
Applied	inductive	learning

Ensemble	methods	and	Feature	
selection

Pierre Geurts
Department of Electrical Engineering and Computer Science

University of Liège

November 2017

Reminder:	bias/variance	decomposition

•
Quantifies	how	much	y	varies	from	 ,	the	Bayes	
model.

•
Measures	the	error	between	the	Bayes	model	and	the	
average	model.

•
Quantify	how	much	 varies	from	one	learning	sample	to	
another.

2

ELS{Ey|x{(y � ŷ(x))2}} = noise(x) + bias2(x) + variance(x)

noise(x) = Ey|x{(y � hB(x))2}
hB(x) = Ey|x{y}

variance(x) = ELS{(ŷ � ELS{ŷ(x)})2}
ŷ(x)

bias2(x) = (hB(x)� ELS{ŷ(x)})2

Reminder:	Bias	and	variance	reduction	
techniques

• In	the	context	of	a	given	method:
– Adapt	the	learning	algorithm	to	find	the	best	trade-off	
between	bias	and	variance.

– Not	a	panacea	but	the	least	we	can	do.
– Example:	pruning,	weight	decay.

• Ensemble	methods:
– Change	the	bias/variance	trade-off.
– Universal	but	destroys	some	features	of	the	initial	method.
– Example:	bagging,	boosting.

3

Ensemble	methods

• Combine	the	predictions	of	several	models	built	with	a		
learning	algorithm	in	order	to	improve	with	respect	to	the	use	
of	a	single	model

• Two	main	families:
– Averaging	techniques

• Grow	several	models	 independently and	simply	average	their	predictions
• Ex:	bagging,	random	forests
• Decrease	mainly	variance

– Boosting	type	algorithms
• Grows	several	models	sequentially
• Ex:	Adaboost,	MART
• Decrease	mainly	bias

4

Bagging	(1)
• Suppose	that	we	can	generate	several	learning	
samples	from	the	original	data	distribution

• Let	us	study	the	following	algorithm:
– Draw	T learning	samples
– Learn	a	model											from	each
– Compute	the	average	model

• How	do	the	bias	and	variance	of	this	algorithm	
relate	to	that	of	the	original	algorithm	
(building										from	one	LS)

{LS1, LS2, . . . , LST }
ŷLSi LSi

P (x, y)

ŷLS

ŷens(x) =
1
T

T�

i=1

ŷLSi(x)

Bagging	(2)

• Its	bias	is	the	same	as	the	original	algorithm

• Variance	is	divided	by	T

Þmean	square	error	decreases	

ELS{Err(x)} = Ey|x{(y � hB(x))2} + (hB(x)� ELS{ŷ(x)})2 + ELS{(ŷ(x)� ELS{ŷ(x)})2}

ELS1,...,LSN {ŷens(x)} =
1
T

�

i

ELSi{ŷLSi(x)}

= ELS{ŷLS(x)}

ELS1,...,LSN {(ŷens(x)� ELS1,...,LSN {ŷens(x)})2}

=
1
T

ELS{(ŷ(x)� ELS{ŷens(x)})2}

ELS1,...,LST {ŷens(x)}

ELS1,...,LST {(ŷens(x)� ELS1,...,LST {ŷens(x)})2}

Bagging	(3)
• In	practice	one	can	not	drawn	several	LS	(is	
unknown)

• Idea:	use	bootstrap	sampling	to	generate	several	
learning	samples

• Bagging	(bootstrap	aggregating):
– Drawn	T bootstrap	samples																																	from		
– Learn	a	model											from	each
– Build	the	average	model	

• Variance	is	reduced	but	bias	increases	a	bit	(because	
the	effective	size	of	a	bootstrap	sample	is	about	30%	
smaller	than	the	original)	

P (x, y)

{B1, B2, . . . , BT } LS

ŷBi Bi

LS

ŷens(x) =
1
T

T�

i=1

ŷBi(x)

Bagging	(4)

8

LS

LS1 LS2 LST

In regression:

In classification: = the majority class in

x

ŷ1(x) ŷ2(x) ŷT (x)

