
ar
X

iv
:2

40
6.

19
66

4v
1

 [
cs

.I
T

]
 2

8
Ju

n
20

24
1

Recent Advances in Deep Learning

for Channel Coding: A Survey
Toshiki Matsumine, Member, IEEE, and Hideki Ochiai, Fellow, IEEE

Abstract—This paper provides a comprehensive survey on
recent advances in deep learning (DL) techniques for the channel
coding problems. Inspired by the recent successes of DL in a
variety of research domains, its applications to the physical layer
technologies have been extensively studied in recent years, and
are expected to be a potential breakthrough in supporting the
emerging use cases of the next generation wireless communication
systems such as 6G. In this paper, we focus exclusively on
the channel coding problems and review existing approaches
that incorporate advanced DL techniques into code design and
channel decoding. After briefly introducing the background of
recent DL techniques, we categorize and summarize a variety
of approaches, including model-free and mode-based DL, for
the design and decoding of modern error-correcting codes, such
as low-density parity check (LDPC) codes and polar codes, to
highlight their potential advantages and challenges. Finally, the
paper concludes with a discussion of open issues and future
research directions in channel coding.

Index Terms—Channel coding, deep learning (DL), low-density
parity check (LDPC) codes, machine learning (ML), neural
network, polar codes, turbo codes.

I. INTRODUCTION

Channel coding is a well-established area of research with a

long history dating back to the Shannon’s theory [1] where he

introduced the Shannon limit as the maximum rate at which

information can be transmitted over a given communication

channel. Subsequently, researchers have made tremendous

efforts to develop a practical coding scheme that approaches

the Shannon limit at a realistic implementation cost [2]. The

notable successes in coding theory include the invention of

modern capacity-approaching codes such as turbo codes [3],

low-density parity check (LDPC) codes [4], and polar codes

[5]. These coding techniques have contributed significantly to

various communication systems, such as wired and wireless

communications, as well as storage systems, from the view-

point of improving reliability and energy efficiency.

Due to the emerging wireless applications, including ex-

tended reality (XR) for telemedicine, tactile Internet, vehicle-

to-everything (V2X), and wireless data centers, the next gen-

eration wireless communication systems impose unprecedent-

edly diverse and stringent requirements for, e.g., ultra-high

data rate, ultra-low latency, and high energy efficiency [6]–

[35]. In 5G, the main use cases are enhanced mobile broadband

(eMBB), ultra-reliable low-latency communication (URLLC),

and massive machine type communication (mMTC), and for

T. Matsumine is with the Institute of Advanced Sciences, Yoko-
hama National University, Yokohama, Japan (e-mail: matsumine-toshiki-
mh@ynu.ac.jp)

H. Ochiai is with the Graduate School of Engineering, Osaka University,
Osaka, Japan (e-mail: ochiai@comm.eng.osaka-u.ac.jp)

each case, the system requirement is specified in terms of a

single key performance indicator (KPI), such as throughput,

latency, reliability, and energy efficiency. On the other hand,

due to the diversity of applications, many use cases in the

next wireless communications such as 6G will require trade-

offs among different KPIs, which poses a new challenge for

the design of physical layer techniques [33], [36], [37].

Traditionally, the design of coding schemes has been based

on mathematical models and expert knowledge, such as coding

theory and information theory. Although this approach has

contributed significantly to the recent progress in practical

channel coding, it also has limitations. Specifically, it relies

on mathematical models that do not fully capture real-world

environments, and thus there is always a mismatch between the

model for which we design systems and the actual environment

to which they are applied. In addition, in the next generation

communications, the system design problem will become

increasingly complex due to demanding requirements and

therefore will not be mathematically tractable in most cases. To

address these issues, data-driven approaches to communica-

tion system design based on machine learning (ML) techniques

have emerged as a new paradigm that supports or replaces the

conventional system design based on mathematical models.

In particular, inspired by the recent successes of deep

learning (DL) technologies in broad research areas, their

applications in communication systems have been extensively

studied. This DL trend has been accelerated by the develop-

ment of dedicated DL frameworks, such as Tensorflow [38]

and Pytorch [39], which makes it easier for researchers to

implementate their DL algorithms. Furthermore, most of them

are built with graphics processing unit (GPU) acceleration

provided by the NVIDIA compute unified device architec-

ture (CUDA) Deep Neural Network library (cuDNN), which

significantly speeds up DL training due to its ability to

perform parallel computations and high memory bandwidth.

In addition, various DL processors such as field programmable

gate arrays (FPGAs) and tensor processing unit (TPU) have

been explored in the literature [40], [41], enabling efficient

hardware implementations of DL-based communications and

networking in beyond 5G and 6G.

A. DL Applications to The Physical Layer

In recent years, DL has been successfully applied to the

physical layer of communication systems 1 [31], [42], [44],

[46]–[50], [58]–[73]. One of the seminal works is [58], where

1We note that ML techniques for the physical layer have been studied
sporadically for many years, e.g., in [55]–[57]. However, the applications of
DL are rather new, which started to flourish around 2016.

http://arxiv.org/abs/2406.19664v1

2

TABLE I
SURVEY PAPERS RELATED TO OUR WORK.

Year Reference Contents related to channel coding.

2017 Wang et al. [42] Review of early works on DL-based decoding.

2019
Zhang et al. [43] Brief introduction of DL-based channel decoding.
Gunduz et al. [44] Brief review of DL-aided decoding.
Balatsoukas et al. [45] Review of deep unfolding for channel decoding.

2020
Samad et al. [46] Addressing DL-based channel decoding.
Zhang et al. [47] Review of DL-based decoding and code construction.

2021 Ly et al. [48] Review of DL applications for LDPC code identification, decoding.

2023
Mao et al. [49] Briefly addressing DL-aided decoder and genetic algorithm for code construction.
Akrout et al. [50] Domain generalization [51], [52] in the channel decoding problem.

2024
Ye et al. [53] Review of DL-based decoding for turbo, LDPC, and polar codes.
Rowshan et al. [54] Comprehensive survey on channel coding with brief introduction of DL for channel decoding.

the authors introduced the concept of end-to-end learning for

communication systems, which is considered as autoencoder

(AE). The authors also introduced other DL applications, such

as modulation classification and radio transformer networks.

Later on, many papers discussed potential applications of DL

to communication problems, such as channel decoding, sig-

nal detection, channel modeling, and multiple-input multiple-

output (MIMO) signal detection [42], [44], [59]–[63].

One of the notable advances in DL for the physical layer

is the development of an open source Python library, called

Sionna, which was released by NVIDIA in 2022 [74]. It

supports link-level simulation of multi-user (MU)-MIMO sys-

tems with 5G-compliant channel codes, the third generation

partnership project (3GPP) channel models, channel esti-

mation, and so forth. Each building block is implemented

using TensorFlow and allows for gradient-based optimization

via backpropagation. Sionna alo has a native NVIDIA GPU

support.

As the number of publications related to DL-based ap-

proaches for physical layer technologies has been increasing

almost exponentially, it is important to classify and summarize

them to highlight the current state and challenges. However,

despite its importance, only a handful of survey papers have

been dedicated to the channel coding problems so far.

B. Our Scope and Related Works

Existing papers on DL for channel coding may be classified

into the following categories:

1) DL-based code design,

2) DL-based channel decoding,

3) End-to-end learning for communication systems.

In DL-based code design, the optimization of code parameters,

such as the degree distribution of LDPC codes and the

locations of frozen bits in polar codes, is performed using DL

techniques. Channel decoding is a popular DL application as

the decoding problem is essentially the classification problem

which is what DL is good at. This approach utilizes a deep

neural network (DNN) to replace or augment a conventional

channel decoder with the purpose of improving the error

correction performance or reducing the complexity and/or

latency. End-to-end learning of communication systems is

another popular application, where a transmitter-receiver pair

is often completely replaced by “black-box” DNNs and trained

over a differential channel model in an end-to-end fashion. In

this approach, not only a channel encoder-decoder pair can

be trained, but also other physical layer components such as

source encoder-decoder and symbol mapper-demapper.

Although end-to-end learning has been extensively studied

in the literature, and this approach would be particularly

promising for a new paradigm of semantic communication

[68], [70], [72], [75]–[83], the complete replacement of

transceivers by DNNs poses several challenges in practice

and does not seem feasible at this time. Therefore, this paper

focuses on DL-based approaches that may be applicable to

existing systems with appropriate modifications. In particular,

we consider code design using offline DL techniques and DL-

based channel decoding to replace or support conventional

decoders2.

In Table I, we summarize existing survey papers related to

our scope in this work. We emphasize that most of the existing

survey papers cover a wide range of DL applications in the

physical layer, rather than dealing with DL-assisted channel

coding in a comprehensive manner. Nevertheless, the paper

most closely related to our work would be [47], in which

the authors discussed a wide range of DL applications in the

physical layer, including the channel coding problems such as

channel decoding and code construction. However, since its

publication in 2020, a significant number of new techniques

have been proposed. By focusing solely on the channel coding

problems, we attempt to provide a comprehensive survey

including the state-of-the-art techniques.

The overall organization of this paper is visualized in Fig. 1.

In Section II, we briefly introduce the basics of DL techniques

and the state-of-the-art models to facilitate the understanding

of our survey. In Section III, we review DL-based design of

LDPC and polar codes. Then, in Section IV, we consider

various DL approaches to the channel decoding problem.

Finally, we conclude this paper by discussing the challenges

and future directions in Section V to stimulate further research.

We provide a list of abbreviations that we use after Section V.

II. BRIEF INTRODUCTION OF DEEP LEARNING

In this section, we briefly review the basics of DL technolo-

gies, starting with neural networks and their optimization. We

2Although we mainly focus on classical error-correcting codes in this paper,
DL-based code design and decoding has also been extensively studied in the
realm of quantum error-correcting codes, e.g., in [84]–[90].

lwh
Highlight

3

Section II: Brief Introduction of Deep Learning

A. Basic Principle of DL

B. Learning Approaches
1. Supervised and Unsupervised Learning

2. Reinforcement Learning
3. Transfer Learning

4. Multi-Task Learning
5. Meta Learning
6. Curriculum Learning

C. State-of-the-Art Models
1. Convolutional Neural Network

2. Recurrent Neural Network
3. Graph Neural Network

4. Transformer
5. Diffusion Model

Section III: DL for Code Design

A. LDPC Code Design

B. Polar Code Design
1. Design for Advanced Decoding Schemes

2. Nested Polar Code Constructions
3. Design of Polar Codes with Large Kernel

4. Design of PAC Codes

Section IV: DL for Channel Decoding

A. Model-Free Decoder
1. MLP Decoders

2. Advanced DL Models
3. Syndrome-Based Loss Function

4. Adaptivity
5. RL-Based Approaches
6. Complexity Reduction

7. Other Approaches

B. DL-Based BP Decoder
1. Neural MS decoders and Its Variants

2. Performance Enhancement
3. Variants of Random Redundant Decoding

4. Optimization-Based Decoding
5. RL-Based Approaches
6. Customized Loss Functions

7. Memory and Complexity Reduction
8. GNN Decoders

9. Understanding Neural BP Decoders
10. Other Approaches

C. DL-Aided Decoding of Polar Codes
1. Neural Network-Based SC Decoding

2. DL-Aided SC Flip Decoding
3. DL-Aided SCL Flip Decoding

4. Other Approaches

D. DL-Aided Convolutional and Turbo Decoding
1. Convolutional Decoders

2. Turbo Decoders

E. DL-Aided Decoding of Cyclic Codes

Fig. 1. Organization of this survey paper.

then introduce the state-of-the-art training and DL models. For

details on the theory of general DL techniques, please refer,

e.g., to [91]–[100].

A. Basic Principle of DL

DL is a subfield of ML that uses DNNs with multiple hidden

layers between input and output layers. Among various neural

network structures, multi-layer perceptron (MLP) is a class of

fully connected feedforward neural networks that consist of at

least one hidden layer in addition to input and output layers

[101].

An example of a single hidden layer MLP is shown in Fig. 2,

where the input vector x ∈ R
3 is mapped to the output vector

y ∈ R
2 by applying a series of affine transformations and

nonlinear activation functions as

y = φ1(W1h+ b1) (1)

= φ1(W1φ0(W0x+ b0) + b1), (2)

where W0 ∈ R
3×3 and W1 ∈ R

3×2 are weight matrices,

b0 ∈ R
3 and b1 ∈ R

2 are bias terms, and φi(·) with i ∈ {0, 1}
denotes the element-wise application of a nonlinear activation

function.

The nonlinear activation function allows the neural network

to approximate highly complex functions, and the choice of

Input
Layer

Output
Layer

Hidden
Layer

x h

y

W1

W0

b1b0

Fig. 2. An example of MLP with single hidden layer.

activation functions has a significant impact on the resulting

performance. Although there are a number of activation func-

tions [102], one of the most widely used modern activation

functions is rectified linear unit (ReLU) [103] and its variants

such as Leaky ReLU [104] and parametric ReLU [105].

As for the optimization of the DNN parameters, i.e.,

Θ , {W0,W1,b0,b1} in our example, the most common

approach is gradient descent, which is a first-order iterative

4

algorithm for finding a local minimum of a differentiable

function. The basic idea of gradient descent is to update the

parameters in the opposite direction of the gradient of the

differentiable loss function that we wish to minimize. Letting

f(Θ) denote the loss function that is differentiable with respect

to the parameter set Θ, in the i-th iteration of gradient descent,

the trainable parameters are updated as

Θi+1 = Θi − η∇f(Θi), (3)

where η ∈ R+ is a learning rate that determines the size of

the steps taken in the direction of steepest descent.

Gradient descent algorithms can be classified according to

the amount of data used to compute the gradient, namely,

batch gradient descent (BGD), stochastic gradient descent

(SGD), and mini-batch stochastic gradient descent (MBSGD).

BGD calculates the gradients for the entire training dataset,

while SGD performs a parameter update (and thus gradi-

ent calculation) for each training data sample. Meanwhile,

MBSGD substitutes small data batches for single samples in

SGD, thereby reducing the variance of the parameter updates,

which can lead to more stable convergence. Furthermore, the

gradient computation in MBSGD can be efficiently performed

by DL libraries. For these reasons, MBSGD is one of the most

popular stochastic optimization methods for training DNNs.

However, the standard MBSGD does not necessarily guar-

antee good convergence, and many improvements have been

proposed that adaptively control the learning rate during

training. These approaches include Momentum [106], Adagrad

[107], Adadelta [108], RMSprop 3, Nadam [109], and Adam

[110]. Implementations of these optimizers are available in

DL frameworks such as Tensorflow [38] and Pytorch [39].

For more details on SGD algorithms, see [111].

B. Learning Approaches

There are many training methods for ML techniques. In the

following, we introduce some of the major approaches that are

often applied to the design of communication systems.

1) Supervised and Unsupervised Learning: Supervised

learning trains algorithms based on labeled datasets consisting

of pairs of inputs and corresponding correct outputs, i.e.,

ground truth. The goal is to analyze patterns from a large

dataset and predict outcomes for new data. Supervised learning

is commonly used for tasks such as classification and regres-

sion. Since the channel decoding problem can be seen as a

type of classification, the simplest approach would be to train a

DL-based channel decoder, where a DNN is trained to estimate

a transmitted codeword by minimizing the error between the

correct and estimated codewords.

Unsupervised learning is another type of ML algorithm

that learns patterns from data without human supervision.

Self-supervised learning, often used to train large language

models (LLMs), can also be considered unsupervised learning

in the sense that it uses the data itself to generate supervising

signals, rather than relying on human supervision. There

is also an approach called semi-supervised learning, which

3Originally proposed in http://www.cs.toronto.edu/∼tijmen/csc321/slides/
lecture slides lec6.pdf.

Agent

Environment

Action at

New state and reward

st,R(st−1, at−1, st)

Previous state and reward

st+1,R(st, at, st+1)

Fig. 3. A typical reinforcement learning framework.

combines both supervised learning and unsupervised learning,

i.e., it uses both labeled and unlabeled data. Although these

approaches are particularly suitable for the practical scenario

where a sufficiently large labeled dataset is not available, their

applications to channel decoding are rather new topics to be

investigated.

2) Reinforcement Learning: Reinforcement learning (RL)

is an experience-driven autonomous learning framework where

an intelligent agent learns to take actions in a dynamic envi-

ronment in order to maximize the cumulative reward [112].

RL is typically modeled as Markov decision process (MDP)

which consists of

• a set of environment and agent states S
• a set of actions A
• the transition probability from state st to state st+1 upon

action at at time t, denoted by P(st+1|st, at), and the

corresponding reward function R(st, at, st+1).

The process is shown in Fig. 3. At each time step t, the agent

observes a state st ∈ S and takes an action at ∈ A, following

a policy π(at|st). Then the agent receives a scalar reward

rt, and transitions to the next state st+1, according to the

reward function R(st, at, st+1) and state transition probability

P(st+1|st, at), respectively. This process continues until the

agent reaches a terminal state. The return is the discounted,

accumulated reward with the discount factor γ ∈ (0, 1]. The

agent aims to maximize the expectation of such long term

return from each state.

In many practical problems, the states of the MDP are high-

dimensional and difficult to solve with traditional RL algo-

rithms. On the other hand, thanks to their powerful function

approximation properties, the use of DNNs to approximate

the optimal policy and/or the optimal value functions in

RL provides an efficient way to overcome these problems.

