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Supervised learning

* Given
— A learning sample of N input-output pairs
LS = {(Qﬁz,yz)"b = 1,,N} with z; € X, y; € Y

independently and identically drawn (i.i.d.) from a
(unknown) distribution p(z,y)

— Aloss function L : Y x Y — IR measuring the discrepancy
between its arguments

Find a function f: X — Y that minimizes the following
expectation (generalization error):

Ex,y{L(ya f(%))}

 Classification: L(y,y') = 1(y = 4') (error rate)
* Regression:  L(y,y') = (y—1y')? (square error)



LS randomness

* Let us denote by f;s the function learned from a
learning sample LS by a learning algorithm

* The function f’LS (its prediction at some point) is
a random variable
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Two quantities of interest

* Given a model f; ¢ built from some learning
sample, its generalization error:

Errpg = Ea:,y{L(ya fLS(m))}

=> useful for model assessment and selection

* Given a learning algorithm, its expected
generalization error over random LS of size N:

Eps{BErrrs} = Eps{Es,{L(y, frs(2))}}

=> useful to characterize a learning algorithm



Outline

* Bias/variance tradeoff

— Decomposition of the expected error Ers{Errys}
that helps to understand overfitting

e Performance evaluation

— Procedures to estimate Exrys (or Ers{Errrs})

e Performance measure

— Common loss functions L for classification and
regression



Outline

e Bias/variance tradeoff
— Bias and variance definitions
— Parameters that influence bias and variance

— Bias and variance reduction techniques



Outline

* Bias and variance definitions:
— A simple regression problem with no input
— Generalization to full regression problems
— A short discussion about classification

e Parameters that influence bias and variance
e Bias and variance reduction techniques



Regression problem - no input

* Goal: predict as well as possible the height of a
Belgian male adult

* More precisely:
— Choose an error measure, for example the square error.
— Find an estimation y such that the expectation:
Ey{(y — 7)*}
over the whole population of Belgian male adult is
minimized.




Regression problem - no input

 The estimation that minimizes the error can be computed
by taking:

& E{-2y-y)}=0
& By} —-E Yy} =0
N y, — Ey{y}

* So, the estimation which minimizes the error is £ {y}. In AL,
it is called the Bayes model.

* Butin practice, we cannot compute the exact value of E {y}
(this would imply to measure the height of every Belgian
male adults).



Learning algorithm

* As p(y) is unknown, find an estimation y from
a sample of individuals, LS = {y1,ys,...,yn},

(independently) drawn from the Belgian
male adult population.

* Example of learning algorithms:
N
. 1
— Y1 = N E_l Yi

AL80 + S0
B gZ — )\—|__|_2A]:\;:1 J 7)\ S [07+OO[

(if we know that the height is close to 180)




Good learning algorithm

As LS are randomly drawn, the prediction y will also be a
random variable

tprs(y)

A

A

Y

A good learning algorithm should not be good only on one
learning sample but in average over all learning samples
(of size N) = we want to minimize:

E =Ers{E{(y—9)*}}

Let us analyse this error in more detail
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Bias/variance decomposition

ELS{Ey{(y — @)2}

Ers{E{(y — Ey{y} + Eylyt — ?))2}}

Ers{E,{(y — Ey{y})*}} + Ers{ B, {(E,{y} — 9)°}}
Ers{Ey{2(y — E,{u})(Ey{y; — 9)}}

E{(y — Ey{y})Z} + Ers{(Ey{y}t — @)2}
Ers{2(By} — By} (Ey} —9)}]

Ey{(y — E,{y})*} + Ers{(E,{y} — 9)°}



Bias/variance decomposition

var,{y}
Ey{y} /

E = E{(y - B, {y})°} + Ers{(Ey{y} —9)"}

— /
YT

= residual error = minimal attainable error
= Vary{y}

13



=+ 1+

Bias/variance decomposition

Ers{(Ey{y} —9)°}

Ers{(Ey{y} — Ers{9} + Ers{9} — 9)°}
Ers{(Ey{y} — Ers{9})*} + ELs{(Ers{y} — 9)*}
Ers{2(Eyly} — Ers{y})(Ersiy} —9)}

