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Reminder: bias/variance decomposition

Ers{Ey:1(y — 9z ))?}} = noise(x) + bias? () + variance(x)

. noise(z) = B, {(y — h(z))*}

Quantifies how much y varies from hp(z) = E,;{y}, the Bayes
model.

e bias®*(z) = (hp(z) — Ers{y(z)})?

Measures the error between the Bayes model and the
average model.

» variance(z) = Ers{(J — Ers{f(z)})*}

Quantify how much g(x)varies from one learning sample to
another.



Reminder: Bias and variance reduction
techniques

* In the context of a given method:

— Adapt the learning algorithm to find the best trade-off
between bias and variance.

— Not a panacea but the least we can do.
— Example: pruning, weight decay.
* Ensemble methods:
— Change the bias/variance trade-off.
— Universal but destroys some features of the initial method.
— Example: bagging, boosting.



Ensemble methods

 Combine the predictions of several models built with a
learning algorithm in order to improve with respect to the use

of a single model

* Two main families:

— Averaging techniques
* Grow several models independently and simply average their predictions
* Ex: bagging, random forests
e Decrease mainly variance

— Boosting type algorithms
* Grows several models sequentially
* Ex: Adaboost, MART
* Decrease mainly bias



Bagging
e Suppose that we can generate several learning
samples from the original data distribution P(z,y)

* Let us study the following algorithm:
— Draw T learning samples {LS1, LS, ..., LSt}
— Learn a model YLs, from each LS;
— Compute the average model
Yens (T Z?JLS

* How do the bias and variance of this algorlthm
relate to that of the original algorithm
(building yrs from one LS)



Bagging (2

Eps{Er(z)} = By {(y — hp(2))*} + (hp(z) — Ers{i(@)})* + Ers{(9(z) — Ers{(z)})’}

* |ts bias is the same as the original algorithm
Busy..ose{lens(@} = 73 Bus{ins (@)
= ELSZ{?)Ls(z)}
* Variance is divided by T

ELSl ..... LST{(gens (z) — Ele ..... LSt {gens (Z)})2}

1

— TELS{(?)(E) — ELS{gens(g)})Q}

—Mmean square error decreases



Bagging (3

In practice one can not drawn several LS ( P(z,y) is
unknown)

ldea: use bootstrap sampling to generate several
learning samples

Bagging (bootstrap aggregating):
— Drawn T bootstrap samples { B, By, ..., By} from LS
— Learn a model :&Bi from each B;

yens Z yB

Variance is reduced but bias increases a bit (because
the effective size of a bootstrap sample is about 30%
smaller than the original 1.§)

— Build the average model



Bagging «

LS
LS LS LS
P % v
K —_—>
| l l
yl( QQ
In regression: =1/k(g1(z) + ... + yr(z

In classification:y(_) = the majority class in {yl (_)7 o gr(2)}
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increasing too much the bias.

Bagging

* Usually, bagging reduces very much the variance without

* Application to regression trees (on Friedman’s problem)

Method E Bias Variance
3 Test regr. Tree 14.8 11.1 3.7
Bagged (T=25) 11.7 10.7 1.0
Full regr. Tree 10.2 3.5 6.7
Bagged (T=25) 5.3 3.8 1.5

« Strong variance reduction without increasing the bias
(although the model 1s much more complex than a single

tree)
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Bagging «

10



Other averaging techniques

Perturb and Combine paradigm:

— Perturb the data or the learning algorithm to obtain several

models that are good on the learning sample.