This approach, called deep reinforcement learning (DRL), has

achieved remarkable results in a variety of research areas. In

particular, deep Q-network (DQN) [113], where a DNN model

is built to approximate the Q function (the value of an action in

a given state), showed impressive results in Atari [113]. More

details on DRL can be found, for example, in [114]–[117].

3) Transfer Learning: Transfer learning is a technique for

transferring knowledge learned from a task in a source domain

to imp performance on a related task in a target domain [118]–

[122]. Transfer learning addresses the problem of insufficient

5

Task1
(Source Domain)

Knowledge Transfer

Pre-Trained Model

Task2
(Target Domain)

New Model

Related tasks

Fig. 4. The concept of transfer learning.

labeled training data by transferring the knowledge across task

domains. This concept is illustrated in Fig. 4. Note, however,

that the transferred knowledge may be worthless if there is

little or even nothing in common between the source and target

domains.

In the channel coding problems, transfer learning can be

useful to adapt DL-based code design and decoding trained

for a certain channel model and code parameters to new

channel models or parameters. For example, we usually train

a DNN for design or decoding assuming a certain code

rate, and adapting to a new code rate requires re-training

of the DNN, which is time consuming and computationally

expensive. Since codes derived from a single mother code by

rate matching, i.e., puncturing and shortening, may have many

similarities, transfer learning could be used to significantly

reduce the computational burden of re-training or to improve

the performance with the new parameter.

4) Multi-Task Learning: In multi-task learning, a set of

multiple tasks is solved jointly, sharing an inductive bias

among them [123], [124]. Multi-task learning is inherently a

multi-objective problem because different tasks may conflict,

requiring a trade-off. A common compromise is to optimize a

proxy objective that minimizes a weighted linear combination

of per-task losses. Since this joint representation must capture

useful features across all tasks, multi-task learning can hinder

individual task performance if the different tasks seek conflict-

ing representations, i.e., the gradients of different tasks point in

opposing directions or differ significantly in magnitude. This

phenomenon is commonly known as negative transfer.

There are some similarities between transfer learning and

multi-task learning. Both aim to improve learners’ perfor-

mance by knowledge transfer. On the other hand, the main

difference is that the former transfers the knowledge contained

in the related domains, while the latter transfers the knowledge

by learning some related tasks simultaneously. In other words,

multi-task learning pays equal attention to each task, while

transfer learning pays more attention to the target task than to

the source task.

Similar to transfer learning, multi-task learning could be

used to efficiently support multiple different code parame-

ters. Furthermore, multi-task learning can be used for multi-

objective optimization, which is common in many commu-

nication system design problems. Application examples of

multi-task learning include AE-based constellation design that

attempts to jointly minimize bit error rate (BER) and peak-to-

average power ratio (PAPR) for orthogonal frequency division

multiplexing (OFDM) systems [125].

5) Meta-Learning: Unlike traditional learning approaches

that attempt to solve tasks from scratch with a fixed algorithm,

meta-learning aims to learn the learning algorithm itself by

learning from previous experience or tasks [126], [127]. This

learning-to-learn framework can lead to several benefits, such

as improved data and computational efficiency.

In a meta-learning framework, there are two types of data,

a larger data set of examples from related tasks (meta-training

data) and a small training data set for a new task (meta-testing

data). Standard meta-learning consists of two phases, 1) meta-

training where a set of hyperparameters is optimized given

the meta-training data set, and 2) meta-testing where model

parameters, which are initialized with the meta-trained hyper-

parameters, are optimized using the meta-testing data. Thus,

the meta-training phase aims to optimize hyperparameters that

allow efficient training on a new, a priori unknown, target task

in the meta-testing phase.

Meta-learning could naturally be applied to adaptive de-

coder design, where the decoder parameters are initialized

by meta-training and then optimized based on meta-testing

to adapt to a new channel. In addition, the concept can be

applied to a wide range of problems in the physical layer,

such as signal demodulation, joint transmitter and receiver

optimization via end-to-end learning, channel prediction, and

so forth, as reviewed in [128].

6) Curriculum Learning: Curriculum learning, originally

proposed in [129], is a training strategy that trains a machine

learning model from easier data to harder data, imitating

human learning [130], [131]. The basic idea is to “start small”

[132], i.e., to train the ML model with easier data subsets, and

then gradually increase the difficulty level of the data until the

entire training dataset is used. Curriculum learning can be seen

as a special form of the continuation method which is a general

strategy for global optimization of non-convex functions [129].

As the idea of curriculum learning serves as a general

training strategy, it has been exploited in a considerable

range of applications. In contrast to the standard training

approach based on random data shuffling, curriculum learning

can provide performance improvements with faster training

convergence speed. In curriculum learning, the design of a

curriculum strategy, i.e., a sequence of training criteria, plays

a key role.

Curriculum learning can be beneficial for designing com-

munication systems including channel coding schemes. For

example, designing and decoding long codes is generally a

more difficult task than designing and decoding short codes.

As such, instead of learning to design or decode long codes

directly, curriculum learning strategies that start from training

with short codes and then gradually increase the code length

have the potential to achieve not only faster training conver-

gence, but also better performance.

6

Input

Convolutional
Layer

Pooling
Layer

Flatten
Layer

Fully Connected
Layer

Fig. 5. A simple CNN architecture.

C. State-of-the-Art Models

Finding an appropriate architecture is important when ap-

plying DL to the problems in communication systems. In the

following, we briefly review the representative DL models that

are useful for such problems.

1) Convolutional Neural Network: Convolutional neural

networks (CNNs) have made tremendous success in a vast

research field including computer vision and natural language

processing (NLP) [133]–[135]. A CNN is a type of feed-

forward neural network with a convolutional layer that learns

features by applying filters (or kernels) to data. A simple

example of a CNN architecture is illustrated in Fig. 5. The

CNN has fewer connections and parameters than the MLP

since each neuron in a convolutional layer receives input only

from a restricted area of the previous layer. This restricted area

is called the receptive field of the neuron, and in the case of

a fully connected layer, the receptive field corresponds to the

entire previous layer.

CNNs have been particularly successful in image recogni-

tion tasks, achieving state-of-the-art results on several bench-

marks such as the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC). Representative CNN models include

AlexNet [136], VGGnet [137], Inception (GoogLeNet) [138],

ResNet [139], and DenseNet [140]. Their success is due to

their ability to capture spatial features and patterns by using

a hierarchical architecture of layers that perform convolution

operations and extract features at different levels of abstraction

[141].

As for their applications in channel coding, they are often

used for decoding, and have been demonstrated to be more

efficient than standard MLP. Other popular applications of

CNN in the physical layer include channel estimation in

time-frequency domain for OFDM systems [142] and fully

CNN receiver that replaces the conventional channel estimator,

equalizer, and demapper [143].

2) Recurrent Neural Network: Unlike unidirectional feed-

forward neural networks, a reccurent neural network (RNN)

is a bi-directional artificial neural network that is capable of

learning long-term dependencies from sequential data [92],

[144]. Due to their ability to use internal state (memory) to

process arbitrary input sequences, they are particularly suited

for processing time-series data such as speech recognition.

On the other hand, due to the recurrent connections, classical

RNNs have the gradient vanishing and exploding problems,

i.e., the long-term gradients may not converge and approach

zero or infinity during backpropagation.

s0

x0

h0 h1 ht

sts1

x1 xt

(a) RNN.

tanh

tanh

σ σ σ

ht−1

ct−1

xt

ht

ht

ct

Forget
Gate

Input
Gate

Output
Gate

LSTM Block

(b) LSTM with a forget gate.

tanhσ σ

xt

ht

Reset

Gate
Update

Gate

GRU Block

ht−1

1-

(c) GRU.

Fig. 6. Comparison of RNN, LSTM, and GRU architectures [148].

Long short term memory (LSTM) is one of the most

popular RNN models that can reduce the effects of vanishing

and exploding gradients [145] [146] by introducing a gating

mechanism to input or forget certain features. Another pop-

ular model is a gated recurrent unit (GRU) [147], in which

recurrent units adaptively capture dependencies of different

time scales to accommodate the higher memory requirements

of LSTM. A comparison of these architectures is shown in

Fig. 6. For more details of RNN, in particular LSTM, please

refer to [148]–[150].

The LSTM and GRU models have been widely applied to

communication systems. In particular, due to the analogous

structure to convolutional codes, RNNs may be well suited

for decoding of convolutional codes. Similarly, RNNs have

been successfully applied to signal detection for channels with

memory [151].

3) Graph Neural Network: While ML effectively captures

hidden patterns in Euclidean data, a common assumption of

existing ML algorithms is that instances are independent of

each other. This assumption no longer holds for graph data,

where every node is related to others. Extending DNN models

to non-Euclidean domains, which is generally referred to as

7

geometric DL, has been an emerging area of research. In

particular, a graph neural network (GNN) that operates on the

graph domain has recently become a popular graph analysis

method [152]–[155].

Let G ∈ (V , E) be a graph, where V is the node set and

E is the edge set. Let Nu be the neighborhood of some

node u ∈ V . Additionally, let xu be the properties of node

u ∈ V . GNN implements a permutation-equivalent layer,

called a GNN layer, which maps a representation of a graph

into an updated representation of the same graph. Although the

design of GNN layers is one of the active research areas, one

popular approach is message passing neural network (MPNN)

layers (other popular approaches include graph convolutional

networks [156] and graph attention networks [157]). In an

MPNN layer in a generic GNN, nodes update their repre-

sentations by aggregating the messages received from their

immediate neighbors [158] and the output of the layer (node

representations hu for each u ∈ V) is expressed as

hu = φ

(

xu,
⊕

v∈Nu

ψ(xu,xv)

)

, (4)

where φ and ψ are typically trainable differential functions,

whereas
⊕

is a nonparametric permutation invariant aggre-

gation operator that can take an arbitrary number of inputs.

In particular, φ and ψ are referred to as update and message

functions, respectively.

Due to its close relationship to a Tanner graph, a GNN

is particularly useful for designing and decoding codes over

graph. One of the major advantages of GNN is their scalability,

i.e., a GNN trained for a small code length will generalize to

any code length, while this usually requires additional training.

4) Transformer: Transformer is a DL architecture based

on the multi-head attention mechanism [159]. As depicted in

Fig. 7, it consists of an encoder and a decoder, each of which

has several Transformer blocks having the same architecture.

Each Transformer block consists of a multi-head attention

layer, a feed-forward neural network, a shortcut connection,

and a layer normalization. Given a sequence of elements, the

self-attention mechanism explicitly models the dependencies

among all entities of a sequence.

It has no recurrent units, and thus requires less training

time than previous RNN architectures, such as LSTM, and

its later variant has been widely adopted for training most

of representative LLMs, such as Open AI’s generative pre-

trained Transformer (GPT) series [160], Meta’s Large Lan-

guage Model Meta AI (LLaMA) [161], Googles Pathways

Language Model (PaLM) [162], and Gemini [163] are based

on the Transformer model. More details and the applications

of the Transformer can be found in [164]–[166].

Although Transformer was originally proposed for NLP

tasks [159], it has been successfully adopted for a variety of

tasks such as computer vision [167], audio applications [168].

For the physical layer technologies, the use of Transformer

is rather new [169]. Due to its excellent performance, Trans-

former has the potential to improve the performance of existing

DL methods for communication engineering problems.

Input
Enbedding

Multi-Head
Attention

Add & Norm

Feed-Forward

Add & Norm

Input

!N

Output
Enbedding

Masked
Multi-Head
Attention

Add & Norm

Add & Norm

Output

!N

Positional
Encoding

Positional
Encoding

Multi-Head
Attention

Feed-Forward

Add & Norm

Linear

Softmax

Output
Probabilities

Fig. 7. The Transformer architecture [159].

5) Diffusion Model: Diffusion models (DMs) are a class

of probabilistic generative models that progressively corrupt

data by injecting noise, and then learn to reverse this process

for sample generation. The training procedure consists of

two phases: the forward diffusion process and the backward

denoising process [170]. In the forward process, typically

Gaussian noise is injected into the training data until it

becomes pure Gaussian. In the backward process, the noise

is sequentially removed to reconstruct the original image. The

noise subtracted at each step is estimated by a neural network.

Among different formulations [171], [172], denoising diffu-

sion probabilistic model (DDPM) [173] is a representative DM

inspired by the theory of non-equilibrium thermodynamics.

Due to its high generative quality and versatility, DM could

be applied to many problems in communication systems,

such as channel estimation [174], signal detection [175], AE

[176]–[178], and network optimization problems [179], [180].

However, the application of DMs to the physical layer is a

relatively new area of research [181]–[183].

III. DL FOR CODE DESIGN

Modern capacity-approaching codes such as LDPC and

polar codes are usually designed based on well-established

analytical tools, such as density evolution (DE) [193], [194]

and extrinsic information transfer (EXIT) chart [195]. How-

ever, these techniques rely on assumptions that do not hold

in practice. For example, for the design of LDPC codes, DE

and EXIT chart analyses assume simple channel models, such

as binary-input additive white Gaussian noise (BI-AWGN)

channels, infinite code length, and unlimited belief propagation

(BP) decoding iterations. These techniques are also used

for polar code design, but they are again limited to simple

channel models and decoding schemes such as successive

cancellation (SC) decoding. For more realistic channel models

8

TABLE II
SUMMARY OF DL-BASED POLAR CODE DESIGN.

Category Reference Main Contributions

Advanced Decoding Schemes

Ebada et al. [184] Design for BP decoding with finite iteration count.
Huang et al. [185] RL-based design of polar codes for SCL decoding.
Leonardon et al. [186] Design that minimizes BLER under SCL decoding via projected gradient descent.
Liao et al. [187] GNN-based polar code construction for CA-SCL decoding.
Miloslavskaya et al. [188] Optimization of polar codes with dynamic frozen bits under SCL decoding.

Nested Polar Codes
Huang et al. [185] Construction of nested polar codes via advantage actor-critic algorithms.
Li et al. [189] Stochastic policy optimization by a customized network.
Ankireddy et al. [190] Nested polar code construction based on sequence modeling and Transformer.

Polar Codes with Large Kernel Hebbar et al. [191] Polar codes via large nonlinear neural network-based kernels.

PAC Codes Mishra et al. [192] RL-based algorithm for rate-profile construction of PAC codes.

and advanced decoding schemes, DL could replace or support

existing code design techniques. We have summarized the DL-

based approaches to polar code design in Table II.

A. LDPC Code Design

Irregular LDPC codes are characterized by a variable degree

distribution λ(x) and a check degree distribution ρ(x), which

are expressed as

λ(x) =

dv
∑

i=2

λix
i−1, ρ(x) =

dc
∑

i=2

ρix
i−1, (5)

where λi and ρi represent the fraction of edges emanating

from variable nodes (VNs) and check nodes (CNs) of degree

i and λ(1) = ρ(1) = 1. The maximum variable degree

and check degree are denoted by dv and dc, respectively.

The degree distribution is often optimized to maximize the

iterative decoding threshold, which is defined as the lowest

channel signal-to-noise ratio (SNR) at which the message

distribution in BP evolves in such a way that its associated

error probability converges to zero as the number of iterations

tends to infinity. The method of identifying a threshold by

tracking the evolution of the message distribution is termed

DE [193].

The code design problem belongs to the class of nonlinear

constraint satisfaction problems with continuous space param-

eters, where we first explore the space of degree distributions

to find degree distribution pairs, traditionally solved by dif-

ferential evolution [193], and then evaluate the BP threshold

of the selected pairs via DE. In [196], the authors modeled

the code design process as a supervised learning problem by

mapping the recursive update equation of DE to an RNN

architecture, which they refer to as neural density evolution

(NDE). They also proposed a multi-objective loss function

for NDE that ensures its high configurability, i.e., various

code rates and maximum degrees. Their simulations show that

the proposed designs achieve the performance of state-of-the-

art designs in asymptotic settings for a variety of codeword

lengths and channels.

B. Polar Code Design

An encoder of polar codes of length N is represented

by the generator matrix GN = (1 0
1 1)

⊗n
∈ F

N×N
2 , where

n = log2N is a positive integer and A⊗n = A ⊗ A⊗(n−1)

is the nth Kronecker power of the matrix A [5]. Let I ⊂

{0, 1, . . . , N − 1} denote a set of information bit indices with

its cardinality K = |I|, and F = {0, 1, . . . , N − 1}\I denote

the complement of I with its cardinality |F| = N − K .

Letting u = (u0, u1, . . . , uN−1) ∈ F
N
2 be an input vector

to the polar encoder, the bits ui with i ∈ I are chosen to

carry information, whereas those with i ∈ F are frozen (i.e.,

fixed to a predetermined bit value known by encoder and

decoder). The code rate of the polar code is thus R = K/N .

Polar code design or construction is equivalent to identifying

an appropriate index set I for a given channel model and

decoding scheme.

In his original paper, Arıkan suggested using Monte-Carlo

simulations to estimate the reliabilities of bit channels [5].

Subsequently, DE [194] and its improved version [197] were

proposed to accurately estimate the reliabilities at the cost of

high complexity. This complexity was alleviated by Gaussian

approximation (GA) of DE [198], improved GA [199], and

reciprocal channel approximation (RCA) [200].