(Ey{y} — Ers{9})’ + Ers{(4 — Ers{9})*}
2By} — Ers{o})(Ersiyt — Ers{y})

(Ey{y} — Ers{9})* + Ers{(§ — Ers{9})*}



Bias/variance decomposition

.
bias

s

Ey{y} Ersiy} y

E = var,{y} + (B, {y} — Ers{y})” +...
FErs{y} = average model (over all LS)

.
bias® = error between Bayes and average model
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Bias/variance decomposition

V&ILS{Q}

Y -

Ers{y} Y
E = var,{y} + bias® + Ers{() — Ers{9})"}

varrs{y} = estimation variance = consequence of
over-fitting
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Bias/variance decomposition

J bias?

rar, {y} E varys{y}

Ey{y} Ersi{y}

E = var,{y} + bias® + varps{g}
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Our simple example

|
* QlZN;yi

bias? = (E,{y} — Ers{in})* =0
1

vargs{ji} = - var, {y}

From statistics, y, is the best estimate with zero bias
. . AlSO+ > v

Yo = N+ N 2 N , 2
bias” = ()\—|——N) (Ey{y} — 180)

. N
VarLS{yQ} — ()\_I_N)Qvary{y}

So, the first one may not be the best estimator because of
variance (There is a bias/variance tradeoff w.r.t. A)




Bayesian approach .

* Hypotheses:

— The average height is close to 180cm:

(y — 180)°
207 )

P(y) = Aexp(—

— The height of one individual is Gaussian around

the mean: (v, _y_)z)

P(yi|y) = Bexp(— o
)

 What is the most probable value of ¥ after
having seen the learning sample ?

j = argmax P(|LS)
Yy



N

Bayesian approach .

= argmax P(y|LS) Bayes theorem and
Y () > P(LS) is constant

= argmax P(LS|y)P
y
= argmax P(yi,...,yn|y)P(y)
Y > Independence of the
learning cases
— argmaXHP yi|y) P(y)

=1

— argmm—zlog (yily)) —log(P(y))

1=1
2 _ 2
(yi — ¥ y — 180
= arg mlnz 202 ) + ( 205 )
i=1

)\180 +> . o2
= L th A = —
A+ N W O'%



Regression problem — full

* Actually, we want to find a function y(x) of several inputs =>

average over the whole input space:

* The error becomes:

Ez,y{(y — Q@))z}

* Over all learning sets:

= FErs{FEe iy — 9z )) 3
— Bu{Bus Byl - 3(@)*})

= Ey{vary,{y}} + Ex{bias’(z)} + Ex{varps{f(z)}}



Regression problem — full

Ers{Ey{(ly— gz ))*}} = noise(x) + bias® () 4 variance(zx)

. noise(z) = B, {(y — h(z))*}

Quantifies how much y varies from hs(z) = Ey . {y}, the Bayes
model.

» bias®(z) = (hp(z) — Ers{j(z)})?

Measures the error between the Bayes model and the
average model.

o variance(z) = Ers{(§ — Frs{9(z)})?}

Quantify how much g(x) varies from one learning sample to
another.



lllustration o

* Problem definition:
— One input x, uniform random variable in [0,1]
— y = h(z) +¢ where ¢ ~ N(0,1)

I 4 hz) = Eyjo{y}
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lllustration

* Low variance, high bias method = underfitting
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lllustration

* Low bias, high variance method = overfitting
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Illustration

* No noise doesn’t imply no variance (but less variance)
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Classification problems

The mean misclassification error is:
E = FErs{Er {1y # 9(2))}}
The best possible model is the Bayes model:
hp(x) = argmax P(y = c|x)
The “average” model is:
arg max P(g(x) = c|z)

Unfortunately, there is no such decomposition of the
mean misclassification error into a bias and a
variance terms.

