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Introduction

Batch-mode vs Online-mode Supervised Learning

» Objects (or observations): LS = {o1,...,0n}

> Attribute vector: @' = (a1(0;),...,an(0))7, Vi=1,...,N
» Outputs: y' = y(0;) or ¢ = c(0;), Vi=1,...,N
> LS Table

o | ai(o) ax(o) ... an(o)|y(o)

1 al a al yl

2| & & a |y

N|oal L 1A

Focus for this lecture on numerical inputs, and numerical outputs (classes
will be encoded numerically if needed).
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Introduction

Batch-mode vs online mode learning

» In batch-mode

» Samples provided and processed together to construct model
> Need to store samples (not the model)
» Classical approach for data mining

» |n online-mode

» Samples provided and processed one by one to update model
> Need to store the model (not the samples)
» Classical approach for adaptive systems

» But both approaches can be adapted to handle both contexts

» Samples available together can be exploited one by one
» Samples provided one by one can be stored and then exploited together
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Introduction

Motivations for Artificial Neural Networks

Intuition: biological brain can learn, so let's try to be inspired by it to build
learning algorithms.

> Starting point: single neuron models

» perceptron, LTU and STU for linear supervised learning
> online (biologically plausible) learning algorithms

» Complexify: multilayer perceptrons

» flexible models for non-linear supervised learning
» universal approximation property
> iterative training algorithms based on non-linear optimization

» ...other neural network models of importance
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Single neuron models
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Single neuron models

Single neuron models

The biological neuron:
= =
~ ——
z -, ‘
Y : L
AT Symapse )
# £ %\ o
A NN \ -
© " Dendrite j
/
e y -.\ -

Human brain: 10! neurons, each with 10* synapses
Memory (knowledge): stored in the synapses
(7/57)
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Single neuron models Hard threshold unit (LTU) and the perceptron

Hard threshold unit...

A simple (simplistic) mathematical model of the biological neuron

1

ai

g(a(0)) = sgn {wo +w'a(o)}

=sgn{w'"a’(0)}

an Whn

Parameters to adapt to problem: w’
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Single neuron models Hard threshold unit (LTU) and the perceptron

..and the perceptron learning algorithm

1.
2.
3.
4.

For binary classification: c¢(o) = £1.
Start with an arbitrary initial weight vector, e.g. wj = 0.
Consider the objects of the LS in a cyclic or random sequence.

Let o; be the object at step 7, c(o;) its class and a(o;) its attribute
vector.

Adjust the weight by using the following correction rule,

wiig = wi+ni(c(o)— gi(a(o;)))a' (o).

» w! changes only if o; is not correctly classified
> it is changed in the right direction (n; > 0 is the learning rate)
> at any stage, w! is a linear combination of the a(o;) vectors
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Single neuron models Hard threshold unit (LTU) and the perceptron

Geometrical view of update equation

a +

wi

/ ag =1 %
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Single neuron models Hard threshold unit (LTU) and the perceptron

Geometrical view of update equation

a1 +

a(0), c(o) = +1

/ ag =1 %
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Single neuron models Hard threshold unit (LTU) and the perceptron

Geometrical view of update equation

al +

2na(o)

a(o), c(o) = +1

w; Updated hyperplane

ag =1 i
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Single neuron models ~ Soft threshold unit (STU) and gradient descent

Soft threshold units (STU)...

The input/output function g(a) of such a device is computed by

2

g(a(o))

where the activation function f(-) is assumed to be differentiable. Classical
examples of activation functions are the sigmoid

f(wo + wTa(o)) = f(w’Ta’(o))

1

SIngId(X) = H—Tp(—x)’
and the hyperbolic tangent

_ expl(x) — expl(—)
exp(x) + exp(—x)’

tanh(x)
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Single neuron models ~ Soft threshold unit (STU) and gradient descent

. and gradient descent

Find vector w'T = (wp, w') minimizing the square error (TSE)
2

TSE(LS,w') = > (g(a(0)) = y(0))* = > (F(w'Ta/(0)) - y(0))
o€lS o€lLS

The gradient with respect to w' is computed by

Vw TSE(LS,w') =2 ) " (g(a(0)) — y(0)) f'(w'"a'(0))a' (o),
o€lS

where f’(-) denotes the derivative of the activation function f(-).