1) Design for Advanced Decoding Schemes: Although po-

lar codes were originally proposed with SC decoding [5],

their finite-length performance is unsatisfactory. In order for

polar codes to achieve performance comparable to other

capacity-approaching codes, advanced decoding schemes, such

as successive cancellation list (SCL) or cyclic redundancy

check-aided successive cancellation list (CA-SCL) decoding

[201], are required. However, the above-mentioned polar code

construction schemes assume SC decoding and there is no

explicit approach to designing polar codes for SCL and CA-

SCL decoding.

In [184], the authors proposed to design polar codes for BP

decoding with limited number of iterations over both additive

white Gaussian noise (AWGN) and Rayleigh fading channels.

By representing the frozen and non-frozen bit vectors by soft-

valued vectors, which can be considered as training weights of

a neural network, training is performed to minimize the cross

entropy loss between transmitted and estimated codewords

while satisfying the target code rate requirement and training

convergence. The simulations showed that the learned polar

code outperforms the performance of the 5G polar code under

Arıkan’s conventional BP decoder.

On the other hand, the authors in [185], [202] proposed a

genetic algorithm and RL-based design of polar codes for SCL

decoding. As a reward function in RL, the authors computed

an SNR required for a code to achieve a target block error

rate (BLER) via Monte-Carlo simulations. In the same line

9

of research, the authors in [203] proposed a tabular RL-

based construction of polar codes for SCL decoding. Instead

of evaluating the BLER based on the Monte-Carlo method

as in [185], [202], they designed the reward function that

sends a negative immediate reward (penalty) to the agent

when the selected action causes a frame error in genie-aided

SCL decoding4. The proposed method achieved comparable

or slightly better performance with a lower computational

complexity in training than the method in [185].

As another approach, the authors in [186] proposed a two-

step optimization method. More specifically, they first trained

MLPs to predict BLER under SCL decoding from input frozen

bit sequences, and then the code that minimizes the BLER

was constructed via projected gradient descent (PGD) [204]

which has been widely studied in the realm of adversarial

attacks on neural networks. Simulations demonstrated that the

proposed construction successfully improves the performance

of the codes on the dataset used for predicting BLER.

More recently, the authors in [187] proposed a GNN-based

polar code construction algorithm for CA-SCL decoding. More

specifically, a polar code is first mapped onto a unique het-

erogeneous graph called the polar-code-construction message-

passing (PCCMP) graph, and then a heterogeneous GNN-

based iterative message-passing algorithm is proposed which

aims to find a PCCMP graph corresponding to the polar code

with minimum BLER under CA-SCL decoding. The proposed

GNN-based iterative message-passing method has a salient

property that a single trained model can be directly applied

to constructions for different design SNRs and different block

lengths without any additional training. Numerical experi-

ments showed that the proposed constructions outperform

classical constructions in [197] under CA-SCL decoding.

In [188], the authors proposed neural network-based adap-

tive polar coding scheme that adapts to various channel

conditions and quality of service requirements. Specifically,

the authors developed an MLP-based performance prediction

framework for polar codes with dynamic frozen bits under

SCL decoding. Then the authors presented a new class of

polar codes with dynamic frozen bits parameterized by a

single integer parameter, and used the performance prediction

framework to optimize the parameter for a given target BLER,

list size, code length and rate. The simulation results show that

the proposed codes outperform 5G polar codes under CA-SCL

decoding with various list sizes. Although a neural network is

not used due to the training difficulty, the same authors also

proposed an RL-based method to design dynamic frozen bits

of polar codes that minimize the BLER under SCL decoding

in [205].

2) Nested Polar Code Construction: In general, on-the-fly

design of polar codes that adaptively select frozen bits for a

given channel may be too complex to implement in practical

systems. On the other hand, the authors in [206]–[209] studied

the design of polar codes based on a universal reliability order

of bit channels that is independent of channel conditions. As

such, it is preferable in practice to impose a nested property

4In genie-aided SCL decoding, the decoder can always output the correct
codeword if it is in the list.

Agent Environment

ak

at ∈ {0, 1, . . . , N − 1}

rt ∈ Rst ∈ {0, 1}N

s0

Action: Set -th bit to be frozen

()

State: Frozen bit vector

(initial state : the zero vector)

Reward: BLER

(Monte-Carlo estimation)

Fig. 8. RL-based construction of a rate-K/N nested polar code at time t ∈
{1, . . . ,K} in [185], [202]. The goal is to minimize the expected cumulative

BLER, i.e.,
∑

K

t=1
rk . The ones in the frozen bit vector st indicate locations

of frozen bits.

on polar codes with different rates, so that all polar codes can

be derived from the same mother code based on the universal

reliability sequence [210].

The authors in [185], [202] proposed constructing nested

polar codes via advantage actor-critic (A2C) algorithms [211].

The paper regarded code construction as a multi-step MDP,

where for a given (N,K) polar code (current state), a new

action is taken to construct (N,K+1) polar code (an updated

state). This MDP is illustrated in Fig. 8. The reliability ordered

sequence is then constructed by sequentially appending the

actions to the end of initial polar code construction. The pro-

posed code design was shown to outperform the conventional

DE construction under SCL decoding.

Meanwhile, the authors in [189] first transformed the

problem of nested polar code construction into a stochastic

policy optimization problem for sequential decision, and then

represented the policy by a customized neural network. Fur-

thermore, the authors proposed a gradient-based algorithm to

minimize the average loss of the policy. Simulation results

demonstrate that the proposed construction achieves better

performance than the state-of-the-art nested polar codes for

SCL decoding in [185], [202]. A similar construction of nested

polar codes has also been proposed in [190], where the authors

parameterized the policy network by a Transformer encoder-

only model, which can directly predict the next information

bit in the nested sequence. It was shown that the proposed

Transformer-based construction can achieve better error rate

performance than the approach proposed in [189].

3) Design of Polar Codes with Large Kernel: Another way

to improve finite-length performance of binary polar codes is

to increase the size of the polarization kernel. In fact, channel

polarization holds for all kernels provided that they are not

unitary and not upper triangular under any column permutation

[212]. However, binary polar codes with large kernels exhibit

poor performance for practical short-to-medium block lengths

and face an exponential increase in computational complexity

with kernel size.

In [191], the authors proposed polar codes via large non-

linear neural network-based kernels, termed as DEEPPOLAR,

and its decoder based on a generalization of SC decoding.

They also developed a principled curriculum-based training

10

methodology that allows DEEPPOLAR to generalize well to

high SNR scenarios, characterized by rare error events. It was

shown that the DEEPPOLAR outperforms the classical polar

codes with SC decoding.

4) Design of Polarization Adjusted Convolutional Codes:

In the Shannon Lecture at the 2019 International Symposium

on Information Theory (ISIT), Arıkan introduced a new class

of codes, called polarization adjusted convolutional (PAC)

codes, that concatenate convolutional precoding with the polar

transform [213]. PAC codes significantly improve the per-

formance of polar codes at short-to-moderate block lengths,

where channel polarization occurs relatively slowly.

The first step in encoding of PAC codes is rate profiling.

For PAC codes of rate-K/N , this step inserts K information

bits into a vector of length N , which is subsequently input to

the convolutional precoder. The selection of K bit indices out

of N possible indices is called rate profile construction and

its design significantly affects the performance of PAC codes.

In [192], the authors proposed an RL-based algorithm for

rate-profile construction of PAC codes. Specifically, by map-

ping the rate profile construction problem to MDP, the authors

proposed Q-learning with a set of customized reward and

update strategies. Simulation results showed that the proposed

rate-profile construction provides better error rate performance

compared to the Monte-Carlo-based rate profiling design in

[214].

IV. DL FOR CHANNEL DECODING

DL methods for channel decoding have been an active area

of research and have been extensively studied as a means to

replace or assist conventional decoding algorithms. In what

follows, we first review model-free decoders that do not

assume specific code structure and thus are applicable to any

codes. We then review model-based DL BP decoding methods

take take into account specific factor graphs. Subsequently,

we focus on DL methods for decoding polar codes, convolu-

tional/turbo codes, and cyclic codes.

A. Model-Free Decoders

A model-free decoder employs neural networks that do

not take into account any specific structure of the codes and

thus can potentially benefit from the powerful architectures

of advanced DL models. However, such decoders typically

suffer from the curse of dimensionality, since the size of

the training dataset grows exponentially with the number of

information bits. On the other hand, a potential advantage over

conventional non-DL-based decoding is a highly parallelizable

structure, allowing one-shot decoding instead of iterative de-

coding. The model-free approaches that we will discuss below

is summarized in Table III.

1) MLP Decoders: The paper [215] is one of the initial

works on DL-based channel decoding where the authors

investigated the direct application of MLP to decoding of

random and polar codes. Their empirical results demonstrated

that for structured codes, the DL decoder can generalize even

for codewords not seen in the training phase, and the DL

decoder can achieve maximum a posterior (MAP) decoding

performance for a very small code lengths such as 16 bits, but

learning for longer codes is prohibitively complex due to the

exponentially increasing training complexity.

Meanwhile, the authors in [216] investigated the impact

of various configurations of an MLP decoder on BER per-

formance, such as the number of hidden layers, the number

of nodes for each layer, and activation functions. Similarly,

the paper [217] empirically studied the impact of the number

of hidden layers and nodes as well as a training SNR of

the MLP decoder on its performance and investigated the

minimum numbers required to achieve similar performance

to the optimal maximum-likelihood decoder for short linear

and nonlinear block codes.

In [218], [243], the authors investigated the application of

small MLP decoders to low-energy and low-latency appli-

cations. In particular, the paper made comparisons between

single-label and multi-label neural decoders, and demonstrated

that the multi-label decoder generally requires more hidden

layers and nodes to achieve similar performance to the single-

label decoder.

2) Advanced DL Models: The performance of the above-

mentioned MLP decoder can be enhanced by advanced DL

models. For instance, in [219], the authors investigated dif-

ferent types of decoders based on MLP, CNN, and RNN

(in particular, LSTM). Their empirical results demonstrated

that the RNN and CNN decoders can actually achieve better

BER performance than the MLP decoder at the cost of higher

computation time. In [220], RNN (bidirectional gated recurrent

unit (Bi-GRU)) was used for encoding/decoding of turbo codes

as in [244].

To further improve the performances, the authors of [221],

[245] introduced the concept of residual learning [139] to the

MLP, CNN, and RNN-based decoders. Specifically, the paper

introduced a denoiser network prior to the decoder that simply

aims to remove noise induced at the channel, and proposed

a training loss that considers both denoising and decoding

performance. It was demonstrated that the proposed denoiser

network can improve the BER performance at the cost of

marginal increase in run time.

More recently, inspired by the success of the Transformer

model in various applications [159], a novel Transformer

architecture for decoding algebraic block codes, termed error

correction code Transformer (ECCT) was proposed in [222].

The ECCT takes as input a concatenation of reliabilities of

codeword bits (absolute values of received symbols in the

case of BI-AWGN) and syndrome bits as its input where each

element of which is embedded in a high-dimensional space

with its own position-dependent embedding vector. Then, a

self-attention mechanism is employed, where the interaction

between bits specified by the code structure, i.e., parity

check matrix (PCM), is incorporated as domain knowledge.

Extensive simulation results demonstrated that the proposed

Transformer-based decoder outperforms state-of-the-art neural

decoders.

Although the ECCT in [222] employs a mask matrix that

is derived from the PCM, there exist numerous PCMs for the

same code which will lead to different decoding performances.

Motivated by this fact, the authors in [246] addressed the

11

TABLE III
SUMMARY OF MODEL-FREE DECODERS.

Category Reference Main Contributions

MLP Decoders

Gruber et al. [215] Initial work on MLP-based channel decoding.
Seo et al. [216] Investigation on the impact of various configurations of an MLP decoder.
Leung et al. [217] Empirical study on the impact of hyperparameters of the MLP decoder.
Leung et al. [218] Investigated small MLP for applications with low energy and latency.

Advanced DL Models

Lyu et al. [219] Investigation on different types of DL decoders, namely, MLP, CNN, RNN.
Sattiraju et al. [220] Bi-GRU-based decoder.
Zhu et al. [221] Residual MLP, CNN, RNN-based decoders.
Choukroun et al. [222] Novel Transformer architecture for decoding block codes.
Choukroun et al. [223] DDPM for soft-decision decoding of linear codes.

Syndrome-Based Loss Function
Bennatan et al. [224] Syndrome-based approach to soft-decision decoding of linear codes.
Kamassury et al. [225] Iterative algorithm, referred to as iterative error decimation.
Artemasov et al. [226] SISO decoder based on Stacked-GRU for turbo product codes.

Adaptability

Wang et al. [227] Unified DL-based decoder for polar and LDPC codes.
Jiang et al. [228] A meta learning-based model independent neural decoder.
Lee et al. [229] Transfer learning for decoding a set of rate-compatible polar codes.
Artemasov et al. [230] A unified DL decoder for BCH and polar codes concatenated with CRC.

RL-Based Approach
Carpi et al. [231] DQN for iterative bit-flipping decoding of binary linear codes.
Gao et al. [232] Q-learning-based bit-flipping decoding for polar codes.

Complexity Reduction
Kavvousanos et al. [233]–[236] Magnitude-based pruning and quantization for parameter reduction.
Cavarec et al. [237] A DL-aided adaptation of the order parameter in OSD.

Other Approaches

Raviv et al. [238] Data-driven framework for permutation selection in permutation decoding.
Kurmukova et al. [239] Friendly jamming for improving decoding performance.
Tsvieli et al. [240] Investigation on the problem of maximizing the margin of the decoder.
Zhong et al. [241], [242] DL-based decoders for spin-torque transfer magnetic random access memory.

problem of identifying the optimal PCM. In particular, the

authors proposed a systematic mask matrix constructed from

the systematic PCM which results in sparse self-attention

map, and proposed a novel Transformer architecture called

a double-masked ECCT that consists of two parallel masked

self-attention blocks employing distinct mask matrices.

Meanwhile, in [223], the authors employed DDPM [173]

for soft decoding of linear codes with arbitrary block lengths.

Their framework models the transmission over the AWGN

channel as a series of diffusion steps that can be iteratively

reversed. The paper also proposed to condition the diffusion

decoder on the number of parity check errors and to employ

a line-search procedure to control the reverse diffusion step

size.

Furthermore, in [247], the authors proposed a foundation

model [248] for channel codes by extending the Transformer

architecture. A foundation model refers to a model that is

initially trained on a wide range of data, generally based

on self-supervision, and then adapted (e.g., transferred or

fine-tuned) to a wide range of downstream tasks. Thus, the

proposed framework provided a universal decoder that is

capable of adapting and generalizing to any (unseen) code

of any length.

3) Syndrome-Based Loss Function: Syndrome decoding is

a well-known approach for decoding algebraic codes. Several

approaches have been proposed for training DL-based syn-

drome decoders that estimate the transmitted codeword from

the syndrome. Syndrome-based training does not rely on the

knowledge of the transmitted codeword, and is thus promising

for online adaptation to changing channel conditions.

The paper [224] is one of the early works on syndrome-

based DL decoding, which proposed to use the absolute values

of the received symbols, i.e., reliabilities in the case of the BI-

AWGN channel, and the syndrome of its hard decisions for

DL-Based
Noise

Estimation
Absolute

Value

Estimated
Channel

Input

Sign

Sign

y

x̂

Channel
Output

Hard Decision &
Syndrome Calculation

Fig. 9. The syndrome-based DL decoder proposed in [224]. The channel
input sequence x consists of BPSK symbols, and y is the output of a BISO
channel.

decoding, instead of directly using the received symbols as

the input to the decoder. The proposed decoder is illustrated

in Fig. 9. Furthermore, the authors introduced permutations

from the code’s automorphism group [249], [250] as a pre-

processing. Permutations in this group have the property that

the permuted version of any codeword is guaranteed to be

also a valid codeword, i.e., the permuted input of the decoder

is a noisy valid codeword. Simulations demonstrated that the

proposed framework can achieve near maximum-likelihood

performance for short Bose–Chaudhuri–Hocquenghem (BCH)

codes.

The syndrome-based approach, which attempts to predict

the error vector from its syndrome alone, can suffer from

the potential presence of inconsistent training examples, called

disturbance [251], i.e., training examples with the same syn-

dromes but with different error vectors. To solve this problem,

the authors in [225] proposed an iterative algorithm, referred to

as iterative error decimation, which is robust against the super-

position of error patterns. In each iteration, the DL decoder

estimates the error vector and then decimates (subtracts) it

from the received vector. The simulation results demonstrated

12

that the proposed scheme improves the performance of the

scheme in [224].

Furthermore, the authors in [226] proposed a syndrome-

based approach to soft-input soft-output (SISO) decoding of

BCH component codes in turbo product codes [252] based

on Stacked-GRU, which is an RNN architecture composed

of GRU. They introduced a regularization term into a loss

function and demonstrated that the proposed DL decoder

outperforms the original chase decoder in [252].

4) Adaptability: Adaptive coding is a technique for adapt-

ing a code rate to a channel condition in wireless channels. For

a DL-based decoder, supporting multiple code rates not only

requires multiple training, which is computationally intensive,

but also requires a large amount of memory to store the learned

DL parameters.

