre maps S4:f. maps 16@5x5
3232 # S2: 1. maps
6@14x14

|
FulIconAeclian ‘ Gaussian connections
Convolutions Subsampling Corvolutions Subsampling Full connection

5 x 5 convolutional layers at stride 1, 2 x 2 max pooling layers at stride 2.

First successful application of convolutional networks. Used by banks in the US to
read cheques.

Louis Wehenkel Neural networks (50/57)

Other neural network models Convolutional neural networks

ImageNet - A large scale visual recognition challenge

mite container ship motor scooter

mite ship motor legpard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

http://image-net.org

» 1.2 million images, 1000 image categories in the training set

> Task: identify the object in the image (ie., a multi-class classification
problem with 1000 classes)

> Evaluation: top-5 error (“is one of the best 5 class predictions correct?")

» Human error: 5.1% (http://cs.stanford.edu/people/karpathy/ilsvrc/)

Louis Wehenkel Neural networks (51/57)

http://image-net.org
http://cs.stanford.edu/people/karpathy/ilsvrc/

Other neural network models

Best performer in 2012: AlexNet

Convolutional neural networks

(Krizhevsky et al., 2012)

Maxl 128
pooling

Max
pooling

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC&: 1000 neurons (class scores)

Louis Wehenkel

128 Max
pooling

2048 2048

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%

Neural networks (52/57)

Other neural network models Convolutional neural networks

Best performer in 2014: GoogleNet (Szegedy et al., 2014)

» 6.7% top-5 error. Very close to human performance.

» Very deep: 100 layers (22 with tuned parameters), more than 4M
parameters

> Several neat tricks (heterogeneous set of convolutions, inception
modules, softmax outputs in the middle of the network, etc.)

Louis Wehenkel Neural networks (53/57)

Other neural network models Recurrent neural networks

Recurrent neural networks

[Y

O 01 t t+1

0]
J
w
w Si-1 St Seel
O:}) — >Q—— O

Unfold -
U U U
xt X

-1 t t+1

o<
<

Y

-

X

» Neural networks with feedback connections
» When unfolded, can be trained using back-propagation
» Allows to model non-linear dynamical phenomenon

» Best approach for language modeling (e.g., word prediction)
E.g., http://twitter.com/DeepDrumpf

Louis Wehenkel Neural networks (54/57)

http://twitter.com/DeepDrumpf

Conclusion

Conclusions

» Neural networks are universal (parametric) approximators

» Deep (convolutional) neural networks provide state-of-the-art

vVvyyvyy

performance in several application domains (speech recognition,
computer vision, texts...)

Training deep networks is very expensive and requires a lot of data...
...but the use of (dedicated) GPUs reduce strongly computing times
Often presented as automatic feature extraction techniques...

...but a lot of engineering (or art) is required to tune their
hyper-parameters (structure, regularization, activation and loss
functions, weight initialization, etc.).

...but researchers try to find automatic ways to tune them

Louis Wehenkel | Neural networks (55/57)

Conclusion

Conclusions

» Essentially black-box models although some model inspection is
possible

Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

diys ereild

Jrey) Bunooy

Jteag AppaL

http://yosinski.com/deepvis

Louis Wehenkel Neural networks (56/57)

http://yosinski.com/deepvis

Conclusion

References and softwares

References:
> Hastie et al.: Chapter 11 (11.3-11.7)

» Goodfellow, Bengio, and Courville, Deep Learning, MIT Press, 2016
http://www.deeplearningbook.org

» Many tutorials on the web and also videos on Youtube: Andrew Ng, Hugo
Larochelle...

Main toolboxes:
> Tensorflow (Google), Python, https://www.tensorflow.org

» Theano (U. Montreal), Python,
http://deeplearning.net/software/theano/index.html

> Caffe (U. Berkeley), Python), http://caffe.berkeleyvision.org/
> Torch (Facebook, Twitter), Lua, http://torch.ch

Louis Wehenkel Neural networks (57/57)

http://www.deeplearningbook.org
https://www.tensorflow.org
http://deeplearning.net/software/theano/index.html
http://caffe.berkeleyvision.org/
http://torch.ch

	Introduction
	Single neuron models
	Hard threshold unit (LTU) and the perceptron
	Soft threshold unit (STU) and gradient descent
	Theoretical properties

	Multilayer perceptron
	Definition and expressiveness
	Learning algorithms
	Overfitting and regularization

	Other neural network models
	Radial basis function networks
	Convolutional neural networks
	Recurrent neural networks

	Conclusion

