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Unsupervised learning

* Unsupervised learning tries to find any regularities in the
data without guidance about inputs and outputs
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* Are there interesting groups of variables or samples?
outliers? What are the dependencies between variables?



Unsupervised learning methods

* Many families of problems exist, among which:

- Clustering: try to find natural groups of samples/variables

* eg: k-means, hierarchical clustering

- Dimensionality reduction: project the data from a high-
dimensional space down to a small number of dimensions

e eg: principal/independent component analysis, MDS

- Density estimation: determine the distribution of data within
the input space

e eg: bayesian networks, mixture models.



Clustering

* Goal: grouping a collection of objects into subsets or
“clusters”, such that those within each cluster are more
closely related to one another than objects assigned to
different clusters



Clustering

variables e Clusteri ng rows

grouping similar objects
e Clustering columns

grouping similar variables
across samples
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Applications of clustering

Marketing: finding groups of customers with similar behavior
given a large database of customer data containing their
properties and past buying records;

Biology: classification of plants and animals given their features;

Insurance: identifying groups of motor insurance policy holders
with a high average claim cost; identifying frauds;

City-planning: identifying groups of houses according to their
house type, value and geographical location;

Earthquake studies: clustering observed earthquake epicenters
to identify dangerous zones;

WWW: document classification; clustering weblog data to
discover groups of similar access patterns.



Clustering

 Two essential components of cluster analysis:

- Distance measure: A notion of distance or similarity of two
objects: When are two objects close to each other?

- Cluster algorithm: A procedure to minimize distances of
objects within groups and/or maximize distances between

groups



Examples of distance measures

* Euclidean distance measures average
difference across coordinates

* Manhattan distance measures
average difference across coordinates,
in a robust way

e Correlation distance measures
difference with respect to trends
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Time series example

Measurement of gene expression on
4 (consecutive) days

Every gene is coded by a vector of
length 4

Step up: x1=(2,4,5,6)
up: x2=(2/4,4/4,5/4,6/4)

change: x4=(2.5,3.5,4.5,1)

gene expression
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Euclidean distance

 The distance between two vectors is the square root of the
sum of the squared difference over all coordinates

d,(x1,x2)=\(2-2/4) +(4—4/4)*+(5-5/4) +(6 —6/4 V=33/4=2.598

e Stepup: x1=(2,4,5,6)
* up: x2=(2/4,4/4,5/4,6/4)

e change: x4=(2.5,3.5,4.5,1)

0 2.6 2.75| 2.25
2.6 0| 1.23] 2.14
2.75 3 0] 2.15
2.25 14| 2.15 0

Matrix of pairwise distances
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Manhattan distance

e The distance between two vectors is the sum of the

absolute (unsquared) differences over all coordinates

d,(x1,x2)=|2—-2/4|+]|4—4/4|+|5—5/4|+|6 —6/4|=51/4=12.75

e Stepup: x1=(2,4,5,6)

° up: x2=(2/4,4/4,5/4,6/4)

 change: x4=(2.5,3.5,4.5,1)

0

12.75

13.25

6.5

12.75

0

2.5

8.25

13.25

2.5

0

7.75

6.5

8.25

7.75

Matrix of pairwise distances
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Correlation distance

e Distance between two vectors is 1-p, where p is the
Pearson correlation of the two vectors

e Stepup: x1=(2,4,5,6)

° up: x2=(2/4,4/4,5/4,6/4)

 change: x4=(2.5,3.5,4.5,1)

Matrix of pairwise distances
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Comparison of the distances

Euclidean Manhattan Correlation
0 2.60 | 2.75 | 2.25 0 12.75 | 13.25 | 6.50 0 0 2 1.18
2.60 0 1.23 | 2.14 12.75 0 2.50 | 8.25 0 0 2 1.18
N
2.75 V\23 0 2.15 13\5 2.50 0 7.75 2 2 0 0.82
2.25 | 218\ 2.15 0 6.5(\ 8.25 | 7.75 0 1.18 | 1.18 | 0.82 0
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All distances are normalized to the interval
[0,10] and then rounded




Clustering algorithms

* Popular algorithms for clustering

- hierarchical clustering

- K-means

- SOMs (Self-Organizing Maps)
- autoclass, mixture models...

* Hierarchical clustering allows the choice of the dissimilarity
matrix.