— Combine the predictions of these models

Usually, these methods decrease the variance (because of
averaging) but (slightly) increase the bias (because of the

perturbation)
Examples:

— Bagging perturbs the learning sample.
— Learn several neural networks with random initial weights

Method E Bias Variance
MLP (10-10) 4.6 1.4 32
Average of 10 MLPs 2.0 1.4 0.6

— Random forests.
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Random forests

Perturb and combine algorithm specifically designed for trees
Combine bagging and random attribute subset selection:

— Build the tree from a bootstrap sample
— Instead of choosing the best split among all attributes, select the best
split among a random subset of k attributes

(= bagging when k is equal to the number of attributes)

There is a bias/variance tradeoff with k: The smaller k, the
greater the reduction of variance but also the higher the

increase of bias
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Random forests

* Application to our illustrative problem:

Method E Bias Variance
Full regr. Tree 10.2 3.5 6.7
Bagging (k=10) 5.3 3.8 1.5
Random Forests (k=7) 4.8 3.8 1.0
Random Forests (k=5) 4.9 4.0 0.9
Random Forests (k=3) 5.6 4.7 0.8

 Other advantage: it decreases computing times with respect
to bagging since only a subset of all attributes needs to be
considered when splitting a node.
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Ambiguity decomposition
(Krogh and Vedelsby, 1995)

Let us assume T models {91,92,...,9rand their
average
yens Zyz

We have the following decomposition:
= 3 Byl — 527} = Byl Gens (@)} + 25 3 (04(2) — Gene(2))’

Meaning that |
Eyo{(y = Jens(z ZEW{ y— §i(2))*} — %Z(yi(@ — Gens ()

—> The average model is always better than the
individual models in the mean

(This is not true in classification)



Application: Kinect

* Ensemble of randomized decision trees are used in
Microsoft’s Xbox Kinect for body part labeling:

.\..\fr “, A
%fwﬁ W

 Each sample corresponds to a single pixel and is
described by depth differences between neighbor
pixels

* Final model is implemented on GPU to get very fast
predictions (200 frames per second)



Boosting methods .

 The motivation of boosting is to combine the
ouputs of many « weak » models to produce a
powerful ensemble of models.

 Weak model = a model that has a high bias
(strictly, in classification, a model slightly
better than random guessing)

* Differences with previous ensemble methods:

— Models are built sequentially on modified versions
of the data

— The predictions of the models are combined
through a weighted sum/vote
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Boosting methods .

LS
|
LIS1 7 LISZ 7 LIST
X —
| | |
91(2) J2(2) g7 ()

In regression:  ¥(z) = B1y1(z) + BoP2(x) + ... + Brir(z)

In classification: 4(z)= the majority class in {91(z),...,9r(x)}
according to the weights {51, ..., 07}

17



Adaboost

Assume that the learning algorithm accepts weighted objects
{(331, Y1, w1)7 (3327 Y2, w2>7 s ey (33]\77 YN, ’UJN)}
This is the case of many learning algorithms:

— With trees, simply take into account the weights when counting
objects

— In neural networks, minimize the weighted squared error

At each step, adaboost increases the weights of cases from
the learning sample misclassified by the last model

Thus, the algorithm focuses on the difficult cases from the
learning sample

In the weighted majority vote, adaboost gives higher
influence to the more accurate models
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Adaboost

Input: a learning algorithm and a learning sample
{(ZCZ,yZ) Dy = 1,,N}

Initialize the weights w; = 1/N,i=1,..., N

Fort=1to T

— Build a model ¥t (CC) with the learning algorithm using weights w;
— Compute the weighted error:

2 Wil (yi 7 i (i)
2 Wi

CITy =

— Compute 3; = log((1 — erry)/erry))
— Change weights according to

w; «— w; exp| Bl (yi 7# Je(i))
— Normalize them so that Zw’i —1

1
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Adaboost
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Figure 14.2 lllustration of boosting in which the base learners consist of simple thresholds applied to one or
other of the axes. Each figure shows the number m of base learners trained so far, along with the decision
boundary of the most recent base learner (dashed black line) and the combined decision boundary of the en-
semble (solid green line). Each data point is depicted by a circle whose radius indicates the weight assigned to
that data point when training the most recently added base learner. Thus, for instance, we see that points that
are misclassified by the m = 1 base learner are given greater weight when training the m = 2 base learner.