ŷ(x) = 1/k(ŷ1(x) + . . . + ŷT (x))
ŷ(x) {ŷ1(x), . . . , ŷT (x)}

Bagging	(5)
• Usually,	bagging	reduces	very	much	the	variance	without	

increasing	too	much	the	bias.
• Application	to	regression	trees	(on	Friedman’s	problem)

9

Method E Bias Variance
3 Test regr. Tree 14.8 11.1 3.7

Bagged (T=25) 11.7 10.7 1.0

Full regr. Tree 10.2 3.5 6.7

Bagged (T=25) 5.3 3.8 1.5

• Strong variance reduction without increasing the bias
(although the model is much more complex than a single
tree)

Bagging	(4)

10

x

y

ŷ1(x) + ŷ2(x)
2 ŷ(x)

ŷ1(x)

ŷ2(x)

Other	averaging techniques
• Perturb	and	Combine	paradigm:

– Perturb	the	data	or	the	learning	algorithm	to	obtain	several	
models	that	are	good	on	the	learning	sample.

– Combine	the	predictions	of	these	models
• Usually,	these	methods	decrease	the	variance	(because	of	

averaging)	but	(slightly)	increase	the	bias	(because	of	the	
perturbation)

• Examples:
– Bagging	perturbs	the	learning	sample.
– Learn	several	neural	networks	with	random	initial	weights

– Random	forests.
11

Method E Bias Variance
MLP (10-10) 4.6 1.4 3.2
Average of 10 MLPs 2.0 1.4 0.6

Random	forests	(1)

• Perturb	and	combine	algorithm	specifically	designed	for	trees
• Combine	bagging	and	random	attribute	subset	selection:

– Build	the	tree	from	a	bootstrap	sample
– Instead	of	choosing	the	best	split	among	all	attributes,	select	the	best	

split	among	a	random	subset	of	k	attributes	
(=	bagging	when	k	is	equal	to	the	number	of	attributes)

• There	is	a	bias/variance	tradeoff	with	k:	The	smaller	k,	the	
greater	the	reduction	of	variance	but	also	the	higher	the	
increase	of	bias

12

Random	forests	(2)

• Application	to	our	illustrative	problem:

• Other	advantage:	it	decreases	computing	times	with	respect	
to	bagging	since	only	a	subset	of	all	attributes	needs	to	be	
considered	when	splitting	a	node.

13

Method E Bias Variance
Full regr. Tree 10.2 3.5 6.7

Bagging (k=10) 5.3 3.8 1.5
Random Forests (k=7) 4.8 3.8 1.0
Random Forests (k=5) 4.9 4.0 0.9
Random Forests (k=3) 5.6 4.7 0.8

Ambiguity	decomposition	
(Krogh	and	Vedelsby,	1995)

Let	us	assume	Tmodels																										and	their	
average

We	have	the	following	decomposition:

Meaning	that

Þ The	average	model	is	always	better	than	the	
individual	models	in	the	mean

(This	is	not	true	in	classification)

{ŷ1, ŷ2, . . . , ŷT }

ŷens(x) =
1
T

�

i

ŷi(x)

1
T

�

i

Ey|x{(y � ŷi(x))2} = Ey|x{(y � ŷens(x))2} +
1
T

�

i

(yi(x)� ŷens(x))2

Ey|x{(y � ŷens(x))2} =
1
T

�

i

Ey|x{(y � ŷi(x))2}� 1
T

�

i

(yi(x)� ŷens(x))2

Application:	Kinect
• Ensemble	of	randomized	decision	trees	are	used	in	

Microsoft’s	Xbox	Kinect	for	body	part	labeling:

• Each	sample	corresponds	to	a	single	pixel	and	is	
described	by	depth	differences	between	neighbor	
pixels

• Final	model	is	implemented	on	GPU	to	get	very	fast	
predictions	(200	frames	per	second)	

sy
nt

he
tic

 (t
ra

in
 &

 te
st

)

Figure 2. Synthetic and real data. Pairs of depth image and ground truth body parts. Note wide variety in pose, shape, clothing, and crop.

simplify the task of background subtraction which we as-
sume in this work. But most importantly for our approach,
it is straightforward to synthesize realistic depth images of
people and thus build a large training dataset cheaply.