* k-Means and SOMs take original data directly as input.
Attributes are assumed to live in Euclidean space.
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Hierarchical clustering

Agglomerative clustering:
1. Each object is assigned to its own cluster

2. lteratively:

- the two most similar clusters are joined and replaced by
a hew one

- the distance matrix is updated with this new cluster
replacing the two joined clusters

(divisive clustering would start from a big cluster)
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Distance between two clusters

* Single linkage uses the smallest distance
ds(G, H) = min d,

i€eG, jeH *
* Complete linkage uses the largest distance
d. (G, H) = max d,

i€G, jeH

. uses the average distance
1
d, (G, H) = szy‘

N(; H ieG jeH
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(wikipedia)

Hierarchical clustering
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Dendrogram

* Hierarchical clustering are visualized through dendrograms

- Clusters that are joined are combined by a line
- Height of line is distance between clusters

- Can be used to determine visually the number of clusters

distance
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gene expression

Time series example

Euclidian distance
o Cluster Dendrogram
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Time series example

Manhattan distance

Similar values are clustered
together (robust)
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Time series example

Correlation distance

Cluster Dendrogram
Correlated values are clustered g

together
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lllustrations (1)

* Breast cancer data (Langergd
et al., Breast cancer, 2007)

TP53 mutation
TP53 wild type
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* 80 tumor samples (wild- 1
type, TP53 mutated), 80 genes m_am—:mﬁﬂmmmmm il
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lllustration
Holmes et al., Nature, Vol. 453, No. 15, May 2008
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lllustrations (2)
Assfalg et al., PNAS, Jan 2008

* Evidence of different metabolic phenotypes in humans

* Urine samples of 22 volunteers over 3 months, NMR
spectra analysed by HCA

24



Hierarchical clustering

e Strengths

- No need to assume any particular number of clusters
- Can use any distance matrix
- Find sometimes a meaningful taxonomy
* Limitations
- Find a taxonomy even if it does not exist

- Once a decision is made to combine two clusters it cannot be
undone

- Not well theoretically motivated
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Combinatorial clustering algorithm

e Given a number of clusters K<N and an encoder C that assigns
the ith observation to cluster C(i)

o Clustering=finding the function C* that minimizes some “loss”
function that measures the degree to which the clustering goal
IS not met

« Example of loss function: within cluster scatter

W(C):%Z]\% YooY d(wi, )

N
k=1 C(i)=k C(i')=k with N, = ZI(C(@) = k)
i=1

o« Number of possible assignments is too high for enumeration

~/ AT - J_ K WK —k [\r N
b(A-,A):FZ(—l) L) BN

k=1

26
S(10,4) = 34105, 5(19,4) = 10°.



k-Means clustering

o Partitioning algorithm with a prefixed number & of clusters

o Use Euclidean distance between objects

p

d(zi, xy) = Z(;z‘.ij — ;1‘.ifj)2 = ||z; — :1f,i,HQ
j=1
« Try to minimize the sum of intra-cluster variances

1o 1
WEe) = g5 2 2 llmi—all

k=1"" C(>i)=k C(')=k

where z, = (Z1x,.... %) IS the center of cluster £ and N, is
the number of points in cluster k:

Ne = Yn, I(CG) = k)
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K-Means clustering

« Equivalent to solve:

« Randomly assign each point to a cluster
o Iterate through:

- Given the current cluster assignment, compute the cluster
means {mi,...,mg}

- Given the current cluster means, assign each observation to

the closest cluster mean o , 5

C'(7) = argmin ||x; — mg||®.
1<k<K

« Stop when the assignments do not change .



start

k-Means clustering
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k-Means clustering
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k-Means clustering

end

31



K-Means convergence

* Each step reduces within cluster scatter => convergence is
ensured but towards a local optimum only

* You could obtain any of these from a random start of k-
means

3 3r ¢
. *»
2.5F 2.5F 0“0. R
L ‘e 0&“}
2r ¢ W * 4
**9%
15}k 1.5F ”"’
¢
" 1 @
¢
° ¢ 0.5 *
0.5 o® .‘: _
L o - g ° oy
o n X e
of [y ., ° ol v
® ] T . . ° . . ... n

-0.5 0 0.5 1 1.5 2

* Solution: restart the algorithm several times



Application: vector quantization

FIGURE 14.9. Sir Ronald A. Fisher (1890-1962) was one of the founders
of modern day statistics, to whom we owe mazimum-likelihood, sufficiency, and
many other fundamental concepts. The image on the lefl is a 1024 x 1024 grayscale
image at 8 bits per pizel. The center image is the result of 2 X 2 block V(Q), using
200 code vectors, with a compression rate of 1.9 bits/pizel. The right image uses
only four code vectors, with a compression rate of 0.50 bits/pizel

> > k-Means
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K-medoids

Extension of k-Means to handle any distance measure

Algorithm 14.2 K-medoids Clustering.