(Bishop, p. 660)



Least squares boosting

(a boosting algorithm for regression)

* Input: alearningsample {(z;,vy;):i=1,..., N}
* |Initialize

Jo(x) = 1/NZyZ-; ri=vy,i=1,...,N
* Fort=1toT: :

— For i=1to N, compute the residuals

i < 1 — Ye—1(;)
— Build a regression tree from the learning sample
{(Cl?i,’l“i) L= 1,...,N}
* Return the model X X X
g(x) = go(x) + 91 (x) + ... + §r(z)
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A generic boosting algorithm

e Goal: Find j(z) = [ﬁyl( ) + Botja(z) + ... + Brir(z)
that minimizes ZL(%,?)(&))

* Forward stage-wise additive modeling:
1. Initialize g(z) =0

2. Fort=1to T:
a) Compute (B i) = argmanL Yi, U(xi) + Y (2i))
b) Set .
5 §(z) < i) + Brin(@)
* Examples:

— L(y,y') = (v —y')? = Least squares boosting
— L(y,y') = exp(—~yy') = Adaboost (try to prove it)



A note about loss functions

(?). _ - Misclassification
- EXxponential
o - Binomial Deviance
a7 = Squared Error
\ — Support Vector
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FIGURE 10.4. Loss functions for two-class classification. The response is
y = =1; the prediction is f, with class prediction sign(f). The losses are
misclassification: I(sign(f) # vy); exponential: exp(—yf); binomial deviance:
log(1 + exp(—2yf)); squared error: (y — f)*; and support vector: (1 —yf)+ (see
Section 12.3). Each function has been scaled so that it passes through the point
(0,1).



Boosting methods

There are many other types of boosting algorithms (eg.
gradient boosting)

Boosting decision/regression trees improves their
accuracy often dramatically. However, boosting is more
sensitive to noise than averaging techniques (overfitting).

For boosting to work, the models need not to be perfect
on the learning sample. With trees, there are two possible
strategies:
— Use pruned trees (pre-pruned or post-pruned by cross-validation)
— Limit the number of tree tests (and split first the most impure
nodes)
—> there is again a bias/variance tradeoff with respect to
the tree size.
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EXpe rlment Wlth MART (=Least-squares boosting)

* On our illustrative problem:

Method E Bias Variance
Full regr. Tree 10.2 3.5 6.7
Regr. Tree with 1 test 18.9 17.8 1.1
+ MART (T=50) 5.0 3.1 1.9
+ Bagging (T=50) 17.9 17.3 0.6
Regr. Tree with 5 tests 11.7 8.8 2.9
+ MART (T=50) 6.4 1.7 4.7
+ Bagging (T=50) 9.1 8.7 0.4

* Boosting reduces the bias but increases the variance.
However, with respect to full trees, it decreases both bias
and variance.
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Other ensemble approaches ¢

e Bayesian model averaging

P(y|z,LS) = »  P(ylh, LS)P(h|LS)
heH

Prior knowledge about

models (e.g., simple Quality of the fit
models are more probable) 1 '

P(h|LS) o« P(h)P(LS|h)
o« P(h) Y P(LS|0,h)P(6]h)
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Other ensemble approaches

e Stacking:

learn a model to combine the models
—Let LS ={(x;,ys)|lt=1,...,N}
—Let A' t=0,...,T be T+1 learning algorithms
—Fort=1,...,7T do

* Construct a model: @t — At(LS)

* Compute predictions: > = g
—Set LSY = {(2),v;)} with z¥
— Return § = A°(LSY)

—t
-
&
~.
|
N~
~
N—"
a3
i
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Interpretability and efficiency of ensembles

* Since we average several models, we loose the

interpretability of the combined models and some
efficiency

* However,

— We still can use the ensembles to compute variable

importance by averaging over all trees. Actually, this even
stabilizes the estimates.

— Averaging techniques can be parallelized and boosting
type algorithm uses smaller trees. So, the increase of
computing times is not so detrimental.
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Experiments on Golub’s microarray data

72 objects, 7129 numerical attributes (gene expressions), 2 classes
(ALL and AL)

Leave-one-out error with several variants

Method Error

1 decision tree 22.2% (16/72)
Random forests (k=85,T=500) 9.7% (7/72)
Extra-trees (s;,=0.5, T=500) 5.5% (4/72)
Adaboost (1 test node, T=500) 1.4% (1/72)

Variable importance with boosting
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Conclusion

Ensemble methods are very effective techniques to reduce
bias and/or variance. They can transform a not so good
method to a competitive method in terms of accuracy.