2.2. Motion capture data
The human body is capable of an enormous range of

poses which are difficult to simulate. Instead, we capture a
large database of motion capture (mocap) of human actions.
Our aim was to span the wide variety of poses people would
make in an entertainment scenario. The database consists of
approximately 500k frames in a few hundred sequences of
driving, dancing, kicking, running, navigating menus, etc.

We expect our semi-local body part classifier to gener-
alize somewhat to unseen poses. In particular, we need not
record all possible combinations of the different limbs; in
practice, a wide range of poses proves sufficient. Further,
we need not record mocap with variation in rotation about
the vertical axis, mirroring left-right, scene position, body
shape and size, or camera pose, all of which can be added
in (semi-)automatically.

Since the classifier uses no temporal information, we
are interested only in static poses and not motion. Often,
changes in pose from one mocap frame to the next are so
small as to be insignificant. We thus discard many similar,
redundant poses from the initial mocap data using ‘furthest
neighbor’ clustering [15] where the distance between poses
p1 and p2 is defined as maxj kpj1�pj2k2, the maximum Eu-
clidean distance over body joints j. We use a subset of 100k
poses such that no two poses are closer than 5cm.

We have found it necessary to iterate the process of mo-
tion capture, sampling from our model, training the classi-
fier, and testing joint prediction accuracy in order to refine
the mocap database with regions of pose space that had been
previously missed out. Our early experiments employed
the CMU mocap database [9] which gave acceptable results
though covered far less of pose space.

2.3. Generating synthetic data
We build a randomized rendering pipeline from which

we can sample fully labeled training images. Our goals in
building this pipeline were twofold: realism and variety. For
the learned model to work well, the samples must closely
resemble real camera images, and contain good coverage of

the appearance variations we hope to recognize at test time.
While depth/scale and translation variations are handled ex-
plicitly in our features (see below), other invariances cannot
be encoded efficiently. Instead we learn invariance from the
data to camera pose, body pose, and body size and shape.

The synthesis pipeline first randomly samples a set of
parameters, and then uses standard computer graphics tech-
niques to render depth and (see below) body part images
from texture mapped 3D meshes. The mocap is retarget-
ting to each of 15 base meshes spanning the range of body
shapes and sizes, using [4]. Further slight random vari-
ation in height and weight give extra coverage of body
shapes. Other randomized parameters include the mocap
frame, camera pose, camera noise, clothing and hairstyle.
We provide more details of these variations in the supple-
mentary material. Fig. 2 compares the varied output of the
pipeline to hand-labeled real camera images.

3. Body Part Inference and Joint Proposals
In this section we describe our intermediate body parts

representation, detail the discriminative depth image fea-
tures, review decision forests and their application to body
part recognition, and finally discuss how a mode finding al-
gorithm is used to generate joint position proposals.
3.1. Body part labeling

A key contribution of this work is our intermediate body
part representation. We define several localized body part
labels that densely cover the body, as color-coded in Fig. 2.
Some of these parts are defined to directly localize partic-
ular skeletal joints of interest, while others fill the gaps or
could be used in combination to predict other joints. Our in-
termediate representation transforms the problem into one
that can readily be solved by efficient classification algo-
rithms; we show in Sec. 4.3 that the penalty paid for this
transformation is small.

The parts are specified in a texture map that is retargetted
to skin the various characters during rendering. The pairs of
depth and body part images are used as fully labeled data for
learning the classifier (see below). For the experiments in
this paper, we use 31 body parts: LU/RU/LW/RW head, neck,
L/R shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R
hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee,
L/R ankle, L/R foot (Left, Right, Upper, loWer). Distinct

http://research.microsoft.com/pubs/145347/BodyPartRecognition.pdf

Boosting methods	(1)
• The	motivation	of	boosting	is	to	combine	the	
ouputs	of	many	« weak »	models	to	produce	a	
powerful	ensemble	of	models.