To address this issue, a unified DL-based decoder for polar

and LDPC codes was proposed in [227], which supports

different codes, i.e., polar and LDPC codes, with a single

DNN by utilizing a code indicator at the decoder input. The

simulation results demonstrated the potential of the unified

decoder for very short code lengths, e.g., 16 bits. A similar

unified DL decoder using the code indicator was also proposed

in [230] for BCH and CRC-concatenated polar codes. Their

results demonstrated that, for a code length of 64, the proposed

unified decoding scheme with code indicator achieves a small

performance gap of less than 0.2 dB from the decoder trained

solely for the single code.

Meanwhile, the paper [228] introduced the meta-learning-

based neural decoder, termed as model independent neural de-

coder (MIND), which can adapt to a new channel with a small

number of pilots and few gradient descent steps. Specifically,

the proposed approach consists of meta-learning and meta-

training steps, where the model learns good initial parameters

in the meta-learning step, and then adapts the parameters to

the observed channel in the meta-testing phase using minimal

adaptation data and pilots. It has been demonstrated that the

proposed scheme can adapt to a channel while achieving a

performance close to that of a DL decoder designed solely for

the particular channel. In the same line of research, the authors

in [229] proposed transfer learning to efficiently train decoders

for a set of rate-compatible polar codes that are expurgated

from the same mother code as in 5G NR.

5) RL-Based Approaches: Although the majority of pre-

vious works on DL-based channel decoding are based on

supervised learning, several RL-based approaches have been

proposed for the cases where supervisory data (ground truth)

is unavailable.

The paper [231] is one of the earliest works on RL-based

channel decoding. Unlike these studies, the authors in [231]

proposed an RL framework for iterative bit flipping (BF)

decoding of binary linear codes. Specifically, they linked the

BF decision at each step to MDP and applied RL to find good

decision strategies. The authors also exploited the permutation

automorphism group to improve the performance. The exten-

sive simulations showed that the learned BF decoders with

DQN can achieve near-optimal performance for short, high-

rate codes.

Later, the authors in [232] applied RL-based BF decoding

to polar codes. In contrast to the DQN proposed in [231],

they used simple Q-learning and attempted to map channel

observations directly onto estimated codewords. Simulation

results showed that the proposed Q-learning achieves com-

parable performance to the learned BF decoding in [231] with

lower complexity.

6) Complexity Reduction: In general, decoding longer

codes requires a larger neural network size. Such a network

not only requires a huge amount of computational resources in

the training phase, but also imposes high computational and

space complexities in the inference phase. In particular, the

complexity in the inference phase is of practical importance

since the training is usually performed offline.

The authors in [233] attempted to reduce the parameter

size of a DL decoder, by introducing various simplified

neural network structures with fewer parameters. In [234], the

same authors further extended their work by introducing the

magnitude-based pruning [253] and quantization of the pa-

rameters. The proposed decoder was demonstrated to achieve

similar performance to the original system in [224] even with

80% reduction of the network parameters and 8-bit fixed-

point representation. Furthermore, FPGA implementation of

the proposed decoder has been presented in [235], [236].

Meanwhile, the authors in [237] considered DL-aided com-

plexity reduction of ordered statistic decoding (OSD) [254],

which is a soft-decision decoding algorithm of linear block

codes that approaches the optimal maximum-likelihood de-

coding performance especially for short codes. Although in-

creasing the order parameter of OSD leads to near-maximum-

likelihood performance, it may waste computational resources

when the received signal can be decoded with lower order. The

paper [237] proposed a learning-based approach to adapt the

required order parameter to the channel condition and demon-

strated the effectiveness of the proposed scheme in terms

of the performance-complexity trade-off through numerical

simulations.

7) Other Approaches: It is known that multiple decoding

attempts over different permutations of received codewords

provide a performance gain [250], [255]. However, it remains

unclear how to choose the permutation that yields the best

performance. To address this, the authors in [238] presented

a DL approach to selecting candidates from the code’s au-

tomorphism group in permutation decoding. In this scheme,

a trained network predicts the probability of successful de-

coding for each permutation, and decoding is performed only

for permuted codewords with the highest probabilities. The

proposed algorithm has been demonstrated by simulations to

achieve remarkable performance gains over a random selection

of permutations from the automorphism group.

In [239], the authors proposed a novel approach referred

to as friendly attack for improving channel decoding per-

formance, inspired by the concept of adversarial attacks.

The proposed scheme introduces small perturbations into the

modulated symbols before transmission. The perturbations are

designed by a modified iterative fast gradient method [256]

such that a loss function between the decoded codeword

and the transmitted codeword is minimized. The performance

13

improvement by the proposed scheme has been demonstrated

for various codes and decoders.

Although the use of DL for channel decoding has been

experimentally validated, the theoretical justification for the

developed algorithm in terms of, e.g. the generalization prop-

erties, remains challenging. The authors in [240] addressed

the problem of maximizing the margin of the decoder for an

additive noise channel whose noise distribution is unknown, as

well as for a nonlinear channel with AWGN. They formulated

a maximum margin optimization problem, which is common

in support vector machines (SVMs), for the decoder learning

problem, and they relaxed it to a regularized loss minimization

(RLM) problem by several approximation steps. The paper

then provided expected generalization error bounds for both

models, under optimal choice of the regularization parameter.

The paper also presented a theoretical guidance for choosing

the training SNR based on the bound for the additive noise

channel.

B. DL-Aided BP Decoding

BP decoding is an efficient iterative decoding algorithm that

is commonly used for decoding LDPC codes. BP decoding

is performed on Tanner graph consisting of CNs and VNs,

which correspond to codeword bits and parity check equations,

respectively. An example of PCM with the corresponding

Tanner graph representation of a (7, 4) Hamming code is

shown in Fig. 10a. In BP decoding, decoding messages are

iteratively updated at CNs and VNs based on the Bayes’ rule.

In practice, the min-sum approximation [304] is applied to

the CN updates to reduce complexity, and this decoding is

referred to as min-sum (MS) decoding. The performance loss

due to the min-sum approximation can be compensated for

by normalized min-sum (NMS) and offset min-sum (OMS)

decoders [305] at the cost of slightly increased complexity.

In [257], the authors proposed a DL-based implementation

of BP decoding by treating BP decoding as a differentiable

process, where the decoding messages are passed through

unrolled iterations in a feed-forward fashion. Additionally,

trainable weights were introduced at the edges, which are

then optimized via SGD. An example of the unrolled BP

trellis for a (7, 4) Hamming code is illustrated in Fig. 10b.

For code length N , the number of edges E, and the number

of iterations L, the unfolded trellis has N neurons at the

input and output layers, and E neurons at the 2L hidden

layers. The network architecture is a non-fully connected

neural network. As we review below, the trainable BP decoder

over the unfolded trellis has been extensively studied in the

literature. We summarize these works in Table IV.

Note that the idea of unfolding an iterative algorithm into a

structure analogous to a neural network, i.e., deep unfolding

[306], is a common model-based DL approach [307] often

considered in the design of communication systems. Besides

channel decoding, the idea of deep unfolding has been suc-

cessfully applied, for example, to MIMO signal detection and

channel estimation [45], [62], [308].

1) Neural MS Decoders and Its Variants: As mentioned

above, the paper [257] was the initial work that applied a

Variable
Nodes

Check
Nodes

H =





1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1





v0

v1

v2

v3

v4

v5

v6

c0

c1

c2

Parity Check Matrix

(a) PCM and corresponding Tanner graph.

v0

v1

v2

v3

v4

v5

v6

v0c0

v1c1

v2c0

v2c1

v3c2

v4c0

v4c2

v5c1

v5c2

v6c0

v6c1

v6c2

Variable
Nodes

Edges

(b) Unrolled BP trellis (two iterations).

Fig. 10. An example of deep unfolded BP decoder for (7, 4) Hamming codes.

feedforward network to BP decoding, where trainable weights

are assigned to the edges of the factor graph, which are then

optimized via SGD over the unrolled iterative BP decoding.

The proposed parameterized decoder can compensate for the

effect of small cycles in the Tanner graph of the code by

properly scaling the weights. The effectiveness of the proposed

decoder has been demonstrated for short BCH codes, for

which standard BP decoding does not work well due to many

short cycles in the graph. Later, in [309], the same authors

extended the work by introducing an RNN architecture and

showed that this architecture leads to comparable performance

to the feedforward architecture in [257] even with fewer pa-

rameters. In [258], the authors also proposed neural network-

based NMS and OMS decoders for reducing the complexity

of the BP decoder, which are the generalized versions of the

standard NMS and OMS decoders [305]. Neural network-

based OMS decoding has also been studied independently in

[259]. Another approach to enhance the performance of MS

decoding while preserving the low complexity property was

considered in [263]; the authors proposed min-sum decoding

14

TABLE IV
SUMMARY OF DL-AIDED BP DECODING.

Category Reference Main Contribution

Neural MS Decoding

and Its Variants

Nachmani et al. [257], [258] DL-aided BP, NMS, and OMS decoding.
Lugosch et al. [259] NOMS decoding.
Dai et al. [260] Neural network-aided OMS and NOMS decoding.
Yu et al. [261] Neural AMS decoding.
Hsu et al. [262] Neural network-aided VWMS decoding.
Wu et al. [263] Neural MS decoding with linear approximation for PB-LDPC codes.
Kim et al. [264] Neural SCMS decoding.

Performance Enhancement
Teng et al. [265]–[267] CNN-based learned BF for BP.
Sun et al. [268] LSTM-based learned BF for BP.

Variants of Random Redundant
Decoding (RRD)

Nachmani et al. [258] mRRD decoding with RNN-based BP decoders.
Liu et al. [269] Node-classified redundant decoding algorithm.

Optimization-Based Decoding
Wei et al. [270] Trainable ADMM-penalized decoder.
Wadayama et al. [271] Trainable PGD decoder for LDPC codes.
Wadayama et al. [272] Proximal decoding for LDPC codes.

RL-Based Approach
Doan et al. [273] RL-based selection of permutations on factor-graph.
Habib et al. [274]–[276] RL-based scheduling optimization for sequential BP decoding.

Customized Loss Function
Lugosch et al. [277] Soft syndrome as a loss function for training a neural BP decoder.
Teng et al. [278] New syndrome losses for syndrome-based DL decoding of polar codes.
Nachmani et al. [279] New loss function based on sparse node and knowledge distillation losses.

Memory/Complexity Reduction

Teng et al. [280] Weight quantization mechanism for an RNN polar decoder.
Ibrahim et al. [281] Quantization of an RNN polar decoder.
Xiao et al. [282], [283] Finite alphabet iterative decoders for LDPC codes via quantized RNN.
Lyu et al. [284] A joint optimization of message quantization and quantization thresholds.
Lian et al. [285], [286] Weight-sharing across edges based on scalar parameters.
Wang et al. [287], [288] A parameter sharing scheme within the same layer for a neural NMS decoder.
Dai et al. [289] A weight-sharing scheme for a neural MS decoder of protograph LDPC codes.
Liang et al. [290], [291] Tensor-train and tensor-ring decompositions for parameter size reduction.
Cheng et al. [292] A weight-sharing scheme for adapting to multiple code rates.
Buchberger et al. [293] A novel pruning-based neural BP decoder for short linear block codes.
Buchberger et al. [294] A neural BP with decimation.

GNN Decoders
Satorras et al. [295] A hybrid inference model that combines BP and GNN.
Cammerer et al. [296] A fully GNN-based decoder.
Tian et al. [297] An edge-weighted GNN decoder.

Understanding Neural BP Decoders
Ankireddy et al. [298] Empirical study on how the learned weights attenuate the effect of these cycles.
Adiga et al. [299] Theoretical study on the generalization capabilities of neural BP decoders.

Other Approaches

Clausius et al. [300] GNN-based joint equalization and decoding.
Wiesmayr et al. [301] Deep-unfolded interleaved detection and decoding for MIMO wireless systems.
Lee et al. [302] Learning-aided multi-round BP decoding with impulsive perturbation.
Wang et al. [303] DL detection of decodable codewords for reducing the decoding delay.

with linear approximation (LAMS) for protograph-based low-

density parity-check (PB-LDPC) codes, where the magnitudes

of the check node updating and channel output are linearly

adjusted by a small and shallow neural network. In contrast

to the above-mentioned studies that considered the flooding

schedule, the authors in [310] proposed a neural network-aided

normalized offset min-sum (NOMS) decoding for the layered

BP with application to 5G LDPC codes.

As another variant of MS decoding, the adjusted min-sum

(AMS) decoding proposed by Qualcomm [311] has drawn

attention, where it employs look-up tables (LUTs) to simplify

nonlinear CN processing. In [261], the authors introduced a

neural network based selection mechanism to AMS decoding

that automatically selects the check node updating rule from

either the MS rule or the BP rule and demonstrated that the

proposed decoder outperforms the conventional neural NMS

decoder. The single-minimum min-sum (SMMS) algorithm

[312] is another variant of MS decoding that simplifies the CN

update in the MS algorithm. Specifically, in SMMS decoding,

only one minimum magnitude is calculated at each CN over all

the CN inputs and a correction is applied to outgoing messages

if required. The SMMS decoder can be further improved by

the variable weight min-sum (VWMS) algorithm [313], which

introduces variable correction factors into the CN update

that depend on the number of iterations. To efficiently learn

the optimal correction factors in the VWMS algorithm, the

authors in [262] proposed a neural network-aided approach,

instead of an exhaustive search in the original work [313]. The

effectiveness of the proposed scheme in terms of throughput

was demonstrated experimentally using the 40 nm CMOS

TSMC process. Unlike the above-mentioned methods, which

simplify CN updates, self-corrected min-sum (SCMS) decod-

ing [314] modifies the VN processing by deleting unreliable

messages. More specifically, in SCMS decoding, any variable

node message that changes sign between two consecutive

iterations is discarded, i.e., set to zero. The authors in [264]

introduced trainable normalization and offset weights to the

SCMS decoder, which are trained by DL techniques. It was

demonstrated that the error rate performance of the proposed

neural SCMS decoder is close to that of the BP decoding.

Although the above-mentioned works applied neural BP

decoding to LDPC codes, it has also been used to decode polar

codes. In [315], similar to [257], a neural MS decoder was

applied to factor graphs of polar codes. The proposed decoder

was demonstrated by simulations to outperform conventional

BP decoding with the same number of iterations. Also, the

15

authors presented an efficient hardware implementation of the

basic computation block of the proposed decoder. In [316], a

similar trainable BP decoding was applied to sparse graphs of

polar codes [317], which was shown to achieve comparable

performance to BP decoding even with a single trainable pa-

rameter. Furthermore, the authors in [260] proposed an NOMS

decoder for polar codes that introduces both normalization

(or scaling) factors and offsets, and demonstrated that the

proposed decoder achieves better performance than the state-

of-the-art schemes, including the decoder proposed in [315].

In order to enhance the performance of a standalone polar

code and close the performance gap from CA-SCL decoding

with lower latency, the authors in [318] proposed neural BP

decoding for polar codes concatenated with a CRC code by

exploiting the concatenated factor graph of the polar code and

CRC, while the conventional BP decoding for concatenated

CRC-polar codes is applied only to the factor graph of

polar codes and the CRC is used only to verify the result

of BP at each iteration. Furthermore, the authors in [319]

considered concatenated polar and LDPC codes and proposed

two-dimensional OMS decoding. They optimized the trainable

parameters of the decoder by back propagation over the

unfolded BP trellis and showed that the performance of the

proposed decoder is comparable to the exact BP decoder.

2) Performance Enhancement: To enhance BP decoding of

polar codes, the authors in [265]–[267] proposed to combine

BP decoding with a CNN-assisted bit flipping mechanism,

which performs the flipping bit selection in the BP-BF decoder

[320] based on a CNN trained using the metadata of the BP

decoding process. The authors demonstrated that the proposed

scheme can achieve a lower BLER than SCL decoding.

Meanwhile, in order to reduce the computational complexity of

the CNN-based approach, the paper [268] proposed an LSTM

network that predicts error-prone bits to be flipped based on

the magnitude of log-likelihood ratio (LLR) after the original

BP decoding.

The authors in [321] introduced a hypernetwork [322] that

generates weights of a neural BP decoder to make the decoder

more adaptive by letting the weights be a function of the

node’s input. The same authors also introduced hypernetworks

for decoding short polar codes [323] and showed that the

proposed decoder achieves similar BER as SCL decoding in

the high SNR region. Furthermore, they proposed an autore-

gressive BP decoder that incorporates the estimated SNR and

multiple autoregressive signals obtained from the intermediate

output of the network [324].

Training data preparation is an essential part of training

DNN-based decoders. In particular, the choice of training SNR

plays an important role in training a DL-based channel decoder

for generalization. A common approach is to train the decoder

over varying SNR ranges [257]. Besides, the optimal choice

of the training SNR has been studied either empirically [215],

[244] or analytically [325]. To address the problem of choosing

the optimal training SNR, the authors in [326] proposed active

deep decoding, inspired by active learning [327]. Specifically,

based on the observation that no optimal training SNR for all

validation sets exists, the paper proposed to adaptively sample

training data instead of passively generating examples during

training. It was demonstrated that this active deep decoding

scheme offers performance gain by effectively sampling the

training data without increasing the inference (decoding) com-

plexity.