Nevertheless, we observe the same phenomena



Classification problems

One test node

1
. . P
. . R ¢ 4
'\ 4 R S,
.
| | :” z ¢ “’0§ Q’ (L
LS ", ¢ ]
1 .. ¢ . . I | [ ]
¢ l’ L 24
]
] ] . n . ...'
[ | ] - i
. -
O‘—. - . 1
0 1
! .
o 00 o ’z ¢
.
W oo ¢! ¢
. \ ¢ .
n A
« t % ¢ -
n ¢ - . n
LS s " * ]
2 n N oo ¢ iy g
o . i %
[ | ] B . [ o
[ | i g [ . [
n n
F u n ng =B
| g B [ | [ |
oH8 i

A full decision tree

¢ ° R ¢ 4
an’ R S,
¢
[ 0’ ¢ z ¢ Q.’O’ Q’ (L]
[} ¢ ¢ [ |
[
¢ l’ e
[
[ [ . n . .b
[ | ] i g
C | By
0‘—. - . 1
0 1
! ¢
o EMR B
o ¢ ¢ ¢ (]
n ¢ ¥ &
¢t Y% ¢ -
Yy ¢ - & "
. * 5
N u e ¢ iy o
- . i %
[ | ] B . [ | o
o I S
F u - By B
[ | g B [ | [ |
o8 [

28



Classification problems

Bias = systematic error component (independent of the
learning sample)

Variance = error due to the variability of the model with
respect to the learning sample randomness

There are errors due to bias and errors due to variance

One test node Full decision tree

29



Content of the presentation

* Bias and variance definitions

 Parameters that influence bias and variance
— Complexity of the model
— Complexity of the Bayes model
— Noise
— Learning sample size
— Learning algorithm

e Bias and variance reduction techniques
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Illustrative problem

* Artificial problem with 10 inputs, all uniform
random variables in [0,1]

 The true function depends only on 5 inputs:
y(z) = 10sin(mx122) + 20(23 — 0.5)% + 1024 + 625 + €
where € isa N(0,1) random variable

* Experimentations:
— E,. = average over 50 learning sets of size 500
— E&y => average over 2000 cases
=> Estimate variance and bias (+ residual error)



Complexity of the model

E=bias?+var
N bias? Complexity

Usually, the bias is a decreasing function of
the complexity, while variance is an
increasing function of the complexity.
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Complexity of the model — neural networks

 Error, bias, and variance w.r.t. the number of
neurons in the hidden layer
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Complexity of the model — regression trees

 Error, bias, and variance w.r.t. the number of
test nodes
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Complexity of the model — k-NN

* Error, bias, and variance w.r.t. k, the number
of neighbors

18
16 A ¢

14 \
12
5 10 —&— Error
]
I.I:J —l—- Bias R
8 Var R
6 '—rV

4
2 -—
0




Learning problem

 Complexity of the Bayes model:

— At fixed model complexity, bias increases with the complexity of
the Bayes model. However, the effect on variance is difficult to
predict.

* Noise:
— Variance increases with noise and bias is mainly unaffected.
— E.g. with (full) regression trees

70
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40 / Noise
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Learning sample size .

* At fixed model complexity, bias remains constant and
variance decreases with the learning sample size. E.g.
linear regression
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Learning sample size .