• Weak	model	=	a	model	that	has	a	high	bias	
(strictly,	in	classification,	a	model	slightly	
better	than	random	guessing)

• Differences	with	previous	ensemble	methods:
– Models	are	built	sequentially	on	modified	versions	
of	the	data

– The	predictions	of	the	models	are	combined	
through	a	weighted	sum/vote

16

Boosting	methods	(2)

17

LS

x

LS1 LS2 LST

…

…

ŷ(x) = �1ŷ1(x) + �2ŷ2(x) + . . . + �T ŷT (x)In regression:

In classification: = the majority class in
according to the weights

ŷ1(x) ŷ2(x) ŷT (x)

ŷ(x) {ŷ1(x), . . . , ŷT (x)}
{�1, . . . ,�T }

Adaboost	(1)
• Assume	that	the	learning	algorithm	accepts	weighted	objects

• This	is	the	case	of	many	learning	algorithms:
– With	trees,	simply	take	into	account	the	weights	when	counting	

objects
– In	neural	networks,	minimize	the	weighted	squared	error

• At	each	step,	adaboost	increases	the	weights	of	cases	from	
the	learning	sample	misclassified	by	the	last	model

• Thus,	the	algorithm	focuses	on	the	difficult	cases	from	the	
learning	sample

• In	the	weighted	majority	vote,	adaboost	gives	higher	
influence	to	the	more	accurate	models

18

{(x1, y1, w1), (x2, y2, w2), . . . , (xN , yN , wN)}

Adaboost	(2)
• Input:	a	learning	algorithm	and	a	learning	sample

• Initialize	the	weights	
• For	t=1	to	T

– Build	a	model	 with	the	learning	algorithm	using	weights wi

– Compute	the	weighted	error:

– Compute
– Change	weights	according	to	

– Normalize	them	so	that	

19

{(xi, yi) : i = 1, . . . , N}
wi = 1/N, i = 1, . . . , N

errt =
�

i wiI(yi �= ŷt(xi))�
i wi

�t = log((1� errt)/errt))

ŷt(x)

wi � wi exp[�tI(yi ⇥= ŷt(xi))]
�

i

wi = 1

Adaboost	(3)

(Bishop, p. 660)

Least	squares	boosting
(a	boosting	algorithm	for	regression)

• Input:	a	learning	sample
• Initialize	

• For	t=1	to	T:
– For	i=1	to	N,	compute	the	residuals

– Build	a	regression	tree	from	the	learning	sample

• Return	the	model

21

{(xi, yi) : i = 1, . . . , N}

ŷ0(x) = 1/N
�

i

yi; ri = yi, i = 1, . . . , N

ri ⇥ ri � ŷt�1(xi)

{(xi, ri) : i = 1, . . . , N}

ŷ(x) = ŷ0(x) + ŷ1(x) + . . . + ŷT (x)

A	generic	boosting	algorithm

• Goal:	Find																																																																				
that	minimizes

• Forward	stage-wise	additive	modeling:
1. Initialize	
2. For	t=1	to	T:

a) Compute
b) Set

• Examples:																								
– Þ Least	squares	boosting
– Þ Adaboost (try	to	prove	it)

ŷ(x) = �1ŷ1(x) + �2ŷ2(x) + . . . + �T ŷT (x)
N�

i=1

L(yi, ŷ(xi))

(�t, ŷt) = arg min
�,ŷ�

�

i

L(yi, ŷ(xi) + �ŷ�(xi))

ŷ(x) = 0

ŷ(x)� ŷ(x) + �tŷt(x)

L(y, y�) = (y � y�)2

L(y, y�) = exp(�yy�)

A	note	about	loss	functions

Boosting	methods
• There	are	many	other	types	of	boosting	algorithms	(eg.	

gradient	boosting)
• Boosting	decision/regression	trees	improves	their	

accuracy	often	dramatically.	However,	boosting	is	more	
sensitive	to	noise	than	averaging	techniques	(overfitting).

• For	boosting	to	work,	the	models	need	not	to	be	perfect	
on	the	learning	sample.	With	trees,	there	are	two	possible	
strategies:
– Use	pruned	trees	(pre-pruned	or	post-pruned	by	cross-validation)
– Limit	the	number	of	tree	tests	(and	split	first	the	most	impure	

nodes)

• Þ there	is	again	a	bias/variance	tradeoff	with	respect	to	
the	tree	size.