1. For a given cluster assignment C' find the observation in the cluster
minimizing total distance to other points in that cluster:

it = argmin Z D(zi, z40). (14.35)

Then m; = T k= 1,2..... K are the current estimates of the
cluster centers.

2. Given a current set of cluster centers {m1, ..., mk }, minimize the to-
tal error by assigning each observation to the closest (current) cluster

center:

C'(i) = argmin D(z;, my). (14.36)
1<k<K

3. Iterate steps 1 and 2 until the assignments do not change.

Much slower than K-means
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k-Means clustering

e Strengths

- Simple, understandable
- Can cluster any new point (unlike hierarchical clustering)
- Well motivated theoretically
* Limitations
- Must fix the number of clusters beforehand
- Sensitive to the initial choice of cluster centers

- Sensitive to outliers

35



Self-organizing maps

SOM's are similar to k-means but with
additional constraints

Mapping from data space onto one or

two-dimensional array of k total nodes
lterations steps:

- Pick data point P at random.

- Move all nodes in direction of P: the
closer (further) a node is in network
topology, the most (less).

- Decrease amount of movement with

iteration steps.

Data point  Node (cluster prototypes)

36



Document organization

http://websom.hut.fi
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How many clusters?

Where to stop hierarchical clustering? How to choose k for
k-means and SOMSs?

Very difficult and open question.

Similar to overfitting in SL...

* Too many clusters: overfit the data. You find non existing
clusters in the data (noise)

* Too few clusters: underfit the data. We miss some truly
existing clusters.

...but without the possibility to cross-validate

38



* Locating the “knee” in the intra-cluster variance curve

Intra-cluster variance

4.5+

3.5

2.5

1.5

0.5+

How many clusters?
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How many clusters?

e QOther criteria:

- Internal indices:

e Statistics based on within- and between-clusters distances
e Select k£ that minimizes/maximizes such internal index
- Gap statistic:

 Resampling method that compares some internal index with
what would be obtained from random data

e Search for the value of k£ that maximizes the difference
(Tibshirani et al., 2001)

- Stability: select & that leads to the more stable clusters
(computed by a bootstrap analysis) (Ben-Hur et al., PSB 2002)

40



Feature selection for clustering

* Feature selection can also improve clustering by decreasing noise
(and computing times)

e Example on Leukemia patients (Chiaretti et al., 2004)

Without gene selection

120
|

100
|

80

Height

60
1

40
B

41
(from J.Rahnenfuhrer, 2007)



Height

Feature selection for clustering

* Feature selection can also improve clustering by decreasing noise
(and computing times)

e Example on Leukemia patients (Chiaretti et al., 2004)

With 100 top variance genes

(from J.Rahnenfuhrer, 2007)
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Feature selection for clustering

* Feature selection can also improve clustering by decreasing noise
(and computing times)

e Example on Leukemia patients (Chiaretti et al., 2004)

Plot of sample types in first

Distance matrices for clustering Leukemia two principal components

patients (Chiaretti et al., 2004) 100 random genes
e __ — T e =0 g e, N o~ 9 ey — e
) / "1 // B 1 .5- [T Y > S L
f ‘ - s - 8 ® R O':_C’I_( T
24 & 4 24 g -4 A Ny oph & SROA T A A 4
e 4 9 J b3 48 o T ;. AP ~— Yo 8 c0° @ —A-
= i & ' / e T T T T T
* // p- 5 = -10 -5 0 5 10
: i -

P / S / S Component 1

> // These two components explain 30.39 % of the point variability.
g -"v"_l‘f’ B VS S 1 2 -’/MT B S

0.0 0.2 04 06 08 1.0 00 02 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 100 high_variance genes

All genes 100 random 100 high-variance ¢ _ OB o
g WL 9 Fow
genes genes 2 o Can, oo g o
R e Rt o8 &
T T T ™
10 -5 0 5

Component 1
These two components explain 44.08 % of the point variability,

(from J.Rahnenfuhrer, 2007)



Selection bias in clustering

e Clustering after supervised feature selection should be avoided

* You will always retrieve the classification since this is the criterion you

Height

used to select the variables

-4 . —
l__‘ ’—L’ @ nl:‘,_—l—‘

[ [ o o
[ [

Left dendrogram obtained by
1. Random assignment of sample labels
2. Selection of best discriminating genes
3. Clustering with selected genes