The gradient descent method works by iteratively changing the weight
vector by a term proportional to —V y,» TSE(LS, w').
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Single neuron models ~ Soft threshold unit (STU) and gradient descent

. and stochastic online gradient descent

Fixed step gradient descent in online-mode:
1. For binary classification: c(o) = £1.
2. Start with an arbitrary initial weight vector, e.g. wy = 0.
3. Consider the objects of the LS in a cyclic or random sequence.
4

. Let o; be the object at step /, c(0;) its class and a(o;) its attribute
vector.

5. Adjust the weight by using the following correction rule,

wi, = w;—nVy SE(oi,w))
= wj+2n[c(o) — gi(a(o:))] f'(wi" &' (07))a' (o),

(SE(o,w’) is the contribution of object o in TSE(LS, w').)
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Single neuron models Theoretical properties

Theoretical properties

> Convergence of the perceptron learning algorithm

>
>

If LS is linearly separable: converges in a finite number of steps.
Otherwise: converges with infinite number of steps, if n; — 0.

» Convergence of the online or batch gradient descent algorithm

>
>

NB:

>
>

if n; = 0 (slowly), and infinite number of steps, same solution
if £(-) linear, finds same solution as linear regression

slow 1; — 0 means

limpm— 00 Z:mzl 1j = 400
. m
Mmoo Yoy 7 < +00
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Multilayer perceptron Definition and expressiveness

Multilayer perceptron

» Single neuron models are not more expressive than linear models

Solution: connect several neurons to form a potentially complex non-linear
parametric model

» Most common non-linear ANN structure is multilayer perceptron, i.e.,
multiple layers of neurons, with each layer fully connected to the next.

» E.g., MLP with 3 inputs, 2 hidden layers of 4 neurons each, and 2 outputs

Input layer hidden layers Output layer
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Multilayer perceptron Definition and expressiveness

Multilayer perceptron: mathematical definition (1/3)

number of layers

» Layer 1 is the input layer
» Layer L is the output layer
> Layers 2 to L — 1 are the hidden layers

(1 <1< L): number of neurons in the /th layer (s1 (= n) is the number of inputs,
s, is the number of outputs)

(1 <1< L1<i<g): the activation (i.e., output) of the ith neuron of layer / for
an object o.

(2 < 1< L): the activation function of layer /

(1 <i<sp41,1 <j<s): the weight of the edge from neuron j in layer / to
neuron i in layer [ +1

(1 < i < sp41): the bias/intercept of neuron i in layer [ 4 1.
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Multilayer perceptron Definition and expressiveness

Multilayer perceptron: mathematical definition (2/3)

Predictions can be computed recursively:
(1) — 4 - i
a;’(o) = ao), Vi:1<i<n

"oy = FW Z 0 5{ Vi</i<L1<i<s
=1

(1)
Or in matrix notation:
a(o) a(o),
a*) = W' Na (o)) Vi<l<lL,

with W) ¢ |Rs1%+1 defined as (W’(l));yj = W,-(L-)_l and a’ defined as
previously.
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Multilayer perceptron Definition and expressiveness

Multilayer perceptron: mathematical definition (3/3)

Inputlayer hidden layers Output layer
wo w®
() a? (o) o) W

a(l)(o) a? (o) a®(0) a™ (o)

a(’+1)(o) - f(/+1)(W'(/)a/(/)(o))

(W,.(B weights are omitted from all figures)
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Multilayer perceptron Definition and expressiveness

Representation capacity of MLP: classification (1/2)

» Geometrical insight in the representation capacity
» Two hidden layers of hard threshold units

> First hidden layer: can define a collection of hyperplanes/semiplanes
» Second hidden layer: can define arbitrary intersections of semiplanes
» Qutput layer: can define abitrary union of intersections of semi-planes

» Conclusion: with a sufficient number of units, very complex regions can
be described

» Soft threshold units:

» hidden layers can distort the input space to make the classes linearly
separable by the output layer
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Multilayer perceptron Definition and expressiveness

Representation capacity of MLP: classification (2/2)

[ BN ]

7
L

Input Hidden Output
&) (2 sigmoid) (1 sigmoid)

(lecun et al., Nature, 2015)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Multilayer perceptron Definition and expressiveness