* When the complexity of the model is dependant on the
learning sample size, both bias and variance decrease with
the learning sample size. E.g. regression trees

Error

:
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Learning algorithms — linear regression

Method Err? Bias?+Noise Variance
Linear regr. 7.0 6.8 0.2
k-NN (k=1) 15.4 5 10.4
k-NN (k=10) 8.5 7.2 1.3
MLP (10) 2.0 1.2 0.8
MLP (10 —-10) 4.6 1.4 3.2
Regr. Tree 10.2 3.5 6.7

* Very few parameters : small variance
* Goal function is not linear : high bias



Learning algorithms — k-NN

Method Err? Bias?>+Noise Variance
Linear regr. 7.0 6.8 0.2
k-NN (k=1) 15.4 5 10.4
k-NN (k=10) 8.5 7.2 1.3
MLP (10) 2.0 1.2 0.8
MLP (10 —-10) 4.6 1.4 3.2
Regr. Tree 10.2 3.5 6.7

Small k : high variance and moderate bias
High k : smaller variance but higher bias




Learning algorithms - MLP

Method Err? Bias2+Noise Variance
Linear regr. 7.0 6.8 0.2
k-NN (k=1) 15.4 5 10.4
k-NN (k=10) 8.5 7.2 1.3
MLP (10) 2.0 1.2 0.8
MLP (10 — 10) 4.6 1.4 3.2
Regr. Tree 10.2 3.5 6.7
Small bias

Variance increases with the model complexity




Learning algorithms — regression trees

Method Err? Bias?+Noise Variance
Linear regr. 7.0 6.8 0.2
k-NN (k=1) 15.4 5 10.4
k-NN (k=10) 8.5 7.2 1.3
MLP (10) 2.0 1.2 0.8
MLP (10 - 10) 4.6 1.4 3.2
Regr. Tree 10.2 3.5 6.7

* Small bias, a (complex enough) tree can
approximate any non linear function

* High variance



Content of the presentation

 Bias and variance definition
e Parameters that influence bias and variance
* Bias and variance reduction techniques

— Introduction

— Dealing with the bias/variance tradeoff of one
algorithm

— Ensemble methods
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Bias and variance reduction techniques

* |In the context of a given method:

— Adapt the learning algorithm to find the best trade-off
between bias and variance.

— Not a panacea but the least we can do.
— Example: pruning, weight decay.
* Ensemble methods:

— Change the bias/variance trade-off.

— Universal but destroys some features of the initial
method.

— Example: bagging, boosting.



Variance reduction: 1 model 4

* General idea: reduce the ability of the learning
algorithm to fit the LS

— Pruning

* reduces the model complexity explicitly
— Early stopping

* reduces the amount of search
— Regularization

* reduce the size of the hypothesis space

* Weight decay with neural networks consists in
penalizing high weight values



Variance reduction: 1 model

Optimal fitting E=bias?+var
B — _ bias? Fitting

* Selection of the optimal level of fitting
— a priori (not optimal)
— by cross-validation (less efficient): Bias?= error on

the learning set, E = error on an independent test
set

46



Closest fit in population

Closest fit

MODEL
SPACE

Shrunken fit

RESTRICTED
MODEL SPACE

Hastie et al., 2009 .



Variance reduction: 1 model 4

 Examples:
— Post-pruning of regression trees
— Early stopping of MLP by cross-validation

Method E Bias Variance
Full regr. Tree (250) 10.2 3.5 6.7
Pr. regr. Tree (45) 9.1 4.3 4.8
Full learned MLP 4.6 1.4 3.2
Early stopped MLP 3.8 1.5 2.3

* As expected, variance decreases but bias increases



Ensemble methods

 Combine the predictions of several models built with a
learning algorithm in order to improve with respect to the use

of a single model

 Two main families:

— Averaging techniques
* Grow several models independently and simply average their predictions
e Ex: bagging, random forests
* Decrease mainly variance

— Boosting type algorithms
* Grows several models sequentially
e Ex: Adaboost, MART
* Decrease mainly bias



Ensemble methods

Examples:

— Bagging, boosting, random forests

Method E Bias Variance
Full regr. Tree 10.2 3.5 6.7
Bagging 5.3 3.8 1.5
Random Forests 4.9 4.0 0.9
Boosting 5.0 3.1 1.9




Discussion

* The notions of bias and variance are very useful to predict
how changing the (learning and problem) parameters will
affect the accuracy. E.g. this explains why very simple
methods can work much better than more complex ones on
very difficult tasks

* Variance reduction is a very important topic:
— To reduce bias is easy, but to keep variance low is not as easy.

