Applied inductive learning - Lecture 3

Louis Wehenkel (& Pierre Geurts)

Department of Electrical Engineering and Computer Science University of Liège

Montefiore - Liège - October 1, 2015

Find slides: $http://montefiore.ulg.ac.be/\sim lwh/AIA/$

Batch-mode Supervised Learning

Linear regression

Least mean square error solution Regularization and algorithmics Residual fitting

Batch-mode Supervised Learning

(Notations)

- ▶ Objects (or observations): $LS = \{o_1, ..., o_N\}$
- Attribute vector: $\mathbf{a}^i = (a_1(o_i), \dots, a_n(o_i))^T$, $\forall i = 1, \dots, N$.
- Attribute values: $\mathbf{a}_j = (a_j(o_1), \dots, a_j(o_N))^T$ $\forall j = 1, \dots, n$.
- ▶ Outputs: $y^i = y(o_i)$ or $c^i = c(o_i)$, $\forall i = 1,...,N$.
- ► LS Table

- ▶ LS attribute matrix: $A = (a^1, ..., a^N)$ (n lines, N columns)
- ► LS ouput column: $\mathbf{y} = (y^1, \dots, y^N)^T$

Linear regression models

- Output is numerical scalar
- All inputs are numerical scalars
- Linear regression tries to approximate output by

$$\hat{y}(o) = w_0 + \sum_{i=1}^n w_i a_i(o)$$

Supervised learning problem:

Choose the parameters w_0, w_1, \dots, w_n so as to fit well LS and have good generalization to unseen objects

AIA...

Linear regression models

Linear in the parameters, not necessarily in the original inputs.

$$\hat{y}(o) = w_0 + \sum_{i=1}^k w_i \phi_i(\mathbf{a}(o))$$

Inputs can come from different sources:

- quantitative measurements
- transformations of quantitative measurements (log, square-root, etc.)
- ▶ basis expansions, such as $a_2(o) = a_1^2(o), a_2(o) = a_1^3(o)$, etc.
- numeric or "dummy" coding of qualitative inputs

Posing, $a_0(o) = 1, \forall o$ and denoting by

- 1. $\mathbf{a}'(o_i) = (a_0(o_i), a_1(o_i), \dots, a_n(o_i))^T$, and
- 2. $\mathbf{w}' = (\mathbf{w_0}, \mathbf{w_1}, \dots, \mathbf{w_n})^T$, square error (SE) at o_i is defined by

$$SE(o_i, \mathbf{w}') = (y(o_i) - \hat{y}(o_i))^2 = (y(o_i) - \mathbf{w}'^T \mathbf{a}'(o_i))^2$$

and the total squared error (TSE) by

$$TSE(LS, \mathbf{w}') = \sum_{i=1}^{N} (y(o_i) - \mathbf{w}'^T \mathbf{a}'(o_i))^2$$

or in vector notation (denoting by $A' = (a'^1, \dots, a'^N)$)

$$TSE(LS, \mathbf{w}') = (\mathbf{y} - A'^T \mathbf{w}')^T (\mathbf{y} - A'^T \mathbf{w}')$$

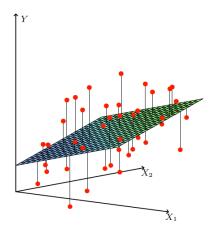


FIGURE 3.1. Linear least squares fitting with $X \in \mathbb{R}^2$. We seek the linear function of X that minimizes the sum of squared residuals from Y.

Least mean square error solution: one dimension

Assuming only one input, the solution is computed as:

$$(w_0^*, w_1^*) = \arg\min_{w_0, w_1} \sum_{i=1}^{N} (y(o_i) - w_0 - w_1 a_1(o_i))^2$$

Canceling the derivative with respect to w_0 and w_1 , one gets:

$$w_{1}^{*} = \frac{\sum_{i=1}^{N} (a_{1}(o_{i}) - \overline{a}_{1})(y(o_{i}) - \overline{y})}{\sum_{i=1}^{N} (a_{1}(o_{i}) - \overline{a}_{1})^{2}} = \frac{cov(a_{1}, y)}{\sigma_{a_{1}}^{2}}$$

$$w_{0}^{*} = \overline{y} - w_{1}^{*} \overline{a}_{1}$$

where $\overline{a}_1 = N^{-1} \sum_{k=1}^N a_1(o_k)$ and $\overline{y} = N^{-1} \sum_{k=1}^N y(o_k)$ Substituting the above into $y(o) = w_0^* + w_1^* a_1(o)$:

$$\frac{y(o)-\overline{y}}{\sigma_y}=\rho_{a_1,y}\frac{a_1(o)-\overline{a}_1}{\sigma_{a_1}},$$

with $\rho_{a_1,y}$ the correlation between a_1 and y, and σ_y , σ_{a_1} the standard deviations of y and a_1