Height

Right plot shows original labels



Dimensionality reduction

 Main goal: reduce the dimensionality of the data set to a
smaller space (2D, 3D)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X'1 X'2

0.86 -0.48 -0.18 0.37  0.98 ©0.97 0.84 -0.06 -0.35 0.56 0.11 0.21
2.3  -1.2 45  0.13  0.02 0.09 0.71 0.88 0.78 0.7 2.3 1.2

0.26 -0.41 0.02 0.33  0.39 0.46  0.92 0.15 -0.06 -0.26 > 0.76 -0.46
0.21 -0.13 -0.33 0.5  0.82 0.19  0.08 0.48 0.64 -0.38 -0.03 -0.45
0.25 0.11 0.94 -0.04 0.45 ©0.15 -0.85 0.45 0.42  0.29 0.23 -0.02
0.34 0.25  0.83 -0.24 -0.46 0.94 0.12 -0.02 -0.49 0.71 -0.65 -0.91

* Feature selection: find a subset of the original variables
(X'I_=Xj for some )

* Feature extraction: transform the original space into a
space of fewer dimensions (X'i=f(X1,...,X1))

e Linear methods: f(X,...,. X )=w +w X +...4w X
1 p 0 1 1 p 1



Objectives of dimensionality reduction

Reduce dimensionality (pre-processing for other methods)
Choose the most useful (informative) variables
Compress the data

Visualize multidimensional data

- to identify groups of objects

- to identify outliers
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Principal Component Analysis

* Alinear feature extraction technique

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 PC1 PC2
0.86 -0.48 -0.18 0.37 0.98 0.97 0.84 -0.06 -0.35 0.56 0.67 0.48
2.3 -1.2 4.5 -0.13  0.02 0.09 -0.71 0.88 0.78 0.7 - 2.3 -1.2
> -

0.26 -0.41 0.02 0.33  0.39 0.46 092 0.15 -0.06 -0.26 0.03 0.67

-0.75 -0.79
0.21 -0.13 -0.33 0.5 0.82 0.19 0.08 048 0.64 -0.38

-0.1 -0.04
0.25 0.11  -0.94 -0.04 0.45 0.15 -0.85 0.45 0.42  0.29

0.47 0.84
0.34 0.25 0.83 -0.24 -0.46 0.94  0.12 -0.02 -0.49 0.71

* Transform some large number of variables into a smaller
number of uncorrelated variables called principal
components (PCs)



Basic idea

* Goal: map data points into a few dimensions while trying to
preserve the variance of the data as much as possible

First
component

48



Basic idea

* Goal: map data points into a few dimensions while trying to
preserve the variance of the data as much as possible

First
component

Second
component

-
»
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Principal Component Analysis

e Particularly efficient when there are a lot of correlation
between variables (correlation=redundancy)

50



Mathematically

e Two formulations

— Maximum variance: find the directions that
maximize the variance of the projected data

— Minimume-error formulation: minimizes the
reconstruction error of the projected data



Mathematically

e Consider a set of observations{z,},n=1,...,N
with ,, a vector of dimension ).

 We want to find the unit direction u7 that
maximizes the variance of the projection:

N
1
arg max — Z |ui z, — ui Z||? = ui Cuy
ur N —

T

with ui]| = ujur =1

| — ] o
C = NZ(azn—az)(xn—x)

n=1



Mathematically

* Introducing lagrange multiplier:

U{Cul -+ )\1(1 — u?ul)
* Setting the derivative with respect to U1 equal to
Zero:

Cu1 — )\1”UJ1
= U1 must be an eigenvector of (.
* The variance is given by:
u{C’ul — )\1
=> U1 is the eigenvector corresponding to the
highest eigenvalue \1



Mathematically

 The (M+1)th component is obtained by maximizing:
T

ups 41 CUnM 41
T
UpgUn+1 =1

u;’@ﬂui:o Vi=1,...,. M +1

e Using lagragian multiplier: y
uﬂ+1CUM+1 + A1 (1 — u}\F4+1uM+1) + Z 777$“?C4+1ui

At the optimum: =1

With the constraints

M
0= QCUM_H — 2)\M_|_1’LLM_|_1 + Zmui
1=1

Multiplying by u;-rat the left, one gets 17; = Oand thus

CUM+1 — )\M+1UM+1

T
= Uprr41is the eigenvector with M+1 largest eigenvalue



Mathematically

* The ith principal component for objects Z ; is

computed by z; = u; z;

* The reconstructed input is thus:
M

M

= —_— / . —_— T . .