Representation capacity of MLP: regression

» Function approximation insight
» One hidden layer of soft threshold units
» One-dimensional input space illustration
» Hidden layer defines K offset and scale parameters «;, B;,i =1...K:
responses f(a;x + [3;)
> Output layer (linear): y(x) = by + Z,K:1 bif (aix + ;)
» Theoretical results:
» Every bounded continuous function can be approximated with arbitrary
small error
» Any function can be approximated to arbitrary accuracy by a network
with two hidden layers

http://cs.stanford.edu/people/karpathy/convnetjs/demo/regression.html
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Multilayer perceptron Learning algorithms

Learning algorithms for multilayer perceptrons

Main idea:

> Define a loss function that compares the output layer predictions (for an
object o) to the true outputs (with W all network weights):

L(g(a(0): W), y(0))

» Training = finding the parameters WV that minimizes average loss over the
training data

" 1
W = argmin > L(g(a(0); W), y(0))
o€lLS
» Use gradient descent to iteratively improve an initial value of W.
Require to compute the following gradient (for all 7, j, /, o):
0

mL(g(a(O); W), y(0))

iJ
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Multilayer perceptron Learning algorithms

Backpropagation of derivatives

» These derivatives can be computed efficiently using the backpropagation
algorithm.

» Let us derive this algorithm in the case of a single regression output, square
error, and assuming that all activation functions are similar:

L(g(a(o): W) ¥(0)) = 5 (8(a(0);W) ~ y(0))’ = 3((0) ~ ¥(0))

> In the following, we will denote by z,-(l)(o) (1< /<L 1<i<s) the values
sent through the activation functions:

Si—1

(0 (/ 1) +Z (1-1) (/ (o) 20(0) = W=D a=1)(0) (2)

(We thus have a\”(0) = £(z"(0)))
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Multilayer perceptron Learning algorithms

Backpropagation of derivatives

Using the chain rule of partial derivatives, we havel:

O | (g(a;w),y) = 2 9al'™V 9z(*V
aTi(,? gla; YY) = aa’(/+1) 8Zi(l+1) 8W’(’.Il)

Given the definitions of aEIH) and z,-(/H), the last two factors are computed as:

aa(l+1) 8Z_(I+1)

_ D L0 (with o) — 1
az’.(H_]_) ( i ) 8W,(,3) J ( 0 )
and thus: 5 oL )
_ s ) erg _(IH1)N (D)
P L(...)= (D f'(z )aj . (3)
IN] i

]'Object argument ((0)) is omitted to simplify the notations
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Multilayer perceptron Learning algorithms

Backpropagation of derivatives

For the last (output) layer, we have:

L(...) _
0" oal (L

5 L@~y = (@ - y)

For the inner (hidden) layers, we have (1 </ < L):

aL(...) it 8L( ) aZj(’H) Si41 aL(.. ) aaj(_/+1) azj(/+1)
D D G e ) s o Co RN
! ! = J j i

S|
B i aL( £( /+1))
- (/+1)

J

Defining 0\ = 8;;,-)#'(2,(”), we have? (2 </ < L):

i

SI+1

89 (0) = (a7 (0) — y(o))f' (2P (0)) 8"(0 426’*” )f'(2(0)) (4)

2 Reintroducing object argument
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Multilayer perceptron Learning algorithms

Backpropagation of derivatives

Or in matrix notations:

8(0) = (alP(0) - y(0))f'(z!M(0))
6V0) = (WMNTsHD () (2 (0)) 2< /<L,

with W) ¢ IRs=1%5 defined as (W) ; = w!”
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Multilayer perceptron Learning algorithms

Backpropagation of derivatives: summary

To compute all partial derivatives ) for a given object o:

i

0]

i

(o) and z-(l)(o) for all neurons using (1) and (2)

1. compute a ;
(forward propagation)

2. compute 5,(1)(0) for all neurons using (4)
(backward propagation)

3. Compute (using (3)):

8L(g(a(;l:/;;)\/),y(0)) = 50(0)a(0)

NB: Backpropagation can be adapted easily to other (differentiable) loss
functions and feedforward (i.e., without cycles) network structure
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Multilayer perceptron Learning algorithms

Backpropagation of derivatives: illustration

Forward propagation

aV(0) — a®(0) — a¥P(0) — a™ (o)

a(l+1)(o) _ f-(l—‘rl)( W/(I)a/(l)(o))
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Multilayer perceptron Learning algorithms

Backpropagation of derivatives: illustration

Backward propagation

(a{ (0) = y(0)) F'D (2P (0))

"y | ) (4)
(a5’ (0) —y(0)) /M (25" (0))