Least mean square error solution: multidimensional case

Choose \mathbf{w}' to minimize

$$TSE(LS, \mathbf{w}') = (\mathbf{y} - A'^T \mathbf{w}')^T (\mathbf{y} - A'^T \mathbf{w}').$$

Differentiating w.r.t. \mathbf{w}' (gradient)

$$\nabla_{w'} TSE(LS, \boldsymbol{w}') = -2A'(\boldsymbol{y} - A'^T \boldsymbol{w}')$$

and solving for $\nabla_{w'}TSE(LS, \boldsymbol{w'}^*) = 0$ we obtain

$$\mathbf{w'}^* = \left(A'A'^T\right)^{-1}A'\mathbf{y}$$

Note that $\nabla^2_{w'}TSE(LS, \mathbf{w}') = 2A'A'^T$ is symmetric positive (semi-) definite.

Shift invariance: suppose we define new attribute vector by $\mathbf{a}_c(o) = \mathbf{a}(o) + \mathbf{c}$ where \mathbf{c} is a constant vector (i.e. independent of object).

Let (w_0, \mathbf{w}) be the optimal solution in the original attribute space. Then it is easy to see that $(w_0 - \mathbf{w}^T \mathbf{c}, \mathbf{w})$ is optimal in the new space.

Indeed, we have

$$\hat{y}_c(o) = w_0 - \mathbf{w}^T \mathbf{c} + \mathbf{w}^T \mathbf{a}_c(o) = w_0 + \mathbf{w}^T \mathbf{a}(o) = \hat{y}(o).$$

Hence, if $(w_0 - \boldsymbol{w}^T \boldsymbol{c}, \boldsymbol{w})$ is not optimal in the new space, (w_0, \boldsymbol{w}) couldn't be optimal in the original space.

Let us discuss the meaning of the table $(A'A'^T)$: element i, j is obtained by the scalar product of line i and line j of matrix A'. Thus we have

$$A'A'^T = N \begin{pmatrix} 1 & \overline{a}_1 & \dots & \overline{a}_n \\ \hline \overline{a}_1 & g_{1,1} & \dots & g_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a}_n & g_{n,1} & \dots & g_{n,n} \end{pmatrix}$$

where
$$\overline{a}_i = N^{-1} \sum_{k=1}^N a_i(o_k)$$
 and $g_{i,j} = N^{-1} \sum_{k=1}^N a_i(o_k) a_j(o_k)$

Assuming that the attributes have all a zero mean $(\bar{a}_i = 0)$ we have $g_{i,j} = cov(a_i, a_i)$

AIA...

In the sequel we will use the notation Σ to denote the covariance matrix.

Thus if all the attributes are centered, we have

$$w'^* = \begin{pmatrix} N^{-1} & \mathbf{0} \\ \mathbf{0} & N^{-1}\Sigma^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{1} \\ A \end{pmatrix} y.$$

In particular,
$$w_0^* = N^{-1} \sum_{k=1}^N y^k = N^{-1} \sum_{k=1}^N y(o_k) = \overline{y}$$
.

In other words, if both a_i and y are centered, $w_0^* = 0$.

AIA...

Assuming that the attributes have zero mean and unit variance $(g_{i,i} = 1)$, we have

$$A'A'^{T} = N \begin{pmatrix} 1 & 0 & \dots & 0 \\ \hline 0 & \rho_{1,1} & \dots & \rho_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \rho_{n,1} & \dots & \rho_{n,n} \end{pmatrix}$$

Note that $\rho_{i,i} = 1$; $\forall i = 1, \dots, n$.

- In this case the correlation and covariance matrices are identical.
- Pre-whiten the attributes before solving the linear system.
- Below, we assume attributes are pre-whitened and drop suffix '.

Let us take a non-singular $n \times n$ matrix B and define the transformed attribute vector by $\mathbf{a}_B(o) = B\mathbf{a}(o)$.