Lj = E :xjiu”& = E (Uz x])uz
i—1

1=1

e PCA also minimizes the reconstruction error:



Algorithm 1

Recover basis: Calculate XX = Z§=1 r;xz; and let U = eigenvectors of XX '
corresponding to the top d eigenvalues.

Encode training data: ¥ = U' X where Y is a d x t matrix of encodings of the
original data.

Reconstruct training data: X =UY =UU " X.

Encode test example: y = U"z where y is a d-dimensional encoding of z.

Reconstruct test example: & = Uy =UU"z.

Table 1.1: Direct PCA Algorithm




Each component is a linear combination of the
original variables

Al A2 A3 A4 As A6 A7 A8 A9
-0.39 -0.38 0.29 0.65 0.15 0.73 -0.57 0.91 -0.89
-2.3 -1.2 -4.5 -0.15 0.86 -0.85 0.43 -0.19 -0.83
0.9 0.4 -0.11 0.62 0.94 0.97 0.1 -0.41 0.01
-0.82 -0.31 0.14 0.22 -0.49 -0.76 0.27 0 -0.43 -
0.71 0.39 -0.09 0.26 -0.46 -0.05 0.46 0.39 -0.01
-0.25 0.27 -0.81 -0.42 0.62 0.54 -0.67 -0.15 -0.46

PC1=0.2%A41+3.4*42-4.5*%A43
PC2=0.4*A44+5.6%45+2.3%A47

Loading of a variable

 Gives an idea of its importance in
the component

» Can be use for feature selection

PC1 PC2
0.62 -0.33
-2.3 -1.2
—> 0.88 0.31
-0.18 -0.05
-0.39 -0.01
-0.61 0.53

Scores for each
sample and PC

VARPC1)=4.5 > 45%
VARPC2)=3.3 > 33%

For each component, we
have a measure of the
percentage of the variance
of the initial data that it

contains
52



How many components?

e Scree plot: plots eigenvalues (variance) of each component in

decreasing order

3.5

3.0 1

Eigenvalue

Rules of thumb:

- remove components with eigenvalues lower than 1

Scree Plot

Component Number

- select k£ at the “knee” of the curve
scree (debris) starts to accumulate)

(where the

53



Illustration (1/3)

(Hastie et al., 2009)
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lllustration (1/3)
(Hastie et al., 2009)

Second Ptincipal Component

WO
WL
Wb

First Principal Component

FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.
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Singular Values
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lllustration (1/3)

(Hastie et al., 2009)
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lllustration (2/3)
Holmes et al., Nature, Vol. 453, No. 15, May 2008

* |nvestigation of metabolic phenotype variation across and
within four human populations (17 cities from 4 countries:

China, Japan, UK, USA)
* 'H NMR spectra of urine specimens from 4630 participants

* PCA plots of median spectra per population (city) and
gender
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a b Holmes et al., Nature, Vol. 453, No. 15, May 2008
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L voxels (brain regions)

lllustration (3/3)
Neuroimaging
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Limitations of PCA

 PCA may be used to retrieve (visually) a priori determined
groups, but:

- If PCA fails at recovering known groups, you can not
conclude anything

- Indirect with respect to clustering methods

* PCA may be used for feature selection:

- First components may not be related at all to the output
- Better addressed by (supervised) feature selection methods

* |t should be only considered as an exploratory tools
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 Kernel PCA: non-linear feature extraction technique based

Extensions of PCA

on a kernelization of PCA

Radial Kernel (c=10)
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x1 First Largest Eigenvector

Sparse PCA: find components with sparse loadings (few
components with non-zero weights). eg., uses L1
penalization (like LASSO)
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Other dimensionality reduction techniques

Independent Component Analysis:

* find independent instead of orthogonal components

~e - rc? —0sl - :‘(’:(;A |
) R 0 1 2 3 h 05 0 0.5 1
(a) Original (b) After PCA pre-whitening (c) After ICA projection
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Other dimensionality reduction techniques

* Auto-encoder with neural networks: non-linear embedding

* Multi-dimensional scaling (MDS):

- find new coordinates such that some distances are respected
(in the least-square sense)

. k . e
- Find z1.292....,2Nn € IR™ that minimize:
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Other unsupervised methods

e Association rules
* Density estimation

- Mixture models

- Bayesian networks
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