Louis Wehenkel Neural networks (29/57)



Multilayer perceptron Learning algorithms

Online or batch gradient descent with backpropagation

1. Choose a network structure and a loss function L.

2. lInitialize all network weights w()

appropriately.
3. Repeat until some stopping criterion is met:

3.1 Using backpropagation, compute either (batch mode):

W 9L(g(a(0); W), y(0))
N oclLs K?W,-(?
or (online mode):
Al PLE(a(0) W), y(o)
J

(9W/,<I}
for a single object 0 € LS chosen at random or in a cyclic way.
3.2 Update the weights according to:

W ~pawd,
with 7 €]0, 1], the learning rate.
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Multilayer perceptron Learning algorithms

Between online and batch gradient descent

Mini-batch is commonly used
» Compute each gradient over a small subset of g objects
> Between stochastic (g = 1) and batch (g = N) gradient descent
> Sometimes can provide a better tradeoff in terms of optimality and speed.

» One gradient computation is called an iteration, one sweep over all training
examples is called an epoch.

> It's often beneficial to keep original class proportion in mini-batches

Initial values of the weights:
» They have an influence on the final solution
» Not all to zero to break symetry

» Typically: small random weights, so that the network first operates close to
linearity and then its non-linearity increases when training proceeds.
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Multilayer perceptron Learning algorithms

More on backpropagation and gradient descent

» Will find a local, not necessarily global, error minimum.

» Computational complexity of gradient computations is low (linear w.r.t.
everything) but training can require thousands of iterations.

» Any general technique to make gradient descent converge faster or better
can be applied to MLP training (second-order techniques, conjugate
gradient, learning rate adaptation, etc.).

» Common improvement of SGD: Momentum update (with p € [0, 1])

0] (! (). 0] () 0]
Ai’j — MA,',J' — ’I’]AW,-J, W[ < w + A,.)j
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Multilayer perceptron Learning algorithms

Multi-class classification

» One-hot encoding: k classes are encoded through k numerical
outputs, with y;j(o) = 1 if o belongs to the ith class, 0 otherwise

» Loss function could be average square error over all outputs

> A better solution:
» Transform neural nets outputs using softmax:

exp(ai”(0))
> exp(al? (o))

(such that pj(0) € [0;1] and ), pi(0) = 1).
» Use cross-entropy as a loss function:

pi(o) =

L(g(a(o); W Zy, ) log pi(0)
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Multilayer perceptron Learning algorithms

Activation functions

As for STU, common activation functions are sigmoid and hyperbolic tangent.
A recent alternative is ReLU (rectifier linear unit):

f(x) = max(0, x).
(or its smooth approximation, softplus: f(x) = In(1 4+ €¥))

Several advantages:

. . 5
> Sparse activation (some —siomid
neurons are inactive) #/l—ReLu '
= softplus
3
> Efficient gradient /
propagation (avoid vanishing : /
or exploding gradient) 1 7
e
» Efficient computation °

(comparison, addition, and 5 0 5
multiplication only)
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Multilayer perceptron Overfitting and regularization

Overfitting

Too complex networks will clearly overfit.

One could select optimal network size using cross-validation but better
results are often obtained by carefully training complex networks instead.
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Multilayer perceptron Overfitting and regularization

Avoiding overfitting with neural networks

Early stopping:
> Stop gradient descent iterations before convergence, by controlling the error

on an independent validation set

» If initial weights are small, the more iterations, the more non-linear becomes
the model.

Validation

2
a o

Training

5 [“) CRET R = [a) Caa—

Iteration

Source: http://www.turingfinance.com/misconceptions-about-neural-networks/
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Multilayer perceptron Overfitting and regularization

Avoiding overfitting with neural networks

Weight decay:
> Add an extra-term to the loss function that penalizes too large weights:

—1s41 5

W*:argr%n%ZL(g(a(o); ) +A5 ZZZ 'J :

o€lLS lllljl

> ) controls complexity (since larger weights mean more non-linearity) and
can be tuned on a validation set

> Modified weight update: W(/) — W(I) (AW-(Z,-) + )\W,.(,j.))