In [328], inspired by ensemble models that are widely used

to solve complex tasks by decomposing them into multiple

simpler tasks each of which is solved locally by a single

expert member of the ensemble [329], the authors introduced

the ensemble of neural BP decoders. The proposed scheme

consists of a single classical hard-decision decoder (HDD) and

multiple trainable BP decoders, where the classical HDD is

employed to assign a received codeword to a single expert BP

decoder based on the number of the estimated codeword errors.

It was demonstrated that this scheme achieves remarkable

performance gains over the single neural BP. Furthermore, the

data-driven ensemble scheme has been extended to BP polar

decoders in [330], [331].

Meanwhile, many practical LDPC codes exhibit an error

floor5. For applications such as ultra-reliable and low-latency

communications that require extremely low BLER, it can be

critical to mitigate the error floor. Since the error floor of

LDPC codes is commonly attributed to the suboptimality of

the iterative message passing decoding algorithms for factor

graphs with cycles, the paper [332] proposed training methods

for neural NMS decoders to eliminate the error floor of LDPC

codes. Specifically, inspired by the boosting learning technique

[333], the authors divided the decoder into two cascaded neural

decoders and trained the first decoder to improve the waterfall

performance, while the second decoder was trained to handle

the residual errors that are not corrected by the first decoder.

3) Variants of Random Redundant Decoding: The random

redundant decoding (RRD) algorithm [334] and multiple-

bases belief-propagation (MBBP) decoder [335] are other

approaches to soft-decision decoding of short block codes

based on a redundant PCM. modified random redundant de-

coding (mRRD) [250] is an algorithm that attempts to benefit

from both RRD and MBBP decoding, which make use of a

permutation group (automorphism group) of codes and parallel

iterative decoders, respectively.

In [269], the authors proposed a node-classified redundant

decoding (NC-RD) algorithm for high-density parity-check

(HDPC) codes in order to improve the performance of RRD

decoding. The NC-RD algorithm introduces two preprocessing

steps to the RRD decoding. More specifically, the algorithm

first classifies the variable nodes of the parity-check matrix

by the k-median algorithm based on the number of shortest

cycles associated with each variable node, and then generates

a list of permutations of bit positions from the automorphism

group based on the permutation reliability metrics. The authors

further proposed the neural network-based NC-RD algorithm

by unfolding the NC-RD decoding process and introducing

trainable weights.

In [258], the authors applied the concept of DL-based BP

decoding to mRRD [250] by replacing the BP decoding blocks

in the mRRD algorithm with the proposed RNN-based BP

5For modern iteratively decodable codes, such as LDPC codes and turbo
codes, there is an SNR point after which the error rate decreases only slowly.
This phenomenon is called error floor.

16

Random
Permutation

BP-RNN

BP-RNN

BP-RNN

Random
Permutation

Select the codeword with the highest likelihood

LLR vector

Random
Permutation

BP-RNN

BP-RNN

BP-RNN

Random
Permutation

Random
Permutation

BP-RNN

BP-RNN

BP-RNN

Random
Permutation

Fig. 11. The mRRD algorithm with RNN-based BP decoders in [258].

decoders. The resulting decoder structure is shown in Fig. 11.

The proposed RNN-based mRRD decoder has been demon-

strated to achieve near maximum-likelihood performance with

reasonable computational complexity.

4) Optimization-Based Decoding: Optimization-based de-

coding is another research direction aimed at improving the

performance of BP decoders. The origin of the optimization-

based decoding goes back to the work by Feldman who

introduced a linear programming (LP) formulation of decoding

LDPC codes [336].

The LP decoder is based on the LP relaxation of the original

maximum-likelihood decoding problem [337]. However, the

LP decoder has higher computational complexity and worse

error-correcting performance in the low SNR region compared

with the BP decoder. In order to address the above drawbacks,

the paper [270] proposed a trainable alternating direction

method of multipliers (ADMM)-penalized decoder [338] by

unfolding the ADMM iterations. It was demonstrated that the

proposed decoder can outperform the conventional BP decoder

in high SNR region with comparable execution time.

Afterwords, the authors in [271] introduced a trainable pro-

jected gradient decoder for LDPC codes by unfolding the PGD

algorithm and optimizing the parameters via backpropagation.

The proposed decoder alternately performs the gradient and

projection steps, where the former moves in the direction of

the negative gradient of the objective function, while the latter

maps the search point into a feasible region that nearly satisfies

the optimization constraint. Also, in [272], the same authors

proposed proximal decoding of LDPC codes based on the

proximal gradient method [339], which is used for solving

non-differentiable convex optimization problems.

5) RL-Based Approaches: It is known that parallel BP

decoders on independently permuted factor graphs can sig-

nificantly improve the performance of single BP decoding

for polar codes [340], [341]. In [273], the authors addressed

the problem of selecting the permutations on the factor graph

that lead to successful decoding given a channel observation.

Specifically, they viewed the selection of permutations as a

multi-armed bandit problem and proposed an RL-based CRC-

aided BP decoder that attempts to select the best set of

permutations. The proposed scheme was shown to achieve

better performance than other approaches such as cyclically-

shifted and random factor-graph permutations [340], [342].

In [274]–[276], the authors proposed a novel RL-based

sequential BP decoding scheme to optimize the scheduling

of CN clusters for moderate length LDPC codes6. In the

proposed scheme,m CNs are divided into sets of z CNs, called

cluster, and the scheduling problem, i.e., cluster selection

with ⌈m/z⌉ possible actions, was optimized by Q-learning.

Furthermore, they proposed novel meta-learning based sequen-

tial decoding schemes to quickly adapt to changing channel

conditions due to fading in wireless scenarios. The RL-based

scheduling of sequential BP decoding has also been proposed

for generalized LDPC codes [343], where the authors showed

that the proposed RL-based decoding scheme was shown to

significantly outperform the standard BP flooding decoder, as

well as a sequential decoder based on random scheduling with

the smaller number of CN updates.

6) Customized Loss Function: As in Section IV-A3, a

syndrome loss function has been used for DL-based BP

decoders. In [277], the authors proposed a soft syndrome as

a loss function for training a neural BP decoder. Unlike the

paper [224], which utilizes the hard syndrome as an input to

the decoder, this paper introduced the soft syndrome which is

defined similarly to the CN update rule in MS decoding, in

addition to the conventional cross entropy loss function.

While the application of [277] was limited to decoders

that output a soft estimate of the codeword, this is not the

case for polar decoders that do not use a PCM. To address

this, the authors in [278] proposed two modified syndrome

losses: frozen-bit syndrome loss and CRC-enabled syndrome

loss. The authors also introduced a syndrome-enabled blind

equalizer based on the proposed syndrome loss, which does

not require the transmission of training sequences.

Unlike the above syndrome-based approaches, the authors

in [279] considered a linear combination of sparse node loss

and knowledge distillation loss, in addition to the conventional

cross entropy loss. Knowledge distillation is a technique in

DL where one uses a teacher network to guide the training

of a smaller student neural network [344]. Sparse node loss

imposes a sparse constraint on the node activations based on

the Lp norm, whereas the knowledge distillation loss aims

to mimic the teacher network, which was the standard MS

decoder without trainable parameters, by transferring knowl-

edge. It was shown that the proposed loss terms provide BER

performance improvement of up to 1.1 dB without increasing

the runtime complexity and the model size.

7) Memory and Complexity Reduction: A neural network-

based BP decoder introduces different weights (or scaling

factors) to different edges in the Tanner graph, which can

significantly increase the computational and space complex-

ities of standard BP decoding. In fact, this issue has been

6In contrast to the standard flooding scheduling where all CNs and VNs are
updated simultaneously at each iteration, sequential BP decoding, or layered
decoding, updates nodes or sets of nodes individually in sequence.

17

1.1

2.2

-1.7

-2.7

1.2

0.5

Quantizer

1

-1

-2

0

1
1

-1

-2

1

0

(a) Quantization of weights.

(b) Sharing weights (connec-
tions with the same color have
the same weight).

(c) Pruning neurons (pruned
neurons are indicated by
dashed circles).

Fig. 12. Approaches to reducing computational and space complexities of a
DL decoder.

studied extensively for generic DNNs, i.e., not limited to

channel decoding applications, due to the large parameter sizes

of modern DL models [345]. A popular approach is neural

network pruning [346]–[350], which aims to remove redun-

dant parameters of an original network while preserving the

accuracy. Parameter shaping is also an effective way to reduce

parameters by sharing parameters between different neurons.

Parameter shaping is typically exploited in CNN, where all

neurons in a particular feature map share the same weight.

Another popular approach is parameter quantization [351],

[352]. These major approaches to addressing the complexity

problem are illustrated in Fig. 12.

(a) Quantization: In [280], the authors proposed a weight

quantization mechanism for an RNN polar decoder. Specifi-

cally, they proposed a two-step approach, where floating-point

weights are quantized into 2q quantization levels and then they

are further compressed into 2c (c < q, c, q ∈ N) quantization

levels, which are the most commonly used among 2q quan-

tization levels. The quantization of the RNN polar decoder

was also studied in [281], where the authors demonstrated

that quantization after training leads to better performance

compared to the case where quantization is applied after every

epoch during training.

Instead of quantizing DNN decoder parameters, several pa-

pers have investigated quantizing decoding messages or LLR

values computed from channel observations. For example, in

[353], the authors trained a parameterized quantization of

LLR values that maximizes the performance of BP decoding.

Similarly, the authors in [354] investigated the design of

quantizers in an LDPC decoder that are used for quantizing

both LLRs and iterative decoding messages. On the other hand,

the authors in [355] proposed to train neural BP decoder for

the system with one-bit quantizer.

Unlike existing studies that consider the AWGN channel, the

authors in [282], [283], [356] considered BSC and proposed

finite precision decoders, called finite alphabet iterative de-

coder (FAID), for LDPC codes with recurrent quantized neural

network (RQNN). More specifically, they proposed the BER as

the loss function to train the RQNNs over BSC by leveraging

straight-through estimator (STE) [357] to overcome the issue

of gradients vanishing caused by the low precision activations

in the RQNN and quantization in the BER.

In [284], the authors proposed a joint optimization of quan-

tized message alphabets and quantization thresholds. Specif-

ically, the authors utilized the softmax distribution [358] to

make the quantization thresholds trainable by softening the

one-hot distribution of the quantization. The proposed decoder

was shown to outperform the original non-surjective FAIDs

[359] in terms of error rate performance.

(b) Weight Sharing: In [285], [286], the authors proposed

simple-scaling models for weighted BP decoding in [257] that

share weights across edges, using only three scalar parameters

per iteration: message weight, channel weight, and damping

factor. The authors showed that such simple scaling models

are often sufficient to achieve gains similar to the fully

parameterized decoder.

The authors in [287], [288] proposed a parameter sharing

scheme for a neural NMS decoder that shares the same cor-

rection (normalization) factors in the same layer. In contrast,

the authors in [360], [361] proposed a family of weight

sharing schemes for a neural NMS decoder that uses the

same weight for edges with the same check node degree

and/or variable node degree. Similarly, the authors in [289]

proposed a neural MS decoder for protograph LDPC codes

where a bundle of edges derived from the same edge type share

identical parameters. Due to the lifting structure of protograph

LDPC codes, the same set of parameters can be employed for

multiple codes derived from the same base code.

In [290], the authors applied the tensor-train (TT) decom-

position [362] to a neural NMS decoder, where it decomposes

a high-order tensor into several low-order tensors. This not

only reduces the number of weight parameters, but also the

number of multiplications required in the CN and VN updates.

Furthermore, in [291], the same authors proposed tensor-ring

(TR) decomposition [363] combined with weight sharing to

further reduce the storage and computational complexity.

In [292], a weight sharing scheme was proposed for a

neural BP or MS decoder to adapt to multiple code rates

with a reasonable amount of parameters. Specifically, instead

of training different decoders, they proposed to train a single

rate-compatible decoder based on multi-task learning, where

different parts of the parameters are activated to handle dif-

ferent code rates.

(c) Pruning: In [293], the authors proposed a novel pruning-

based neural BP decoder for short linear block codes. The

key idea was to prune unimportant CNs with small weights of

an overcomplete PCM. Similarly, in [294], the same authors

proposed a neural BP with decimation [364] for LDPC codes.

In particular, they identified the least reliable VN with the

aid of DL, i.e., the VN with the lowest absolute a posteriori

LLR, and then decimated it to ±∞. It has been demonstrated

that the proposed decoder with decimation can significantly

outperform the conventional neural BP decoder.

8) GNN Decoders: In general, BP computes the optimal

(posterior) marginal probability distributions only for a non-

18

loopy graphical model, and in practice it often computes a poor

approximation of the true distribution. To tackle this limitation,

the authors in [295] extended the standard GNN equations

to factor graphs and presented a hybrid inference model that

combines messages from BP and from GNN, where the GNN

messages are learned to complement the BP messages.

Instead of the method in [295], which extends BP decoding

by combining it with a GNN, the authors in [296] proposed a

fully GNN-based decoder. In contrast to weighted BP decod-

ing, they introduced two types of MPNN-based trainable mes-

sage update functions: the edge message update functions and

the node update functions. Independently, an edge-weighted

GNN decoder has been proposed in [297]. In the proposed

decoder, they applied an MPNN for updating messages and

assigned a trainable weight to each edge message, which is

optimized by a fully-connected feed-forward neural network,

i.e., MLP. The major advantage of these GNN decoders over

the standard neural BP decoder is that the number of trainable

parameters is not affected by the code length. Therefore, after

training, the trained decoder can be applied to codes with

different rates and lengths without retraining.

9) Understanding Neural BP Decoders: In [298], the au-

thors empirically showed how the learned weights mitigate

the effect of short cycles in Tanner graphs to improve the

reliability of the posterior LLRs and contribute to the ro-

bustness of the decoders across channels. The authors also

introduced an analytical approach for finding the weights using

GA and compared the neural MS decoders, showing that for

complicated fading channels, the neural network-based weight

optimization leads to better performance than the GA-based

optimization.

The authors in [299] theoretically investigated the gen-

eralization capabilities [365] of neural BP decoders, i.e.,

the difference between empirical and expected BERs. The

paper presented new theoretical results that bound the gap

and showed its dependence on the decoder complexity, in

terms of code parameters (such as message/code lengths,

VN/CN degrees), decoding iterations, and the training dataset

size. They empirically observed that the generalization gap

increases with decoding iterations and code length, and decays

with the training dataset size, supporting the theoretical results

in their paper.

10) Other Approaches: To improve the decoding of short

Raptor-like LDPC codes, the authors in [366] considered

multi-round BP decoding with impulsive perturbation [367].

Perturbation is a process of making a small intentional change

in the received signal, and this scheme iteratively performs

conventional BP decoding and perturbation until a valid

codeword is found. In [302], the authors proposed a neural

network based perturbation symbol selection scheme where

the symbols to be perturbed are selected from a pre-trained

neural network and showed that the proposed scheme performs

better than existing schemes such as [366] for Raptor-like

LDPC codes.

The performance of a standalone neural BP decoder could

be further enhanced by jointly optimizing signal detection

and decoding. For instance, in [301], iterative signal detection

and decoding via deep unfolding was proposed for MU-

MIMO-OFDM. In [300], the authors proposed GNN-based

joint detection and decoding for inter-symbol interference (ISI)

channels.

Besides the approaches introduced in Section IV-B7, the

authors in [303] proposed another approach to alleviate de-

coding complexity and latency. Specifically, they proposed

a DL approach for detecting the decodable codewords and

predicting the iteration number from the received signal to

reduce the decoding delay. This could potentially be useful

for early feedback prediction in hybrid automatic repeat re-

quest (HARQ). Furthermore, in [368], the authors accelerated

neural BP decoding through coded distributed computing

[369]. In particular, they reformulated the neural BP decoding

operations as matrix-vectors to facilitate distributed parallel

decoding.

In addition to communication systems, DL-based decoders

have also been studied for storage systems. In [242], the

authors proposed DL-based decoder for spin-torque transfer

magnetic random access memory (STT-MRAM) [370]. In

order to adapt to the process variation and unknown offset of

the resistance caused by the change in working temperature,

the authors proposed an adaptive decoding scheme based on

the three DNN decoders, i.e., BF, MS, and BP decoders, which

share the same DNN architecture but have different weights. In

[241], the same research group proposed a neural normalized

offset reliability-based min-sum (RBMS) decoding algorithm

for STT-MRAM by introducing trainable parameters to the

RBMS algorithm [371]. It has been demonstrated that the

proposed scheme can outperform the RBMS algorithm over

the STT-MRAM channel, while maintaining similar decoder

structure and time complexity of the standard RBMS decoder.

Neural network-based BP decoding has been studied not

only for classical error-correcting codes, but also for quantum

error-correcting codes. For example, neural BP decoding has

been applied to quantum LDPC codes [372] for which standard

BP decoding may be insufficient due to the error degeneracy

feature of quantum error-correcting codes [373]. By designing

the loss function to account for error degeneracy, the decoding

accuracy was improved up to three orders of magnitude

compared to the standard BP decoder without training. Neural

BP decoding for quantum LDPC codes was also studied in

[374], [375].

C. DL-Aided Decoding of Polar Codes

Model-free decoders in Section IV-A as well as neural BP

decoders in Section IV-B are easily applicable to polar codes.

In the following, we also review methods for designing model-

free decoders that take the specific code structure into account.