Adaboost with trees is considered as one of the best « off-the-
shelve » classification method.

Interpretability of the model and efficiency of the method are
difficult to preserve if we want to reduce variance
significantly.
There are other ways to tackle the variance/overfitting
problem, e.g.:

— Bayesian approaches (related to averaging techniques)

— Support vector machines (they maintain a low variance by maximizing
the classification margin)
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Machine learning challenges

 Machine learning challenges are commonly won by
« ensemble » solutions
* Netflix prize (1MS reward):

— Best solution combines 107 models obtained from
different methods (stacking)

* Yahoo! 2011 KDD Cup (5,000S reward):
— Best solution uses two levels of stacking

\

Single

Test-Set Post-
Models
= Val.-Set Blending -Processing

Data-Set
Blending

RMSE=22.80 RMSE=21.36 RMSE=21.02 RMSE=21.01



Feature selection

o Techniques to reduce the number of features
used by the learning algorithm

— Avoid overfitting and improve model performance
— Improve interpretability

— Provide faster and more cost-effective models

— Reduce overall computing times (if the feature
selection technique is fast)
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Feature selection vs ranking

Feature selection:

— find a small (or the smallest) subset of features
that maximizes accuracy

Feature ranking:

— sort the variable according to their relevance at
predicting the output

There are techniques in both families

Feature selection can be obtained from a
feature ranking:

— Eg., select the top k features in a ranking



Some formalization

Let Y denote the class variable and V={X,,...,X,} the set of input
variables:

* A feature X;is:
— strongly relevant iff P(Y|X,\V\X)) # P(Y| V\X)
— weakly relevant iff it is not strongly relevant and P(Y| X,S) # P(Y|S) for
some subset S CV
— irrelevant otherwise

 Asubset MC V of variables is a markov boundary for Yif it is
minimal and P(Y|M,V\M) = P(Y| M)
— Features in M are either weakly or strongly relevant. They are all
strongly relevant when the distribution P is strictly positive.
* Feature selection is often formulated as finding a Markov
boundary M for Y

NB: All variables in a Markov boundary do not necessarily appear in the
Bayes model (depending on the loss function)



Feature selection

« Three main approaches:

— Filter: a priori selection of the variables (ie,
independently of the supervised learning
algorithm)

— Embedded: feature selection embedded in the
learning algorithm

- Wrapper: use CV to find the optimal set of
features for a given algorithm
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Filter techniques

Main idea:
— Associate a reIevance score to each feature
— Remove low-scoring features

Often univariate scoring:
— Any score measures used in decision trees
— Statistical test (t-test, chi-square, etc.)

But multivariate approaches exist (Relief,
Markov blanket filter, decision trees, etc.)

Optimal number of features can be
determined by cross-validation



Univariate vs multivariate

Each feature is useless alone (low univariate
scoring) but together they perfectly explain the
classification




Filter techniques

o Advantages:

— Univariate: fast and scalable

- Independent of the SL algorithm
o Drawbacks:

— Ignore the SL algorithm

— Univariate: ignores feature dependencies
— Multivariate: slower than univariate approaches
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Embedded

o Some supervised learning methods embed
feature selection. The search for an optimal
subset of features is built into the learning
algorithm

o Examples:

o Decision tree node splitting is a feature selection
technique

o Tree ensemble variable importance measures
o Absolute weights in a linear SVM model

y(x) = sgn(z w;T; + b)

39



LASSO

Linear model learned with L1 penalization

N
mgn D wi—Bo+D>_Bim;))+ 2D 15l
i=1 J J

LASSO - RIDGE o

06

0.4

ff
0.2

0.0

-0.2
1

T I
0.0 0.2 0.4 0.6 0.8 1.0

<«—— lambda



Embedded

o Advantages:
— Usually computationally efficient

— Well integrated with the learning algorithm
(obviously)

— Multivariate

o Drawbacks:

— Specific to a given learning algorithm



Wrapper methods

Try to find a subset of features that maximizes the quality
of the model induced by the learning algorithm.