> Alternative: L1 penalization: ( ,()) = |W |
Makes some weights exactly equal to zero (a form of edge pruning).
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Overfitting and regularization

Multilayer perceptron

Avoiding overfitting with neural networks

Weight decay:
Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

]
!
'
;
i
H
1
!
i
i
i
v

Training Error: 0.100 Training Error: 0.160
Test Error: 0.259 Test Error: 0.223
Bayes Error:  0.210 Bayes Error:  0.210

Source: Figure 10.4, Hastie et al., 2009
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Multilayer perceptron Overfitting and regularization

Avoiding overfitting with neural networks

Dropout: (Srivastava et al., JMLR, 2011)

» Randomly drop neurons from each layer with probability ® and train only
the remaining ones

> Make the learned weights of a node more insensitive to the weights of the
other nodes.

» This forces the network to learn several independent representations of the
patterns and thus decreases overfitting.

45 02

0.6 0. 10
Probability of retaining a unit (p)

(a) Standard Neural Net (b) After applying dropout.
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Multilayer perceptron Overfitting and regularization

Avoiding overfitting with neural networks

Unsupervised pretraining:
» Main idea:
» Train each hidden layer in turn in an unsupervised way, so that it allows

to reproduce the input of the previous layer.

» Introduce the output layer and then fine-tune the whole system using
backpropagation

> Allowed in 2006 to train deeper neural networks than before and to
obtain excellent performance on several tasks (computer vision,
speech recognition).

» Unsupervised pretraining is especially useful when the number of
labeled examples is small.

Louis Wehenkel Neural networks (40/57)



Other neural network models

Other neural network models
Radial basis function networks
Convolutional neural networks
Recurrent neural networks
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Other neural network models

Other neural network models

Beyond MLP, many other neural network structures have been proposed in
the literature, among which:

» Radial basis function networks

» Convolutional networks

» Recurrent neural networks

» Restricted Boltzman Machines (RBM)

» Kohonen maps (see lecture on unsupervised learning)
>

Auto-encoders (see lecture on unsupervised learning)
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Other neural network models

Radial basis function networks

Radial basis functions networks

A neural network with a single hidden layer with radial basis functions
(RBF) as activation functions

Output is of the following form:

202
k=1

s2 MW (o) — w'V2
g0) = + 3 exp <||a (0) — w H)
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Other neural network models Radial basis function networks

Radial basis function networks

» Training:

» Input layer: vectors wEl) are trained by unsupervised clustering
techniques (see later) and o commonly set to d/+/(2s>), with d the
maximal euclidean distance between two weight vectors.

» Output layer: can be trained by any linear method (least-square,

perceptron...).
P Size s, of hidden layer is determined by cross-validation.

» Much faster to train than MLP
» Similar to the k-NN method
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Other neural network models Convolutional neural networks

Convolutional neural networks (ConvNets)

> A (feedforward) neural network structure initially designed for images

» But can be extended to any input data composed of values that can be

arranged in a 1D, 2D, 3D or more structure. E.g., sequences, texts, videos,
etc.

» Built using three kinds of hidden layers: convolutional, pooling, and
fully-connected

» Neurons in each layer can be arranged into a 3D structure.

| i Convolutional Poolinglayer
nputimage layer depth Output layer
Soo00r "
"
- ~ Q0O ~
OOOOOK vidth

Source: http://cs231n.github.io/convolutional-networks/
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Other neural network models Convolutional neural networks

Convolutional layer

» Each neuron is connected only to a local region (along width and
height, not depth) in the previous layer (the receptive field of the
neuron)

» The receptive field of neurons at the same depth are slided by some
fixed stride along width and height.

» All neurons at the same depth share the same set of weights (and
thus detect the same feature at different locations)

— 32x32x3 image activation maps

 5x5x3 filter
2

28

&

00O
convolve (slide) over all
spatial locations

3
3 1
Source: http://cs231n.github.io/convolutional-networks/

Louis Wehenkel Neural networks (46/57)


http://cs231n.github.io/convolutional-networks/

Other neural network models Convolutional neural networks

Pooling (or subsampling) layer

» Each neuron is connected only to a local region (along width and
height) at the same depth as its own depth in the previous layer.

» The receptive field of neurons at the same depth are slided by some
fixed stride along width and height (stride> 1 means subsampling).

» Output of the neuron is an aggregation of the values in the local
region. E.g., the maximum or the average in that region.