Furthermore, we focus on DL approaches that augment con-

ventional SC or SCL decoders, instead of replacing them with

a DNN. In Table V, we provide the summary of these methods.

1) Neural Network-Based SC Decoding: Although the

straightforward application of DNN is a viable option for

decoding polar codes as in [215], the major issue was the

exponential growth of training complexity. In [376], the au-

thors addressed this issue by introducing partitioned neural

network (PNN) decoders. More specifically, inspired by the

19

TABLE V
SUMMARY OF DL-AIDED POLAR DECODERS.

Category Reference Main Contribution

Neural Network-Based
SC Decoding

Cammerer et al. [376], [377] Partitioned neural network decoders.
Doan et al. [378] Neural successive cancellation (NSC) decoding.
Wodiany et al. [379] Efficient implementation of an low-precision NSC decoder.
Hebbar et al. [380] Novel curriculum learning-based sequential neural decoder.

DL-Aided SCF Decoding

Wang et al. [381] LSTM network that estimates the first erroneous bit.
He et al. [382] LSTM-based identification of erroneous bits for DSCF decoding.
Doan et al. [383], [384] Neural DSCF with trainable bit-flipping metric.
Wang et al. [385] Q-learning-assisted SCF decoding algorithm.
Doan et al. [386] RL-based bit-flipping strategy for fast SC decoding.

DL-Aided SCLF Decoding

Hashemi et al. [387] Trainable bit-flipping metric for SCL decoding.
Doan et al. [388] FSCLF decoding algorithm.
Chen et al. [389] LSTM-assisted bit-flipping algorithm for a CA-SCL decoder.
Tao et al. [390] New flip algorithm based on DNC.
Liang et al. [391] Stacked LSTM to improve the accuracy of erroneous bit prediction.
Li et al. [392] Approximated bit-flipping metric for DSCLF decoding.

Other Approaches
Lu et al. [393] DL-aided shifting metric for SCL decoding.
Liu et al. [394] CRC error-correction aided SCL decoding.

simplified successive cancellation algorithm in [395], which

divides the decoding tree into single parity checks (SPCs)

and repetition codes (RCs)), they replaced the SPC and RC

subdecoders by neural networks. Simulations showed that

the PNN decoder achieves similar BER performance to the

SC and BP decoders for short lengths, such as 128 bits,

with potentially much lower latency. A similar concept of

partitioning a neural network-based decoder for polar codes

was also investigated in [377]. Furthermore, in order to reduce

the latency of PNN, neural successive cancellation (NSC)

decoding of polar codes was proposed in [378], where multiple

constituent neural network decoders are incorporated into SC

decoding, and its efficient implementation based on a low-

precision neural network decoder was studied in [379].

Recently, another approach to tackle the difficulty of learn-

ing to decode long polar codes was proposed in [380], where

a novel curriculum learning-based sequential neural decoder

for polar and PAC codes was proposed. The paper designed

a novel curriculum to train RNN, where the problem of joint

estimation of information bits is decomposed into a sequence

of sub-problems of increasing difficulty. The proposed decoder

was shown to achieve better BER performance than the con-

ventional supervised training without curriculum and standard

SC decoding.

Instead of completely replacing a conventional decoder

with DNNs, DL-based approaches that support conventional

decoders such as SC and SCL decoding have been extensively

studied. Among them, DL-assisted successive cancellation flip

(SCF) decoding [396] is one of the most popular approaches,

which will be reviewed in the following.

2) DL-Aided SC Flip Decoding: Despite its low-

complexity, the error correcting performance of SC decoding

at finite block lengths is not comparable to other modern codes

such as LDPC codes. In order to improve the finite block

length performance, SCF decoding has been proposed in [396]

inspired by the fact that the first erroneous bit decision in

SC decoding has a detrimental impact on the resulting error

rate. The SCF decoder first performs standard SC decoding

to generate a first estimated codeword, and if the codeword

passes the CRC, decoding is complete. If the CRC check fails,

SC
Decoding

Select bit to be flipped
(Heuristic or DL)

CRC Error
and t < T

Start
(t=0)

t++

End

Yes

No

Fig. 13. Flowchart of an SCF decoding framework with the number of trials
T .

the SCF decoding makes T additional attempts to identify

the first error in the codeword. In each attempt, a single

estimated codeword bit is flipped with respect to the initial

decision. The algorithm terminates when a valid codeword

has been found or when all T attempts have been made. The

SCF decoding procedures is shown in Fig. 13. SCF decoding

retains the O(N) memory complexity of the original SC

algorithm and has an average computational complexity that

is practically O(N logN) at high SNR, while still providing

a significant gain in terms of error correcting performance.

While SCF decoding is limited to correcting a single erroneous

bit in the codeword, dynamic successive cancellation flip

(DSCF) decoding [397], [398] is a generalization of SCF-

based decoding that is able to correct higher-order erroneous

information bits by dynamically updating the set of flipping

bit indices after each decoding attempt.

The common challenge in SCF and DSCF decoding is how

to identify the first error bit that causes error propagation.

In the original work [396], the estimated codeword bits with

the smallest amplitudes of LLR are flipped, but they are not

necessarily the first errors. In fact, the optimal bit flipping

20

strategy is still an open problem due to the lack of a rigorous

mathematical characterization. Furthermore, DSCF decoding

requires expensive exponential and logarithmic computations

to compute the BF metric, which is used to determine the bit

flipping position.

A popular DL-based solution is to train an LSTM network

to estimate the first erroneous bit to be flipped. The authors in

[381] have proposed an LSTM network for SCF decoding that

takes an LLR sequence of the previous SC decoding attempt

and outputs a vector where each element corresponds to the

probability that a bit is the first error. Furthermore, the authors

proposed a two-step training method that combines supervised

learning with RL to train the LSTM to reverse previous

incorrect flips. Similarly, the authors in [382] proposed an

LSTM-based error bit identification for DSCF decoding where

the network is trained to identify the first erroneous bit and

additional erroneous bits by supervised learning and RL,

respectively.

There are other learning approaches that do not rely on

model-free DNNs. In [383], [384], the authors proposed neural

DSCF decoding where they properly approximated and intro-

duced trainable parameters to the BF metric and optimized

its parameter by RMSProp, a variant of the SGD optimization

technique. In [385], the authors proposed a Q-learning-assisted

SCF decoding algorithm that selects the candidate flipping

bits through the learned Q-table instead of metric sorting.

It was demonstrated that the proposed decoding algorithm is

particularly effective in reducing the decoding delay caused

by sorting during the decoding process without sacrificing

performance. Similarly, in [386], an RL-based BF strategy is

also investigated for fast SC decoding of polar codes [399],

where the authors developed a new parameterized BF model

based on [387] and optimized the trainable parameters using

the policy gradient method.

3) DL-Aided SCL Flip Decoding: The DL-aided BF mech-

anism can be applied not only to SC decoding but also to SCL

decoding to further improve the performance.

In [387], the authors proposed the BF metric for SCL

decoding, which is expressed by a trainable correlation ma-

trix representing the likelihood of each decoded bit. They

optimized the trainable matrix using the RMSprop optimizer

and demonstrated that compared to the conventional metric in

[397], the proposed BF metric significantly reduces compu-

tational complexity associated with the bit metric calculation

while maintaining similar error rate performance.

In [388], the authors applied BF to fast successive cancella-

tion list (FSCL) decoding [400], [401], referred to as the fast

successive cancellation list clip (FSCLF) decoding algorithm,

to address the high latency problem associated with the

successive cancellation list flip (SCLF) decoding algorithm.

Specifically, the authors introduced a BF strategy tailored to

FSCL decoding that avoids tree-traversal in the binary tree

representation of SCLF to reduce the latency of the decoding

process, and then derived a path selection error metric with

a trainable parameter. The proposed decoder was shown to

significantly reduce the average decoding latency, average

complexity, and memory consumption of the SCLF decoder

at the cost of slight degradation in error rate performance.

In contrast to the above approaches that do not utilize a

DNN, several papers have proposed a neural network-based

selection of the flipping bit position. For instance, in [389],

an LSTM-assisted BF algorithm has been proposed for a CA-

SCL decoder. Furthermore, the authors have used the domain

knowledge to reduce the complexity and memory requirements

and computational complexity for efficient hardware imple-

mentation.

The authors in [390] proposed a new flip algorithm using

differentiable neural computer (DNC) [402], which can be

considered as an LSTM augmented with an external memory

through attention-based soft read and write mechanisms. The

proposed decoding algorithm is a two-phase decoding assisted

by the two DNCs, i.e., flip DNC and flip-validate DNC. The

former ranks flip positions for multi-bit flipping, while the

latter is used to re-select flip positions when decoding fails.

Simulation results show that the proposed DNC-aided SCLF

achieves better error rate performance and reduction in the

number of flipping attempts compared to the LSTM-based

algorithms.

The authors in [391] proposed a stacked LSTM network to

improve the accuracy of erroneous bit prediction. Specifically,

they trained the three models separately: the first and second

models predict the positions of the first and the second

erroneous bits and the third model decides whether to continue

flipping. Simulation results demonstrate that their proposed

algorithms outperform existing SCLF decoding algorithms in

terms of BLER performance and average number of decoding

attempts.

In [392], the authors proposed an approximated error met-

ric for dynamic successive cancellation list flip (DSCLF)

decoding of polar codes to improve the performance while

keeping the average complexity low. To compensate for the

approximation error, they introduced learnable parameters into

the metric and optimized it through the custom neural network

model using the RMSprop optimizer.

4) Other Approaches to Enhancing SCL Decoding:

Shifted-pruning (SP) is another approach to enhance the per-

formance of SCL decoding for polar codes [403], which aims

to prevent the correct path from being eliminated from the list.

In [403], it was demonstrated that the proposed SP mechanism

offers remarkable performance gains over the BF approach.

However, the SCL decoder with SP generally suffers from high

computational complexity, due to the re-decoding attempts and

the computation of the shifting metric. To alleviate this issue,

the authors in [393] proposed a DL-aided shifting metric that

is free from transcendental functions and can be computed

on-the-fly based on the path metrics.

Another approach to improve the performance of CA-SCL

decoding was proposed in [394], where the authors take

advantage of the inherent error correction capability of CRC,

i.e., not just for error detection. The authors performed CRC-

based error correction using an LSTM network, where the

LSTM network estimates the error pattern from the LLR

sequence and the CRC syndrome. The proposed CRC error-

correction aided SCL decoding scheme was demonstrated to

outperform the error rate of the conventional CRC error-

detection aided SCL decoding scheme at the same list size.

21

D. DL-Aided Convolutional and Turbo Decoding

DL decoders have also been applied to convolutional and

turbo codes. In particular, as we review below, several DL-

aided turbo decoders have been proposed in recent years. We

have listed these approaches in Table VI.
1) Convolutional Decoder: Convolutional codes encode the

input stream by convolving with the generator polynomial,

which can be efficiently implemented by shift registers. Con-

volutional codes can be represented by a time-invariant trellis,

which allows efficient maximum-likelihood decoding based on

the well-known Viterbi algorithm [408].

In order to improve the performance of iterative threshold

decoding (ITD) [409], the authors in [404] proposed a DNN

decoder for convolutional codes by unfolding a high-order

recurrent neural network (HORNN) decoder [410]. The un-

folded HORNN can be seen as a feedforward DNN whose

parameters are trained by backpropagation with MBSGD. It

was shown that with proper optimization of the parameters,

the proposed decoder outperforms the conventional ITD and

achieves performance close to maximum-likelihood decoding.
2) Turbo Decoder: Turbo codes, also known as parallel

concatenated convolutional codes [3], consist of two (usually

identical) recursive systematic convolutional (RSC) codes con-

catenated in parallel and a bit interleaver. Turbo codes are typ-

ically decoded by iterative decoding between two constituent

SISO decoders where one constituent decoder computes pos-

terior probabilities based on the Bahl-Cocke-Jelinek-Raviv

(BCJR) algorithm [411], and then passes them to the other

decoder. The turbo decoder significantly improves the error-

correction performance by iteratively exchanging extrinsic

information between the two constituent SISO decoders.

In [244], the authors proposed a DL-based BCJR decoder

for an RSC code based on bi-GRU, referred to as NEURAL-

BCJR, and then extended it to a turbo decoder by replacing the

component SISO decoder with the proposed NEURALBCJR

decoder. Simulations demonstrated that the proposed scheme

is particularly beneficial for non-Gaussian channels, such as

t-distributed noise. Later, a DL-aided turbo decoder, termed

DEEPTURBO, was introduced in [405]. They also used bi-

GRUs to replace the conventional SISO decoders as in [244],

but the authors in [405] trained different bi-GRU weights

across different iterations, whereas the authors in [244] shared

the same weight for all bi-GRU blocks. This enables a fully

end-to-end training without imitating the BCJR algorithm.

Furthermore, DEEPTURBO increased the number of posterior

LLR values exchanged between the two decoders to expedite

iterative decoding. Extensive simulations have demonstrated

that DEEPTURBO exhibits an improved reliability, adaptivity,

and lower error floor compared to NEURALBCJR.

The aforementioned model-free turbo decoders, i.e., NEU-

RALBCJR [244] and DEEPTURBO [405], are illustrated in

Fig. 14, where the constituent SISO decoders of the turbo

decoder are replaced with Bi-GRUs without considering the

specific trellis structure of the RSC encoders. In contrast,

the authors in [406] proposed a novel model-driven decoder

architecture, called TurboNet, which integrates DNN into the

traditional max-log-MAP algorithm. Furthermore, they applied

network pruning to TurboNet to effectively reduce the number

RSC

Encoder

Systematic bit

π

RSC

Encoder

First parity bit

Second parity bit

(a) Turbo encoder.

Bi-GRU

LLRs of parity bits

LLR of systematic bit

Prior Information
(Initialized to zero)

Bi-GRUπ π
−1

(b) Model-free DL turbo decoders based on Bi-GRUs.

Fig. 14. An encoder and DL-based decoder of turbo codes. In the NEURAL-
BCJR decoder [244], each Bi-GRU is pre-trained to imitate BCJR algorithm,
followed by an end-to-end training. In the DEEPTURBO decoder [405], on
the other hand, all Bi-GRUs are trained directly to optimize the end-to-end
performance.

of parameters. The resulting TurboNet+ decoder was shown to

achieve state-of-the-art performance and outperform existing

DL turbo decoders even with lower computational complexity.

Subsequently, the authors in [407] proposed TINYTURBO

which significantly reduces the trainable parameters of Tur-

boNet+ by sharing the same weight across bit indices in the

computation of the posterior LLR. In particular, for a block

length of 40, it was demonstrated that TINYTURBO with

18 parameters outperforms TurboNet+ with 720 parameters

over AWGN channels. Furthermore, the strong adaptability of

TINYTURBO to other block lengths, rates, and trellises, as

well as its robustness to channel variations, were demonstrated.

E. DL-Aided Decoding of Cyclic Codes

DL decoders exploiting algebraic properties of cyclic codes

have also been studied. In [412], the authors proposed a neural

network-based decoder for cyclic codes by exploiting their

cyclically invariant property. More specifically, inspired by the

fact that the maximum-likelihood decoder of any cyclic code

is equivariant with respect to cyclic shifts, they imposed a

shift-invariant structure on the weights of the neural decoder

so that any cyclic shift of inputs results in the same cyclic

shift of the outputs. Simulations of BCH codes and punctured

Reed-Muller (RM) codes showed that the proposed decoder

consistently outperforms the neural BP decoder proposed in

[258]. Furthermore, they proposed a list decoding procedure

that can significantly reduce the decoding error for BCH codes

and punctured RM codes.

While the list decoding significantly improves the BLER,

the major drawback was its relatively high BER. To improve

the BER, the same authors proposed the improved version

22

TABLE VI
SUMMARY OF DL-AIDED CONVOLUTIONAL AND TURBO DECODERS.

Category Reference Main Contribution

Convolutional Decoders Teich et al. [404] A DNN decoder for convolutional codes.

Turbo Decoders

Kim et al. [244] A neural network BCJR decoder, referred to as NEURALBCJR.
Jiang et al. [405] Deep turbo decoder (DEEPTURBO) trained in an end-to-end manner.
He et al. [406] A novel model-driven decoder, called TurboNet.
Hebbar et al. [407] TINYTURBO that reduces the parameters of TurboNet+.

of the list decoder in [413]. The new decoder achieved a

significantly lower BER compared to the list decoder in [412]

while maintaining the same BLER.

V. CONCLUSION

In this paper, we have provided a comprehensive survey on

DL for the channel coding problems. In particular, we have

focused on DL methods for the code design and channel de-

coding problems. In what follows, we summarize the potential

advantages and challenges of these approaches.

A. Code Design Applications

The conventional code design algorithms such as EXIT

chart and variants of DE require ideal assumptions about

channel models and decoding schemes. In contrast, the major

advantage of using data-driven DL for code design is that

one can tailor codes to more realistic channels and decoding

schemes, for which theoretical analysis is intractable.

In Section III, we saw that RL is a particularly popular

approach to designing polar codes, among others. In this

method, an agent learns to choose a new information bit posi-

tion that minimizes the cumulative reward, which corresponds

to the actual performance in terms of BLER. Calculating

the reward requires Monte-Carlo simulations, which can be

computationally intensive depending on the code length and

target error rate. This complexity issue can hinder its applica-

tion to scenarios with long code lengths and low error rates.