— Especially in the context of new applications of machine learning to
very complex domains: temporal data, biological data, Bayesian
networks learning, text mining...

* All learning algorithms are not equal in terms of variance.
Trees are among the worse methods from this criterion



Outline

* Performance evaluation
— Model assessment and selection
— Cross-validation
— Bootstrap
— CV based model selection



Estimating the performance of a model

* Question: given a model learned from some
dataset (of size N), how to estimate its
performance from this dataset?

e What for?

— Model selection
* to choose the best among several models
* E.g., to determine the right complexity of a model or to
choose between different learning algorithms
— Model assessment

* Having chosen a final model, to estimate its performance on
new data



When N is large: test set method

* Randomly divide the dataset into 2 parts: a
learning set LS and a test set TS (eg. 70%, 30%)

LS TS

— Fit the model on LS
— Testiton TS

— The resulting estimate is an estimate of the error
of a model learned on the whole dataset (LS+TS)
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Small datasets

Test set error is unreliable because it is based on a small
sample (30% of an already small dataset)

It is also pessimistically biased as an estimate of the error
of a model built on the whole dataset

—  For small sample sizes, a model learned on 70% of the data is
significantly less good than a model learned on the whole data

Learning curve:
performance vs
the size of the
learning set

1-Err
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k-fold Cross Validation

 Randomly divide the dataset into k subsets (eg., k=10)

— For each subset:
* Learn the model on the objects that are not in the subset
* Compute a prediction with this model for the points in the subset

— Report the mean error over these predictions

* When k=N, the method is called leave-one-out cross-
validation



Which value of k?
o k=N:

o Unbiased: removing one object does not change
much the size of the learning sample

« High variance: highly dataset dependant
o Slow: require to train N models
° k=5,10:

o Lower variance and faster: only 5-10 models on
fewer data

o Potentially biased: see learning curve



Small exercise

 In this classification
problem with two inputs:

- What it the resubstitution
* error (LS error) of 1-NN?

o °® % 4 . - What is the LOO error of
Se . 1-NN?

. . - What is the LOO error of
3-NN?

° - What is the LOO error of

22-NN?

Andrew Moore



Bootstrap

* Bootstrap sampling=sampling with replacement

123 /45|67 89 10

037 2 9 3 /101 8 6 10

 Some objects do not appear, some objects appear
several times 1

1
e P(0; € bootstrap) =1 — (1 — N)N ~1—-=0.632
e
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Bootstrap

Bootstrap error estimate:

— Fori=1toB
* Take a bootstrap sample B; from the dataset
* Learn a model f; on it

— For each object, compute the expected error of all
models that were built without it (about 30%)

— Average over all objects

Improvements:
— “.632 bootstrap” corrects for the learning curve
— “.632+ bootstrap” corrects for overfitting



Conditional vs expected test errors

e Conditional test error (for a given modelfLS ):
Errps = By y{L(y, J?LS(CU))}
* Expected test error: A
Ersi{Errrs} = Eps{FEs y{L(y, frs(x))}}
* Only the test set method estimates the first

* Cross-validation estimates the second (even
leave-one-out)



Model selection: typical scenario

e Given a dataset with N objects (input-output
pairs), how to best exploit this dataset to
obtain:

— The best possible model (eg. among regression
trees and k-NN) (model selection)

— An estimate of its prediction error
(model assessment)

e Again, the solution depends on the size N of
the dataset



When N is large: test set method

 Randomly divide the dataset into 3 parts: a
learning set LS, a validation set VS, and a test set
TS (eg. 50%, 25%, 25%)

LS VS TS

— Fit the models to compare on LS (using different
learning algorithms or different complexity values)

— Select the best one based on its performance on VS
— Retrain it on LS+VS

— Test it on TS => the performance estimate

— Retrain it on LS+VS+TS => the finally chosen model
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When N is small: cross-validation

e Use two stages of k-fold cross-validation

s eV
1_Al.{_/

o e

e CV1is used for the assessment of the final model,
CV2 is used for model selection

e We could also combine test set and CV

I
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Do we really need two stages?