24

Experiment with MART	(=Least-squares	boosting)
• On	our	illustrative	problem:

• Boosting	reduces	the	bias	but	increases	the	variance.	
However,	with	respect	to	full	trees,	it	decreases	both	bias	
and	variance.

25

Method E Bias Variance
Full regr. Tree 10.2 3.5 6.7

Regr. Tree with 1 test 18.9 17.8 1.1
+ MART (T=50) 5.0 3.1 1.9
+ Bagging (T=50) 17.9 17.3 0.6
Regr. Tree with 5 tests 11.7 8.8 2.9
+ MART (T=50) 6.4 1.7 4.7
+ Bagging (T=50) 9.1 8.7 0.4

Other	ensemble	approaches	(1)
• Bayesian	model	averaging

P (y|x, LS) =
�

h�H
P (y|h, LS)P (h|LS)

P (h|LS) � P (h)P (LS|h)

� P (h)
�

�

P (LS|�, h)P (�|h)

Prior knowledge about
models (e.g., simple
models are more probable)

Quality of the fit

26

Other	ensemble	approaches	(2)
• Stacking:
learn	a	model	to	combine	the	models
– Let
– Let																														be	T+1	learning	algorithms
– For																									do

• Construct	a	model:
• Compute	predictions:	

– Set																																with
– Return		

27

LS = {(xi, yi)|i = 1, . . . , N}

ŷt = At(LS)

ŷt
i = ŷt(xi)

At, t = 0, . . . , T

t = 1, . . . , T

LS0 = {(x0
i , yi)} x0

i = (yt
i)

T
t=1

ŷ = A0(LS0)

Interpretability	and	efficiency	of	ensembles

• Since	we	average	several	models,	we	loose	the	
interpretability	of	the	combined	models	and	some	
efficiency

• However,	
– We	still	can	use	the	ensembles	to	compute	variable	
importance	by	averaging	over	all	trees.	Actually,	this	even	
stabilizes	the	estimates.

– Averaging	techniques	can	be	parallelized	and	boosting	
type	algorithm	uses	smaller	trees.	So,	the	increase	of	
computing	times	is	not	so	detrimental.	

28

Experiments	on	Golub’s microarray	data

• 72	objects,	7129	numerical	attributes	(gene	expressions),	2	classes	
(ALL	and	AL)

• Leave-one-out	error	with	several	variants

• Variable	importance	with	boosting

29

Method Error

1 decision tree 22.2% (16/72)

Random forests (k=85,T=500) 9.7% (7/72)

Extra-trees (sth=0.5, T=500) 5.5% (4/72)

Adaboost (1 test node, T=500) 1.4% (1/72)

0
10
20
30
40
50
60
70
80
90
100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

Variables

Im
po
rta
nc
e

Conclusion
• Ensemble	methods	are	very	effective	techniques	to	reduce	

bias	and/or	variance.	They	can	transform	a	not	so	good	
method	to	a	competitive	method	in	terms	of	accuracy.

• Adaboost	with	trees	is	considered	as	one	of	the	best	« off-the-
shelve »	classification	method.

• Interpretability	of	the	model	and	efficiency	of	the	method	are	
difficult	to		preserve	if	we	want	to	reduce	variance	
significantly.

• There	are	other	ways	to	tackle	the	variance/overfitting	
problem,	e.g.:
– Bayesian	approaches	(related	to	averaging	techniques)
– Support	vector	machines	(they	maintain	a	low	variance	by	maximizing	

the	classification	margin)

30

Machine	learning challenges
• Machine	learning challenges	are	commonly won	by	
« ensemble »	solutions

• Netflix prize (1M$	reward):
– Best	solution	combines	107	models obtained from
different methods (stacking)

• Yahoo!	2011	KDD	Cup (5,000$	reward):
– Best	solution	uses	two levels of	stacking

RMSE=22.80 RMSE=21.36 RMSE=21.02 RMSE=21.01

32

Feature	selection

l Techniques	to	reduce	the	number	of	features	
used	by	the	learning	algorithm

l Why?
- Avoid	overfitting and	improve	model	performance
- Improve	interpretability
- Provide	faster	and	more	cost-effective	models
- Reduce	overall	computing	times	(if	the	feature	
selection	technique	is	fast)