Therefore, a design objective that can be efficiently computed

during the training process may be desirable.

B. Channel Decoding Applications

As we have seen, channel decoding is a popular application

of DL and a significant number of papers on this topic have

become available. These approaches can be broadly classified

into model-free and model-based approaches.

1) Model-Free Approaches: Model-free decoders employ-

ing a “black-box” neural network have the potential to outper-

form conventional decoding algorithms in terms of error rate

performance and decoding complexity/latency. In particular,

it has been demonstrated that model-free decoders can out-

perform existing decoding algorithms for short code lengths

with highly parallelizable structures. This approach is thus

potentially suitable for low-latency applications requiring short

code lengths. Note that the performance is highly dependent

on the DL model employed, and currently, the Transformer-

based decoder achieves the state-of-the-art performance [222].

However, the performance could be potentially improved by

the advanced DL techniques.

Due to the curse of dimensionality, the applications of

model-free decoders have generally been limited to short

codes. In general, a larger model size is required to decode

a longer code, which not only entails high computational

complexity, but also high space complexity in both training

and inference phases. Another concern about this method is the

robustness against adversarial attacks [204], as wireless net-

works are always vulnerable to radio jamming attacks [414],

[415] due to the openness of wireless channels. In particular,

DL-based communication systems may have a higher risk of

being disrupted by jamming attacks than classical systems

[416], [417].

Instead of completely replacing conventional decoders, em-

ploying a DNN to augment existing decoders is effective for

arbitrary code lengths. For example, model-free training has

been extensively studied for DNN-based selection of flipping

bit indices in SCF decoding as we reviewed in Section IV-C.

2) Model-Based Approaches: In contrast to the model-

free approach, the model-based approach realizes a scalable

decoder by taking advantage of the knowledge of code struc-

tures and conventional decoding algorithms. One of the most

promising approaches is deep unfolding, which unfolds an

iterative algorithm [306] and introduces a set of trainable

parameters. In particular, as we reviewed in Section IV-B,

neural network-based BP decoding over an unfolded Tanner

graph augmented with trainable parameters [257] has been

extensively investigated. As the underlying BP decoding algo-

rithm has already been adopted in a wide range of communi-

cation systems, this approach can be applied to these systems

with much less modification compared to model-free decoders.

Many existing works have demonstrated that, by introducing

and optimizing trainable weights that mitigate the effect of

short cycles in the Tanner graph, the DL BP decoder can

achieve better a trade-off between decoding performance and

latency, i.e., the number of decoding iterations, compared to

the standard BP decoder. This means that the performance

advantage of the DL BP decoder becomes more significant as

the number of short cycles increases.

C. Challenges and Future Directions

Despite their excellent performance, DL-based channel cod-

ing schemes face challenges that need to be addressed. We

conclude this survey by highlighting several future research

directions in this regard.

1) Flexibility to Support Diverse Applications: Next gen-

eration communication systems such as 6G will support het-

erogeneous applications that employ the channel codes with

various block lengths, reliability, and latency requirements

[37]. Since there is no one-size-fits-all channel coding scheme,

23

multiple code parameters, i.e., rates and lengths, must be sup-

ported to meet these requirements. On the other hand, adapting

a DL decoder to different channels and code parameters would

require an enormous amount of different parameter sets. This

issue could be alleviated, for example, by a parameter sharing

scheme and scalable GNNs as discussed in Section IV-B.

Furthermore, in order to support multiple code parameters,

training must be performed multiple times, which is time

consuming and computationally intensive. This complexity

issue can be addressed by techniques such as transfer learning,

meta-learning, and foundation models [248].

2) Explainable AI: One of the disadvantages of DL meth-

ods is their black-box nature, which can hinder physical

insights into the phenomena. Thus, evaluating and enhancing

the explainability of generic DL models, i.e., the ability

to provide reasons for the outcomes of the system [418],

remains an active field of research [419]–[425]. In general,

the explainability of DL models tends to have an inverse

relationship to their performance, e.g., prediction accuracy

[426]. Thus, a recent advanced DL model with a large number

of parameters is particularly difficult to interpret and explain.

In the next generation communications such as 6G, the

concept of explainable AI (XAI) will become increasingly

important especially for the emerging mission-critical services,

such as autonomous driving and remote surgery [427]–[429].

Although the effectiveness of DL for the physical layer has

been demonstrated in terms of its performance, its explainabil-

ity has not been well studied. Thus, XAI-based channel coding

that increases the transparency of DL models and explains the

reasons for decisions will be of practical importance. The new

insights gained from XAI will also help us to devise code

design and decoding algorithms.

3) Efficient Training and Inference: Recent advances in

DL technologies have been driven by the exponential growth

of data and computational power, with a focus on perfor-

mance rather than the economic and environmental costs.

This research trend is often referred to as Red AI [430].

Indeed, the computations required for DL algorithms result in

a surprisingly large carbon footprint [431]–[433]. In contrast

to Red AI, which prioritizes achieving state-of-the-art results,

Green AI aims to produce innovative results while taking into

account computational costs [430], [434]. This paradigm shift

toward energy and cost efficiency is inevitable for the long-

term success, and it is therefore important to carefully select

and preprocess data, reduce redundancy, and avoid overfitting

so as to minimize the amounts of data and computational

resources required [435].

Data-centric approaches are promising for reducing the en-

ergy consumption of DL algorithms [434], while their primary

goal was to improve performance in terms of accuracy7. These

approaches recognize that the quality of the training data has

a significant impact on their performance, and thus prioritize

data quality over model refinement [436]–[438]. These include

active learning, knowledge transfer, dataset distillation, data

augmentation, and curriculum learning. For channel decoding

applications, some papers have employed these techniques for

7https://datacentricai.org/

enhancing error rate performance, but more emphasis should

be placed on the data efficiency.

4) Quantum Machine Learning: Quantum computing has a

great potential to solve the classical channel coding problems

[439]–[444] more efficiently than digital computers. Especially

in the current noisy intermediate-scale quantum (NISQ) era

[445], where the fidelity of quantum gates is limited by

noise and decoherence, hybrid quantum-classical algorithms

such as variational quantum eigensolver (VQE) [446] and

quantum approximate optimization algorithm (QAOA) [447]

are promising [448], [449]. The potential of these algorithms

for the classical channel decoding problems has been demon-

strated in [440].

Furthermore, quantum machine learning (QML), which in-

tegrates quantum algorithms into ML, has received increasing

attention [88], [450]–[455]. For example, it has been shown

that well-designed quantum neural networks can achieve a

higher capacity and faster training ability than comparable

classical feedforward neural networks [456]. Furthermore,

quantum counterparts to classical CNNs, autoencoders, and

generative adversarial networks (GANs) have been studied in

[457]–[460]. These methods have the potential to improve

existing methods based on classical computers for a wide

range of communication problems including channel coding.

LIST OF ABBREVIATIONS

3GPP Third Generation Partnership Project

A2C Advantage Actor-Critic

ADMM Alternating Direction Method Of Multipliers

AE Autoencoder

AMS Adjusted Min-Sum

AWGN Additive White Gaussian Noise

BCH Bose–Chaudhuri–Hocquenghem

BCJR Bahl-Cocke-Jelinek-Raviv

BER Bit Error Rate

BF Bit Flipping

BGD Batch Gradient Descent

BI-AWGN Binary-Input Additive White Gaussian Noise

Bi-GRU Bidirectional Gated Recurrent Unit

BISO Binary-Input Symmetric-Output

BLER Block Error Rate

BP Belief Propagation

BPSK Binary Phase Shift Keying

CA-SCL Cyclic Redundancy Check-Aided Successive

Cancellation List

CN Check Node

CNN Convolutional Neural Network

CUDA Compute Unified Device Architecture

DDPM Denoising Diffusion Probabilistic Model

DE Density Evolution

DL Deep Learning

DM Diffusion Model

DNC Differentiable Neural Computer

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DSCF Dynamic Successive Cancellation Flip

24

DSCLF Dynamic Successive Cancellation List Flip

ECCT Error Correction Code Transformer

eMBB Enhanced Mobile Broadband

EXIT Extrinsic Information Transfer

FAID Finite Alphabet Iterative Decoder

FPGA Field Programmable Gate Array

FSCL Fast Successive Cancellation List

FSCLF Fast Successive Cancellation List Clip

GA Gaussian Approximation

GAN Generative Adversarial Network

GNN Graph Neural Network

GPT Generative Pre-Trained Transformer

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HARQ Hybrid Automatic Repeat Request

HDD Hard-Decision Decoder

HDPC High-Density Parity-Check

HORNN High-Order Recurrent Neural Network

ILSVRC ImageNet Large Scale Visual Recognition

Challenge

ISI Inter-Symbol Interference

ISIT International Symposium On Information

Theory

ITD Iterative Threshold Decoding

KPI Key Performance Indicator

LAMS Min-Sum Decoding With Linear Approxima-

tion

LDPC Low-Density Parity Check

LLaMA Large Language Model Meta AI

LLM Large Language Model

LLR Log-Likelihood Ratio

LP Linear Programming

LSTM Long Short Term Memory

LUT Look-Up Table

MAP Maximum A Posterior

MBBP Multiple-Bases Belief-Propagation

MBSGD Mini-Batch Stochastic Gradient Descent

MDP Markov Decision Process

MIMO Multiple-Input Multiple-Output

MIND Model Independent Neural Decoder

ML Machine Learning

MLP Multi-Layer Perceptron

mMTC Massive Machine Type Communication

MPNN Message Passing Neural Network

mRRD Modified Random Redundant Decoding

MS Min-Sum

MU Multi-User

NC-RD Node-Classified Redundant Decoding

NISQ Noisy Intermediate-Scale Quantum

NLP Natural Language Processing

NMS Normalized Min-Sum

NOMS Normalized Offset Min-Sum

NSC Neural Successive Cancellation

OFDM Orthogonal Frequency Division Multiplexing

OMS Offset Min-Sum

OSD Ordered Statistic Decoding

PAC Polarization Adjusted Convolutional

PaLM Pathways Language Model

PAPR Peak-To-Average Power Ratio

PB-LDPC Protograph-Based Low-Density Parity-Check

PCCMP Polar-Code-Construction Message-Passing

PCM Parity Check Matrix

PGD Projected Gradient Descent

PNN Partitioned Neural Network

QAOA Quantum Approximate Optimization Algo-

rithm

QML Quantum Machine Learning

RBMS Reliability-Based Min-Sum

RC Repetition Code

RCA Reciprocal Channel Approximation

ReLU Rectified Linear Unit

RL Reinforcement Learning

RLM Regularized Loss Minimization

RM Reed-Muller

RNN Reccurent Neural Network

RQNN Recurrent Quantized Neural Network

RRD Random Redundant Decoding

RSC Recursive Systematic Convolutional

SC Successive Cancellation

SCF Successive Cancellation Flip

SCL Successive Cancellation List

SCLF Successive Cancellation List Flip

SCMS Self-Corrected Min-Sum

SGD Stochastic Gradient Descent

SISO Soft-Input Soft-Output

SMMS Single-Minimum Min-Sum

SNR Signal-To-Noise Ratio

SP Shifted-Pruning

SPC Single Parity Check

STE Straight-Through Estimator

STT-MRAM Spin-Torque Transfer Magnetic Random Ac-

cess Memory

SVM Support Vector Machine

TPU Tensor Processing Unit

TR Tensor-Ring

TT Tensor-Train

URLLC Ultra-Reliable Low-Latency Communication

V2X Vehicle-To-Everything

VN Variable Node

VQE Variational Quantum Eigensolver

VWMS Variable Weight Min-Sum

XAI Explainable AI

XR Extended Reality

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.

Tech. J., vol. 27, pp. 379–423 and 623–656, July and Oct. 1948.
[2] D. J. Costello and G. D. Forney, “Channel coding: The road to channel

capacity,” Proceedings of the IEEE, vol. 95, no. 6, pp. 1150–1177,
2007.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE
International Conference on Communications (ICC), pp. 1064–1070,
May 1993.

[4] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Info.

Theory,, vol. 8, no. 1, pp. 21–28, Jan. 1962.
[5] E. Arıkan, “Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,”
IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

25

[6] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G wireless communications:
Vision and potential techniques,” IEEE Network, vol. 33, no. 4, pp.
70–75, 2019.

[7] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Kara-
giannidis, and P. Fan, “6G wireless networks: Vision, requirements,
architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14,
no. 3, pp. 28–41, 2019.

[8] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang, and D. Zhang, “A survey
on green 6G network: Architecture and technologies,” IEEE Access,
vol. 7, pp. 175 758–175 768, 2019.

[9] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE

Network, vol. 34, no. 3, pp. 134–142, 2019.
[10] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The

roadmap to 6G: AI empowered wireless networks,” IEEE Commun.

Mag., vol. 57, no. 8, pp. 84–90, 2019.
[11] M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wire-

less communication systems: Applications, requirements, technologies,
challenges, and research directions,” IEEE Open J. Commun. Soc.,
vol. 1, pp. 957–975, 2020.

[12] A. Dogra, R. K. Jha, and S. Jain, “A survey on beyond 5G network
with the advent of 6G: Architecture and emerging technologies,” IEEE

Access, vol. 9, pp. 67 512–67 547, 2020.
[13] G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: Opening new

horizons for integration of comfort, security, and intelligence,” IEEE

Wireless Communications, vol. 27, no. 5, pp. 126–132, 2020.
[14] N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu, “Ten challenges in

advancing machine learning technologies toward 6G,” IEEE Wireless

Communications, vol. 27, no. 3, pp. 96–103, 2020.
[15] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,

“Toward 6G networks: Use cases and technologies,” IEEE Commun.
Mag., vol. 58, no. 3, pp. 55–61, 2020.

[16] N. Rajatheva, I. Atzeni, E. Bjornson, A. Bourdoux, S. Buzzi, J.-B.
Dore, S. Erkucuk, M. Fuentes, K. Guan, Y. Hu et al., “White paper
on broadband connectivity in 6G,” arXiv preprint arXiv:2004.14247,
2020.

[17] S. Chen, Y.-C. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng,
“Vision, requirements, and technology trend of 6G: How to tackle the
challenges of system coverage, capacity, user data-rate and movement
speed,” IEEE Wireless Communications, vol. 27, no. 2, pp. 218–228,
2020.

[18] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G
be?” Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.

[19] I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of
wireless communications systems,” IEEE Access, vol. 8, pp. 133 995–
134 030, 2020.

[20] L. U. Khan, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, “6G wireless
systems: A vision, architectural elements, and future directions,” IEEE

Access, vol. 8, pp. 147 029–147 044, 2020.
[21] E. Yaacoub and M.-S. Alouini, “A key 6G challenge and opportu-

nity—connecting the base of the pyramid: A survey on rural connec-
tivity,” Proceedings of the IEEE, vol. 108, no. 4, pp. 533–582, 2020.

[22] H. Viswanathan and P. E. Mogensen, “Communications in the 6G era,”
IEEE Access, vol. 8, pp. 57 063–57 074, 2020.

[23] F. Tariq, M. R. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis, and
M. Debbah, “A speculative study on 6G,” IEEE Wireless Communica-
tions, vol. 27, no. 4, pp. 118–125, 2020.

[24] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and
F. Tufvesson, “6G wireless systems: Vision, requirements, challenges,
insights, and opportunities,” Proceedings of the IEEE, vol. 109, no. 7,
pp. 1166–1199, 2021.

[25] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li,
D. Niyato, O. Dobre, and H. V. Poor, “6G internet of things: A
comprehensive survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–
383, 2021.

[26] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards
6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2,
pp. 334–366, 2021.

[27] M. Alsabah, M. A. Naser, B. M. Mahmmod, S. H. Abdulhussain, M. R.
Eissa, A. Al-Baidhani, N. K. Noordin, S. M. Sait, K. A. Al-Utaibi, and
F. Hashim, “6G wireless communications networks: A comprehensive
survey,” IEEE Access, vol. 9, pp. 148 191–148 243, 2021.

[28] C. De Lima, D. Belot, R. Berkvens, A. Bourdoux, D. Dardari,
M. Guillaud, M. Isomursu, E.-S. Lohan, Y. Miao, A. N. Barreto et al.,
“Convergent communication, sensing and localization in 6G systems:
An overview of technologies, opportunities and challenges,” IEEE

Access, vol. 9, pp. 26 902–26 925, 2021.

[29] C. De Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang,
and M. Liyanage, “Survey on 6G frontiers: Trends, applications, re-
quirements, technologies and future research,” IEEE Open J. Commun.

Soc., vol. 2, pp. 836–886, 2021.

[30] F. Guo, F. R. Yu, H. Zhang, X. Li, H. Ji, and V. C. Leung, “Enabling
massive iot toward 6G: A comprehensive survey,” IEEE Internet Things

J., vol. 8, no. 15, pp. 11 891–11 915, 2021.

[31] M. Matthaiou, O. Yurduseven, H. Q. Ngo, D. Morales-Jimenez, S. L.
Cotton, and V. F. Fusco, “The road to 6G: Ten physical layer challenges
for communications engineers,” IEEE Commun. Mag., vol. 59, no. 1,
pp. 64–69, 2021.