« How well does the CV2 error (and VS error)
estimate the true error?

o If you compare many (complex) models, the
probability that you will find a good one by
chance on your data increases

=>The VS or CV2 errors are overly optimistic



lllustration

e Dataset: N=50, 1000 inputs variables, all

unrelated to the class (values are randomly
drawn from N(0,1))

=> any model should have a 50% generalization
error rate

 Comparison of 1000 learning algorithms: ith

algorithm learns a decision tree on the ith feature
only

e 10-fold CV error of the best model: 16%
* |ts error on a test sample of 5000 cases: 48%



Selection bias

e General rule:

— Any choice made using the output should be inside a
cross-validation loop

* Another example: on the same dataset:

— Select the 10 attributes that are the most correlated
with the output on the LS

— Estimate the error rate of a tree built with these 10
attributes using 10-fold CV on the same LS => 20%

— Error of this model on a sample of 5000 cases =>51%
(this problem is called the selection bias)



Analytical methods for model selection

Find the model that minimizes a criterion typically of the

form:
Err(LS) + G(Complexity)

where G is a monotonically increasing function

The criterion is derived from theoretical arguments (eg.,
the Minimum Description Length approach is motivated
from coding theory)

Advantage:
— Cheap: no retraining

Drawbacks:
— Ok for model selection but not for model assessment
— May miss the true optimum in the finite sample case



Outline

e Performance measures

— Classification: error rate, sensitivity, specificity,
ROC curve, precision, recall

— Regression: square error, absolute error,
correlation

— Loss functions for learning



coONO L WN P

O N = N
U WNEREROO

True class

Negative
Negative
Negative
Negative
Negative
Negative
Negative
Negative
Negative
Positive
Positive
Positive
Positive
Positive
Positive

Performance criteria

Model 1
Positive
Negative
Positive
Positive
Negative
Negative
Negative
Negative
Negative
Positive
Positive
Positive
Positive
Negative
Positive

Model 2
Negative
Negative
Positive
Negative
Negative
Negative
Positive
Negative
Negative
Positive
Negative
Positive
Positive
Negative
Negative

o« Which of these two
models is the best?

« The choice of an error
or quality measure is
highly application
dependent.



Binary classification

o Results can be summarized in a contingency
table (aka confusion matrix)

Predicted class

Error rate = FP+FN/N+P

Actual class p n Total
p True Positive IFaIse Negative| P
= + +
n [False Positive [True Negative| N Accuracy P TN/N P

= 1-Error rate

o Simplest criterion: error rate or accuracy

Model 1 Model 2
Predicted class Prediction class
Actual class p n Total Actual class P n Total
p 5 1 6 p 3 3 6
n 3 6 9 n 2 7 7
Error rate=4/15=27% Error rate=5/15=33%

Accuracy=11/15=73% Accuracy=10/15=66%



Model 1

Predicted class

Limitation of error rate

Model 2

Predicted class

Model 2

Predicted class

Actual class P n Total Actual class p n Total Actual class p n Total
p 0 10 10 p 10 0 10 p 0 50 50
n 0 90 90 n 10 80 90 n 0 50 50

Error rate=10% Error rate=10% Error rate=50%

o Does not convey information about how errors are
distributed across classes

o Sensitive to changes in class distribution in the test
sample



Sensitivity/Specificity

o For medical diagnosis, more appropriate
measures are:

- sensitivity = TP/P
- specificity = TN/(TN+FP) = 1- FP/N

(also called recall, TP rate)