224x224x64

Bl Single depth slice
pol g | |1]1]|2]4
Il"‘ max pool with 2x2 filters
56|78 and stride 2 6|8
l I 3(2|1(0 3[4
112 (3]4
224 downsampling ! e
12 _—
224 y

Source: http://cs231n.github.io/convolutional-networks/
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Other neural network models Convolutional neural networks

Fully connected layer

> Width and height are equal to 1
» Each neuron is connected to all neurons of the previous layer

> At least, the output layer is a fully connected layer, with one neuron

per OUtpUt
; Convolutional Poolinglayer
Inputimage faver glay Output layer
b S— depth
S0 "
+ ~ 00000 ~
OCOOOOW vidth
Source: http://cs231n.github.io/convolutional-networks/
Louis Wehenkel Neural networks

(48/57)


http://cs231n.github.io/convolutional-networks/

Other neural network models Convolutional neural networks

Why convolutional networks?

> It's possible to compute the same ouputs in a fully connected MLP,
but:

» The network would be much harder to train.
» Convolutional networks have much less parameters due to weight
sharing.
» They are less prone to overfitting.
> |t makes sense to detect features (by convolution) and to combine
them (by pooling). Max pooling allows to detect shift-invariant
features.

P It's possible to draw analogy with the way our brain works.
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Other neural network models Convolutional neural networks

(Lecun et al., 1998)

C3: f. maps 16@10x10
INPUT C1.1§i§usre maps S4:f. maps 16@5x5
3232 # S2: 1. maps
6@14x14

|
FulIconAeclian ‘ Gaussian connections
Convolutions Subsampling Corvolutions  Subsampling Full connection

5 x 5 convolutional layers at stride 1, 2 x 2 max pooling layers at stride 2.

First successful application of convolutional networks. Used by banks in the US to
read cheques.
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Other neural network models Convolutional neural networks

ImageNet - A large scale visual recognition challenge

mite container ship motor scooter

mite ship motor legpard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

http://image-net.org

» 1.2 million images, 1000 image categories in the training set

> Task: identify the object in the image (ie., a multi-class classification
problem with 1000 classes)

> Evaluation: top-5 error (“is one of the best 5 class predictions correct?")

» Human error: 5.1% (http://cs.stanford.edu/people/karpathy/ilsvrc/)
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Other neural network models

Best performer in 2012: AlexNet

Convolutional neural networks

(Krizhevsky et al., 2012)

Maxl 128
pooling

Max
pooling

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC&: 1000 neurons (class scores)

Louis Wehenkel

128 Max
pooling

2048 2048

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%
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Best performer in 2014: GoogleNet (Szegedy et al., 2014)

» 6.7% top-5 error. Very close to human performance.

» Very deep: 100 layers (22 with tuned parameters), more than 4M
parameters

> Several neat tricks (heterogeneous set of convolutions, inception
modules, softmax outputs in the middle of the network, etc.)

Louis Wehenkel Neural networks (53/57)



Other neural network models Recurrent neural networks

Recurrent neural networks
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» Neural networks with feedback connections
» When unfolded, can be trained using back-propagation
» Allows to model non-linear dynamical phenomenon

» Best approach for language modeling (e.g., word prediction)
E.g., http://twitter.com/DeepDrumpf
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Conclusion

Conclusions

» Neural networks are universal (parametric) approximators

» Deep (convolutional) neural networks provide state-of-the-art

vVvyyvyy

performance in several application domains (speech recognition,
computer vision, texts...)

Training deep networks is very expensive and requires a lot of data...
...but the use of (dedicated) GPUs reduce strongly computing times
Often presented as automatic feature extraction techniques...

...but a lot of engineering (or art) is required to tune their
hyper-parameters (structure, regularization, activation and loss
functions, weight initialization, etc.).

...but researchers try to find automatic ways to tune them
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» Essentially black-box models although some model inspection is
possible

Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

diys ereild

Jrey) Bunooy

Jteag AppaL

http://yosinski.com/deepvis
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References and softwares

References:
> Hastie et al.: Chapter 11 (11.3-11.7)

» Goodfellow, Bengio, and Courville, Deep Learning, MIT Press, 2016
http://www.deeplearningbook.org

» Many tutorials on the web and also videos on Youtube: Andrew Ng, Hugo
Larochelle...

Main toolboxes:
> Tensorflow (Google), Python, https://www.tensorflow.org

» Theano (U. Montreal), Python,
http://deeplearning.net/software/theano/index.html

> Caffe (U. Berkeley), Python), http://caffe.berkeleyvision.org/
> Torch (Facebook, Twitter), Lua, http://torch.ch
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