Feature	selection	vs ranking

• Feature	selection:	
– find	a	small	(or	the	smallest)	subset	of	features	
that	maximizes	accuracy

• Feature	ranking:
– sort	the	variable	according	to	their	relevance	at	
predicting	the	output

• There	are	techniques	in	both	families
• Feature	selection	can	be	obtained	from	a	
feature	ranking:
– Eg.,	select	the	top	k features	in	a	ranking

Some	formalization
Let	Y denote	the	class	variable	and	V={X1,...,Xp}	the	set	of	input	
variables:
• A	feature	Xi is:

– strongly	relevant	iff P(Y|Xi,V\Xi)	≠	P(Y|V\Xi)
– weakly	relevant	iff it	is	not	strongly	relevant	and	P(Y|Xi,S)	≠	P(Y|S)	for	

some	subset	S⊂V
– irrelevant otherwise

• A	subset	M⊆V	of	variables	is	a	markov boundary	for	Y	if	it	is	
minimal and	P(Y|M,V\M)	=	P(Y|M)
– Features	in	M	are	either	weakly	or	strongly	relevant.	They	are	all	

strongly	relevant	when	the	distribution	P	is	strictly	positive.

• Feature	selection	is	often	formulated	as	finding	a	Markov	
boundary	M for	Y

NB: All	variables	in	a	Markov	boundary	do	not	necessarily	appear	in	the	
Bayes	model	(depending	on	the	loss	function)

35

Feature	selection

l Three	main	approaches:
- Filter: a	priori	selection	of	the	variables	(ie,	
independently	of	the	supervised	learning	
algorithm)

- Embedded: feature	selection	embedded	in	the	
learning	algorithm

- Wrapper: use	CV	to	find	the	optimal	set	of	
features	for	a	given	algorithm

Filter	techniques
• Main	idea:

– Associate	a	relevance	score	to	each	feature
– Remove	low-scoring	features

• Often	univariate scoring:
– Any	score	measures	used	in	decision	trees
– Statistical	test	(t-test,	chi-square,	etc.)

• But	multivariate	approaches	exist	(Relief,	
Markov	blanket	filter,	decision	trees,	etc.)

• Optimal	number	of	features	can	be	
determined	by	cross-validation

Univariate vs multivariate

Each	feature	is	useless	alone	(low	univariate
scoring)	but	together	they	perfectly	explain	the	
classification

38

Filter	techniques
l Advantages:

- Univariate:	fast	and	scalable
- Independent	of	the	SL	algorithm

l Drawbacks:
- Ignore	the	SL	algorithm
- Univariate:	ignores	feature	dependencies
- Multivariate:	slower	than	univariate approaches

39

Embedded
l Some	supervised	learning	methods	embed	
feature	selection.	The	search	for	an	optimal	
subset	of	features	is	built	into	the	learning	
algorithm

l Examples:
l Decision	tree	node	splitting	is	a	feature	selection	
technique

l Tree	ensemble	variable	importance	measures
l Absolute	weights	in	a	linear	SVM	model

ŷ(x) = sgn(
�

i

wixi + b)

LASSO
Linear	model	learned	with	L1	penalization

min
�

N�

i=1

(yi � (�0 +
�

j

�jxj))2 + ⇥
�

j

|�j |

LASSO RIDGE

lambda

Embedded

l Advantages:
- Usually	computationally	efficient
- Well	integrated	with	the	learning	algorithm	
(obviously)

- Multivariate
l Drawbacks:

- Specific	to	a	given	learning	algorithm

42

Wrapper	methods	

l Try	to	find	a	subset	of	features	that	maximizes	the	quality	
of	the	model	induced	by	the	learning	algorithm.

l Quality	of	the	model	estimated	by	cross-validation
l As	the	number	of	subsets	of	p features	is	2p,	all	subsets	can	
usually	not	be	evaluated	and	heuristics	are	necessary

l Many	approaches	exist:
- Forward	or	backward	selection:	add	(remove)	the	variable	that	
most	decreases	(less	increases)	the	error