For the transformed attributes, matrix A becomes matrix BA, and solution becomes: $\mathbf{w}_B = ((BA)(BA)^T)^{-1}BA\mathbf{y} = (B^T)^{-1}(AA^T)^{-1}B^{-1}BA\mathbf{y} = B^{T-1}\mathbf{w}$

In other words,

$$\hat{y}_B = \mathbf{w}_B^\mathsf{T} \mathbf{a}_b = (B^\mathsf{T}^{-1} \mathbf{w})^\mathsf{T} B \mathbf{a} = \mathbf{w}^\mathsf{T} B^{-1} B \mathbf{a} = \mathbf{w}^\mathsf{T} \mathbf{a}.$$

 \Rightarrow Invariance with respect to (non-singular) linear transformation

Discussion of matrix $N\Sigma = AA^T$: computation, singularity, inversion.

- 1. It is easy to see that $N\Sigma = \sum_{i=1}^{N} \mathbf{a}(o_i)\mathbf{a}^{T}(o_i)$.
- 2. Therefore, rank of Σ is at most N.
- 3. Thus, if n > N, Σ is rank deficient (and hence singular).
- 4. If Σ is singular, unicity of optimal solution is lost, but existence is preserved.
- Need to impose other criteria to find unique solution, i.e. to build algorithm.
- Several such solutions are discussed in the reference book, in particular regularization.

(15/21)

Regularization of least mean square error solution

Instead of choosing w to minimize

$$TSE(LS, \mathbf{w}) = (\mathbf{y} - A^T \mathbf{w})^T (\mathbf{y} - A^T \mathbf{w}).$$

Let us minimize w.r.t. \boldsymbol{w} and for given $\lambda > 0$

$$TSE_{R}(LS, \lambda, \mathbf{w}) = (\mathbf{y} - A^{T}\mathbf{w})^{T}(\mathbf{y} - A^{T}\mathbf{w}) + \lambda \mathbf{w}^{T}\mathbf{w}$$

Differentiating w.r.t. \mathbf{w} yields (I denotes the $n \times n$ identity matrix)

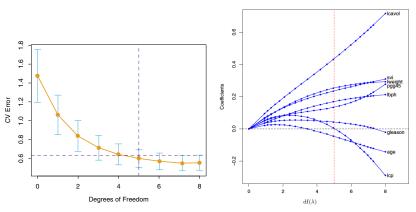
$$\nabla_{w} TSE_{R}(LS, \boldsymbol{w}, \lambda) = -2A(y - A^{T}\boldsymbol{w}) + 2\lambda I\boldsymbol{w}$$

in other words

$$\mathbf{w}^*(\lambda) = \left(AA^T + \lambda I\right)^{-1}A\mathbf{y}$$

which has a unique solution, $\forall \lambda > 0!$

Illustration: effect of λ on CV error and optimal weights



(See Figures 3.7 and 3.8 in reference book)

 $df(\lambda)=n$ when $\lambda=0$ and $df(\lambda)\to 0$ when $\lambda\to\infty$

Algorithmics

Computational complexity:

- ▶ Building the covariance matrix: in the order of Nn^2 operations
- ▶ Solving the system for \mathbf{w}^* : in the order of n^3 operations

Various alternative techniques exist to solve system.

Some will be discussed in the sequel.

Other regularizations

- ► The above regularization method is called *Ridge Regression*. It belongs to the family of *shrinkage methods*.
- Other regularization for linear regression models:
 - ▶ LASSO: a shrinkage method replacing $\sum_i w_i^2 < t$ by $\sum_i |w_i| < t$ (discussed later in the course).
 - Subset selection: select an optimal subset of input attributes on which to regress. Various heuristics exist to determine the subset.

Residual fitting (a.k.a. Forward-Stagewise Regression)

Residual fitting: alternative algorithm, of general interest

- ▶ Start by computing w_0 for the no-variable case: $w_0 = \overline{y}$
- ► Introduce attributes (assumed of zero mean, unit variance) progressively, one at the time
 - Define residual at step k by

$$\Delta_k y(o) = y(o) - w_0 - \sum_{i=1}^{k-1} w_i a_i(o)$$

Find best fit of residual with only attribute a_k :

$$w_k = \rho_{a_k, \Delta_k y} \sigma_{\Delta_k y}.$$
 (since residuals have zero mean, and attributes are pre-whitened)

Note that this algorithm is in general suboptimal w.r.t. to the direct solution given previously, but it is linear in the number of attributes.

References

Chapter 3 from the reference book (Hastie et al., 2009):

- ▶ Section 3.2: Linear regression models and least squares
- Section 3.4.1: Ridge regression
- Section 3.3.3: Forward-stagewise regression

AIA...