Model 1 Model 2 Model 2
Predicted class Predicted class Predicted class
Actualclass _ p n _ Total Actual class p n Total Actual class p n Total
P 0 10 10 p 10 0 10 p 0 50 50
n 0 90 90 n 10 80 90 n 0 50 50

Error rate=10%
Sensitivity=0/10=0%

Specificity=90/90=100%

Error rate=10%

Sensitivity=10/10=100%

Specificity=80/90=89%

Error rate=50%
Sensitivity=0/50=0%
Specificity=90/90=100%
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True class

Negative
Negative
Negative
Negative
Negative
Negative
Negative
Negative
Negative
Positive
Positive
Positive
Positive
Positive
Positive

Sensitivity/Specificity

Model 1
Positive
Negative
Positive
Positive
Negative
Negative
Negative
Negative
Negative
Positive
Positive
Positive
Positive
Negative
Positive

Model 2
Negative
Negative
Positive
Negative
Negative
Negative
Positive
Negative
Negative
Positive
Negative
Positive
Positive
Negative
Negative

Actual class

Actual class

Total

¢ Sensitivity=5/6=83%

o Specificity=6/9=66%

Model 1
Predicted class
p n
5 1
3 6
Model 2
Prediction class
p n
3 3
2 7

Total
6 Sensitivity=3/6=50%

; Specificity=7/9=78%

Which one of the models is better depends on the application
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ROC curve

o Often the output of a learning algorithm is a
number (e.g., class probability)

 In this case, a threshold may be chosen in
order to balance sensitivity and specificity

o A ROC curve plots sensitivity versus 1-
specificity for different threshold values



ROC curve
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False positive rate (1-specificity)




Area under the ROC curve
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o Summarize a ROC curve by a single number

e can be interpreted as the probability that two
objects randomly drawn from the sample are
well ordered by the model, ie., the positive has a
higher score than the negative

o Warning: does not tell the whole story
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Precision and recall

o Other frequently used measures:
- Precision = TP/(TP+FP) = proportion of good
predictions among positive predictions

- Recall = TP/(TP+FN) = proportion of positives that are
detected (= sensitivity)

- F-measure=2*Precision*Recall/(Precision+Recall)

Model 1 Model 2
Predicted class Predicted class
Actualclass __ p n__ Total Actual class p n Total
p 10 0 10 P 10 0 10
n 50 950 (1000 n 10 990 [1000
Sensitivity=10/10=100% Sensitivity=10/10=100%
Specificity=950/1000=95% Specificity=990/1000=99%
Precision=10/60=17% Precision=10/20=50%
Recall =10/10=100% Recall =10/10=100%

F-measure=29% F-measure=66%



True Positive Rate

Precision/Recall vs ROC curve
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cONO L HhWN PP

True Y Model 1

59.43
33.15
11.8
77.11
40.6
81.25
83.01
0.55
76.72
29.18
20.37
95.13
11.66
42.95
94.55

MSE1=53.38 MSE2=249.6
MAE2=14.6

MAE1=4.3

Regression performance

63.08
36.66
13.28
78.38
42.92
85
86.37
1.67
80.92
33.28
22.43
98.86
15.97
46.12
94.75

Model 2
78.12
37.28
19.62
90.01
60.19
86.13
102.32
16.6
94.74
52.54
36.94
104.24
28.16
65.82
104.02

« Mean squared error

.
N > (i — i)
i—1

o Mean absolute error (more tolerant
to sporadic large errors)

.
N > lyi — il
i—1
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Performance measures for training

* Performance measures for training can be
different from performance measures for testing

e Several reasons:

— Algorithmic:
* A derivable measure is amenable to gradient optimization

* Eg., error rate and MAE are not derivable, AUC is not
decomposable

— Overfitting:
* For training, the loss often incorporates a penalty term
for model complexity (which is irrelevant at test time)
 Some measures are less prone to overfitting (eg., margin)
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