Quality of the model estimated by cross-validation

As the number of subsets of p features is 2%, all subsets can
usually not be evaluated and heuristics are necessary

Many approaches exist:

— Forward or backward selection: add (remove) the variable that
most decreases (less increases) the error

— Optimization by genetic algorithms
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Recursive feature elimination

« Popular wrapper, especially in bioinformatics

o Assume a learning algorithm that can rank the
features (e.g., linear SVM, decision trees)

o Iterate (from the full feature set):
— learn a model from the current feature set
- rank the features with the model
—- remove the feature with the smallest ranking

« Keep the feature set that gives the lowest (CV)

error
43



Recursive feature elimination

Error

CV error

Optimal feature set
p # of features
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Wrapper methods

o Advantages:
— Custom-tailored to the learning algorithm

— Able to find interactions and remove redundant
variables

o Drawbacks:
— Prone to overfitting

o It is often easy to find a small subset of noisy features
that discriminates perfectly the classes

— Expensive

o We have to build a model for each subset of variables
45



Selection bias

o We often see this experiment:

- From the dataset, select the N top variables using
some filter

— Evaluate an algorithm that uses these N variables
as inputs by cross-validation (eg., LOO) on the
dataset

o What is wrong with this protocol?
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An artificial experiment

1000 variables
A

/ —~
A1 A2 A1000 Y
-0.86 0.17 0 C2
2.3 1.2 -0.42 C1
_ -0.37  -0.11 -0.64 C1
250 objects 0.41 0.67 -0.8 c2
-0.51 -0.59 0.98 C2
-0.25  -0.27 -0.68 C1
-0.52 0.23 0.11 C1
-1.3 -0.2 0.14 C1
0.93 -0.78 -0.01 C2
-0.25  -0.29 0.69 C2
0.6 0.92 -0.64 C1
0.22 -0.8 -0.5 C2
-0.62 0.2 0.08 C1
0.02 C2
-0.57 C1
-0.08 C1

The class is selected randomly (with
P(C1)=P(C2)=0.5)

47

Each variable randomly drawn
from a N(0,1) distribution



An artificial experiment

o TWwo trials:

- Tree bagging without feature selection:  10-fold
CV error: 52%

— Tree bagging with the 20 top features (t-test): 10-
fold CV error: 35%

e One could conclude that:
— There are 20 interesting variables

- From them, one can classify better than at
random

o But, on a new set of 250 samples, the error is
52% 48



Selection bias

o« We have both selected the variables and
tested the model on the basis of the whole

training set = overfitting

o Correct protocol:
— Divide the LS into 10 folds

— Fori=1to 10:

 remove the it" fold from the LS
o select the top 20 variables from the remaining objects

o learn the model using the 20 variables and the
remaining objects

« test the model on the it" fold 4



Example on Golub et al's data

e SVM and recursive feature elimination

0.3
-0 AE
Mop * (B:\éyZE+
--- CVI0E AE = Error on LS
e CV1IE= internal LOO
| CV10E= external 10-fold CV
e 4 TE= Error on an independent test
' sample
0.05 B.632+=another unbiased error
estimate

0 2 4 6 8 10 12
log2(number of genes)

Ambroise and McLachlan, PNAS, 2002 50



Further reading

* Ensemble methods
— Hastie: 8.7, 8.8, 10.1-4, 15 (not in detail)

* Feature selection:
— Hastie: 18
— Guyon and Elisseeff, An introduction to variable and feature selection.
http://www.imlr.org/papers/volume3/guyon03a/guyon03a.pdf
http://clopinet.com/fextract-book/IntroFS.pdf
— Saeys et al. A review of feature selection technigues in bioinformatics
http://dx.doi.org/10.1093/biocinformatics/btm344




Software

* Feature selection and ensembles (all):
— scikit-learn
—R

e Boosting (for large datasets)

— XGBoost: http://xgboost.readthedocs.io/

— Light-GBM: https://github.com/Microsoft/LightGBM