- Optimization	by	genetic	algorithms

43

Recursive	feature	elimination

l Popular	wrapper,	especially	in	bioinformatics
l Assume	a	learning	algorithm	that	can	rank	the	
features	(e.g.,	linear	SVM,	decision	trees)

l Iterate	(from	the	full	feature	set):
- learn	a	model	from	the	current	feature	set
- rank	the	features	with	the	model
- remove	the	feature	with	the	smallest	ranking

l Keep	the	feature	set	that	gives	the	lowest	(CV)	
error

44

Recursive	feature	elimination

Error

Optimal feature set # of features

CV error

45

Wrapper	methods	
l Advantages:

- Custom-tailored	to	the	learning	algorithm
- Able	to	find	interactions	and	remove	redundant	
variables

l Drawbacks:
- Prone	to	overfitting

l It	is	often	easy	to	find	a	small	subset	of	noisy	features	
that	discriminates	perfectly	the	classes

- Expensive
l We	have	to	build	a	model	for	each	subset	of	variables

46

Selection	bias

l We	often	see	this	experiment:
- From	the	dataset,	select	the	N	top	variables	using	
some filter

- Evaluate	an	algorithm	that	uses	these	N variables	
as	inputs	by	cross-validation	(eg.,	LOO)	on	the	
dataset

l What	is	wrong	with	this	protocol?

47

An	artificial	experiment

A1 A2 ... A1000 Y
-0.86 0.17 ... 0 C2
-2.3 -1.2 ... -0.42 C1
-0.37 -0.11 ... -0.64 C1
0.41 0.67 ... -0.8 C2
-0.51 -0.59 ... 0.98 C2
-0.25 -0.27 ... -0.68 C1
-0.52 0.23 ... 0.11 C1
-1.3 -0.2 ... 0.14 C1
0.93 -0.78 ... -0.01 C2
-0.25 -0.29 ... 0.69 C2
-0.6 0.92 ... -0.64 C1
0.22 -0.8 ... -0.5 C2
-0.62 0.2 ... 0.08 C1
-0.3 0.8 ... 0.02 C2
-0.91 0.44 ... -0.57 C1
0.76 0.65 ... -0.08 C1

250 objects

1000 variables

Each variable randomly drawn
from a N(0,1) distribution

The class is selected randomly (with
P(C1)=P(C2)=0.5)

48

An	artificial	experiment
l Two	trials:

- Tree	bagging	without	feature	selection:						10-fold	
CV	error:	52%

- Tree	bagging	with	the	20	top	features	(t-test):	10-
fold	CV	error:	35%

l One	could	conclude	that:
- There	are	20	interesting	variables
- From	them,	one	can	classify	better	than	at	
random

l But,	on	a	new	set	of	250	samples,	the	error	is	
52%

49

Selection	bias
l We	have	both	selected	the	variables	and	
tested	the	model	on	the	basis	of	the	whole	
training	set	⇒ overfitting

l Correct	protocol:
- Divide	the	LS	into	10	folds
- For	i=1	to	10:

l remove	the	ith fold	from	the	LS
l select	the	top	20	variables	from	the	remaining	objects
l learn	the	model	using	the	20	variables	and	the	
remaining	objects

l test	the	model	on	the	ith fold

50

Example	on	Golub et	al's data
l SVM	and	recursive	feature	elimination

AE = Error on LS
CV1IE= internal LOO

CV10E= external 10-fold CV
TE= Error on an independent test
sample
B.632+=another unbiased error
estimate

Ambroise and McLachlan, PNAS, 2002

Further	reading

• Ensemble	methods
– Hastie:		8.7,	8.8,	10.1-4,	15	(not	in	detail)

• Feature	selection:
– Hastie:	18
– Guyon and	Elisseeff,	An	introduction	to	variable	and	feature	selection.

http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
http://clopinet.com/fextract-book/IntroFS.pdf

– Saeys et	al.	A	review	of	feature	selection	techniques	in	bioinformatics
http://dx.doi.org/10.1093/bioinformatics/btm344

Software

• Feature	selection	and	ensembles	(all):
– scikit-learn
– R

• Boosting (for	large	datasets)
– XGBoost:	http://xgboost.readthedocs.io/
– Light-GBM:	https://github.com/Microsoft/LightGBM