[32] M. Noor-A-Rahim, Z. Liu, H. Lee, M. O. Khyam, J. He, D. Pesch,
K. Moessner, W. Saad, and H. V. Poor, “6G for vehicle-to-everything
(V2X) communications: Enabling technologies, challenges, and oppor-
tunities,” Proceedings of the IEEE, vol. 110, no. 6, pp. 712–734, 2022.

[33] C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang,
Y. Huang, Y. Chen, H. Haas et al., “On the road to 6G: Visions,
requirements, key technologies and testbeds,” IEEE Communications
Surveys & Tutorials, vol. 25, no. 2, pp. 905–974, 2023.

[34] M. Chafii, L. Bariah, S. Muhaidat, and M. Debbah, “Twelve scientific
challenges for 6G: Rethinking the foundations of communications
theory,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2,
pp. 868–904, 2023.

[35] C. You, Y. Cai, Y. Liu, M. Di Renzo, T. M. Duman, A. Yener, and A. L.
Swindlehurst, “Next generation advanced transceiver technologies for
6G,” arXiv preprint arXiv:2403.16458, 2024.

[36] M. Geiselhart, F. Krieg, J. Clausius, D. Tandler, and S. ten Brink,
“6G: A welcome chance to unify channel coding?” IEEE BITS the

Information Theory Magazine, vol. 3, no. 1, pp. 67–80, 2023.

[37] H. Zhang and W. Tong, “Channel coding for 6G extreme connectivity-
requirements, capabilities and fundamental tradeoffs,” IEEE BITS the
Information Theory Magazine, vol. 3, no. 1, pp. 54–66, 2023.

[38] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proc. 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), pp. 265–283,
2016.

[39] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-
like environment for machine learning,” in Proc. Advances in Neural

Information Processing Systems (NeurIPS) Workshop on Big Learning,
2011.

[40] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proc. 44th Annual

International Symposium on Computer Architecture (ISCA), pp. 1–12,
2017.

[41] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H.
Jones, “Comparing energy efficiency of CPU, GPU and FPGA imple-
mentations for vision kernels,” in Proc. IEEE International Conference

on Embedded Software and Systems (ICESS), pp. 1–8, 2019.

[42] T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep
learning for wireless physical layer: Opportunities and challenges,”
China Communications, vol. 14, no. 11, pp. 92–111, 2017.

[43] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications Surveys &

Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.

[44] D. Gündüz, P. de Kerret, N. D. Sidiropoulos, D. Gesbert, C. R. Murthy,
and M. van der Schaar, “Machine learning in the air,” IEEE J. Sel. Areas

Commun., vol. 37, no. 10, pp. 2184–2199, 2019.

[45] A. Balatsoukas-Stimming and C. Studer, “Deep unfolding for commu-
nications systems: A survey and some new directions,” in Proc. IEEE

International Workshop on Signal Processing Systems (SiPS), pp. 266–
271, 2019.

[46] A. Samad, W. Saad, R. Nandana, C. Kapseok, D. Steinbach, B. Sliwa,
C. Wietfeld, K. Mei, S. Hamid, H.-J. Zepernick et al., White Paper on
Machine Learning in 6G Wireless Communication Networks. Univer-
sity of Oulu, 2020.

[47] C. Zhang, Y.-L. Ueng, C. Studer, and A. Burg, “Artificial intelligence
for 5G and beyond 5G: Implementations, algorithms, and optimiza-
tions,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 10, no. 2, pp.
149–163, 2020.

[48] A. Ly and Y.-D. Yao, “A review of deep learning in 5G research:
Channel coding, massive MIMO, multiple access, resource allocation,
and network security,” IEEE Open J. Commun. Soc., vol. 2, pp. 396–
408, 2021.

26

[49] C. Mao, Z. Mu, Q. Liang, I. Schizas, and C. Pan, “Deep learning in
physical layer communications: Evolution and prospects in 5G and 6G
networks,” IET Communications, vol. 17, no. 16, pp. 1863–1876, 2023.

[50] M. Akrout, A. Feriani, F. Bellili, A. Mezghani, and E. Hossain,
“Domain generalization in machine learning models for wireless
communications: Concepts, state-of-the-art, and open issues,” IEEE

Communications Surveys & Tutorials, vol. 25, no. 4, pp. 3014–3037,
2023.

[51] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain
generalization: A survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 45, no. 4, pp. 4396–4415, 2022.

[52] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng,
and P. Yu, “Generalizing to unseen domains: A survey on domain
generalization,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 8, pp.
8052–8072, 2022.

[53] N. Ye, S. Miao, J. Pan, Q. Ouyang, X. Li, and X. Hou, “Artificial
intelligence for wireless physical-layer technologies (AI4PHY): A
comprehensive survey,” IEEE Trans. Cogn. Commun. Netw., 2024.

[54] M. Rowshan, M. Qiu, Y. Xie, X. Gu, and J. Yuan, “Channel coding
towards 6G: Technical overview and outlook,” IEEE Open J. Commun.
Soc., vol. 5, pp. 2585–2685, 2024.

[55] X.-A. Wang and S. B. Wicker, “An artificial neural net Viterbi decoder,”
IEEE Trans. Commun., vol. 44, no. 2, pp. 165–171, 1996.

[56] A. Hamalainen and J. Henriksson, “A recurrent neural decoder for
convolutional codes,” in Proc. IEEE International Conference on

Communications (ICC), vol. 2, pp. 1305–1309, 1999.

[57] M. Ibnkahla, “Applications of neural networks to digital
communications–A survey,” Signal Processing, vol. 80, no. 7,
pp. 1185–1215, 2000.

[58] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp.
563–575, 2017.

[59] O. Simeone, “A very brief introduction to machine learning with
applications to communication systems,” IEEE Trans. Cogn. Commun.
Netw., vol. 4, no. 4, pp. 648–664, 2018.

[60] S. Dörner, S. Cammerer, J. Hoydis, and S. ten Brink, “Deep learning
based communication over the air,” IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 1, pp. 132–143, 2018.

[61] H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi,
“Deep learning for physical-layer 5G wireless techniques: Opportuni-
ties, challenges and solutions,” IEEE Wireless Communications, vol. 27,
no. 1, pp. 214–222, 2019.

[62] H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven
deep learning for physical layer communications,” IEEE Wireless

Communications, vol. 26, no. 5, pp. 77–83, 2019.

[63] M. Kim, W. Lee, J. Yoon, and O. Jo, “Toward the realization of
encoder and decoder using deep neural networks,” IEEE Commun.

Mag., vol. 57, no. 5, pp. 57–63, 2019.

[64] M. Varasteh, J. Hoydis, and B. Clerckx, “Learning to communicate and
energize: Modulation, coding, and multiple access designs for wire-
less information-power transmission,” IEEE Trans. Commun., vol. 68,
no. 11, pp. 6822–6839, 2020.

[65] F. Restuccia and T. Melodia, “Deep learning at the physical layer:
System challenges and applications to 5G and beyond,” IEEE Commun.

Mag., vol. 58, no. 10, pp. 58–64, 2020.

[66] S. Zhang, J. Liu, T. K. Rodrigues, and N. Kato, “Deep learning
techniques for advancing 6G communications in the physical layer,”
IEEE Wireless Communications, vol. 28, no. 5, pp. 141–147, 2021.

[67] B. Ozpoyraz, A. T. Dogukan, Y. Gevez, U. Altun, and E. Basar,
“Deep learning-aided 6G wireless networks: A comprehensive survey
of revolutionary PHY architectures,” IEEE Open J. Commun. Soc.,
vol. 3, pp. 1749–1809, 2022.

[68] Z. Lu, R. Li, K. Lu, X. Chen, E. Hossain, Z. Zhao, and H. Zhang,
“Semantics-empowered communications: A tutorial-cum-survey,” IEEE

Communications Surveys & Tutorials, vol. 26, no. 1, pp. 41–79, 2023.

[69] T. Ohtsuki, “Machine learning in 6G wireless communications,” IEICE
Trans. Commun., vol. 106, no. 2, pp. 75–83, 2023.

[70] Y. Shi, L. Lian, Y. Shi, Z. Wang, Y. Zhou, L. Fu, L. Bai, J. Zhang,
and W. Zhang, “Machine learning for large-scale optimization in
6G wireless networks,” IEEE Communications Surveys & Tutorials,
vol. 25, no. 4, pp. 2088–2132, 2023.

[71] N. Van Huynh, J. Wang, H. Du, D. T. Hoang, D. Niyato, D. N.
Nguyen, D. I. Kim, and K. B. Letaief, “Generative AI for physical
layer communications: A survey,” IEEE Trans. Cogn. Commun. Netw.,
2024.

[72] N. Islam and S. Shin, “Deep learning in physical layer: Review on data
driven end-to-end communication systems and their enabling semantic
applications,” arXiv preprint arXiv:2401.12800, 2024.

[73] T. M. Hoang, A. Vahid, H. D. Tuan, and L. Hanzo, “Physical layer
authentication and security design in the machine learning era,” IEEE

Communications Surveys & Tutorials, 2024.

[74] J. Hoydis, S. Cammerer, F. A. Aoudia, A. Vem, N. Binder, G. Marcus,
and A. Keller, “Sionna: An open-source library for next-generation
physical layer research,” arXiv preprint arXiv:2203.11854, 2022.

[75] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled se-
mantic communication systems,” IEEE Trans. Signal Process., vol. 69,
pp. 2663–2675, 2021.

[76] Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, “Semantic communi-
cations: Principles and challenges,” arXiv preprint arXiv:2201.01389,
2021.

[77] M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato,
Q. Yang, X. S. Shen, and C. Miao, “A full dive into realizing the edge-
enabled metaverse: Visions, enabling technologies, and challenges,”
IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 656–
700, 2022.

[78] W. Yang, H. Du, Z. Q. Liew, W. Y. B. Lim, Z. Xiong, D. Niyato,
X. Chi, X. S. Shen, and C. Miao, “Semantic communications for
future internet: Fundamentals, applications, and challenges,” IEEE

Communications Surveys & Tutorials, vol. 25, no. 1, pp. 213–250,
2022.

[79] X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications:
Overview, open issues, and future research directions,” IEEE Wireless

Communications, vol. 29, no. 1, pp. 210–219, 2022.

[80] D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener,
K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context,
semantics, and task-oriented communications,” IEEE J. Sel. Areas
Commun., vol. 41, no. 1, pp. 5–41, 2022.

[81] T. M. Getu, G. Kaddoum, and M. Bennis, “Making sense of meaning:
A survey on metrics for semantic and goal-oriented communication,”
IEEE Access, vol. 11, pp. 2169–3536, 2023.

[82] K. Li, B. P. L. Lau, X. Yuan, W. Ni, M. Guizani, and C. Yuen,
“Towards ubiquitous semantic metaverse: Challenges, approaches, and
opportunities,” IEEE Internet Things J., vol. 10, no. 24, pp. 21 855–
21 872, 2023.

[83] D. Wheeler and B. Natarajan, “Engineering semantic communication:
A survey,” IEEE Access, vol. 11, pp. 13 965–13 995, 2023.

[84] G. Torlai and R. G. Melko, “Neural decoder for topological codes,”
Physical Review Letters, vol. 119, no. 3, p. 030501, 2017.

[85] S. Varsamopoulos, B. Criger, and K. Bertels, “Decoding small sur-
face codes with feedforward neural networks,” Quantum Science and

Technology, vol. 3, no. 1, p. 015004, 2017.

[86] S. Varsamopoulos, K. Bertels, and C. G. Almudever, “Comparing neu-
ral network based decoders for the surface code,” IEEE Transactions

on Computers, vol. 69, no. 2, pp. 300–311, 2019.

[87] H. P. Nautrup, N. Delfosse, V. Dunjko, H. J. Briegel, and N. Friis, “Op-
timizing quantum error correction codes with reinforcement learning,”
Quantum, vol. 3, p. 215, 2019.

[88] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby,
L. Vogt-Maranto, and L. Zdeborová, “Machine learning and the phys-
ical sciences,” Reviews of Modern Physics, vol. 91, no. 4, p. 045002,
2019.

[89] A. d. iOlius, P. Fuentes, R. Orús, P. M. Crespo, and J. E. Martinez, “De-
coding algorithms for surface codes,” arXiv preprint arXiv:2307.14989,
2023.

[90] M. Krenn, J. Landgraf, T. Foesel, and F. Marquardt, “Artificial in-
telligence and machine learning for quantum technologies,” Physical

Review A, vol. 107, no. 1, p. 010101, 2023.

[91] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-
manent in nervous activity,” The Bulletin of Mathematical Biophysics,
vol. 5, no. 4, pp. 115–133, 1943.

[92] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[93] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[94] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[95] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

27

[96] L. Deng, D. Yu et al., “Deep learning: methods and applications,”
Foundations and Trends® in Signal Processing, vol. 7, no. 3–4, pp.
197–387, 2014.

[97] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-
L. Shyu, S.-C. Chen, and S. S. Iyengar, “A survey on deep learning:
Algorithms, techniques, and applications,” ACM Computing Surveys

(CSUR), vol. 51, no. 5, pp. 1–36, 2018.

[98] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, M. Hasan, B. C. Van Essen, A. A. Awwal, and V. K. Asari,
“A state-of-the-art survey on deep learning theory and architectures,”
Electronics, vol. 8, no. 3, p. 292, 2019.

[99] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its
applications,” Computer Science Review, vol. 40, p. 100379, 2021.

[100] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar, “A survey
of deep learning and its applications: a new paradigm to machine
learning,” Archives of Computational Methods in Engineering, vol. 27,
pp. 1071–1092, 2020.

[101] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., Learning Internal
Representations By Error Propagation. MIT Press, Cambridge, MA,
1985.

[102] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation functions
in deep learning: A comprehensive survey and benchmark,” Neurocom-

puting, vol. 503, pp. 92–108, 2022.

[103] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. International Conference on Machine

Learning (ICML), pp. 807–814, 2010.

[104] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. International Con-

ference on Machine Learning (ICML), vol. 30, no. 1, p. 3, 2013.

[105] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE International Conference on Computer Vision (ICCV), pp.
1026–1034, 2015.

[106] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in Proc. International

Conference on Machine Learning (ICML), pp. 1139–1147, 2013.

[107] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine

Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[108] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[109] T. Dozat, “Incorporating nesterov momentum into Adam,” in Proc.

International Conference on Learning Representations (ICLR), pp.
2013–2016, 2016.

[110] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[111] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[112] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

[113] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[114] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process.

Mag., vol. 34, no. 6, pp. 26–38, 2017.

[115] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[116] S. E. Li, Deep reinforcement learning. Springer, 2023.

[117] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker et al., “Model-
based reinforcement learning: A survey,” Foundations and Trends® in

Machine Learning, vol. 16, no. 1, pp. 1–118, 2023.

[118] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, 2009.

[119] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big data, vol. 3, pp. 1–40, 2016.

[120] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in Proc. International Conference on Artificial

Neural Networks (ICANN), pp. 270–279, 2018.

[121] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of

the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[122] M. Wang, Y. Lin, Q. Tian, and G. Si, “Transfer learning promotes
6G wireless communications: Recent advances and future challenges,”
IEEE Trans. Rel., vol. 70, no. 2, pp. 790–807, 2021.

[123] M. Crawshaw, “Multi-task learning with deep neural networks: A
survey,” arXiv preprint arXiv:2009.09796, 2020.

[124] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans.

Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, 2021.
[125] M. Kim, W. Lee, and D.-H. Cho, “A novel PAPR reduction scheme for

OFDM system based on deep learning,” IEEE Commun. Lett., vol. 22,
no. 3, pp. 510–513, 2017.

[126] J. Vanschoren, “Meta-learning: A survey,” arXiv preprint

arXiv:1810.03548, 2018.
[127] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-

learning in neural networks: A survey,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 44, no. 9, pp. 5149–5169, 2021.
[128] L. Chen, S. T. Jose, I. Nikoloska, S. Park, T. Chen, O. Simeone

et al., “Learning with limited samples: Meta-learning and applications
to communication systems,” Foundations and Trends® in Signal Pro-

cessing, vol. 17, no. 2, pp. 79–208, 2023.
[129] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum

learning,” in Proc. International Conference on Machine Learning

(ICML), pp. 41–48, 2009.
[130] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 4555–4576,
2021.

[131] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learning:
A survey,” International Journal of Computer Vision, vol. 130, no. 6,
pp. 1526–1565, 2022.

[132] J. L. Elman, “Learning and development in neural networks: The
importance of starting small,” Cognition, vol. 48, no. 1, pp. 71–99,
1993.

[133] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai et al., “Recent advances in convolutional
neural networks,” Pattern recognition, vol. 77, pp. 354–377, 2018.

[134] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: Analysis, applications, and prospects,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, 2021.
[135] M. Krichen, “Convolutional neural networks: A survey,” Computers,

vol. 12, no. 8, p. 151, 2023.
[136] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Proc. Advances in Neural
Information Processing Systems (NeurIPS), pp. 1097–1105, 2012.

[137] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[138] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 1–9, 2015.
[139] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proc. IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 770–778, 2016.
[140] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,

“Densely connected convolutional networks,” in Proc. IEEE conference

on computer vision and pattern recognition (CVPR), pp. 4700–4708,
2017.

[141] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232–6251, 2016.

[142] M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep
learning-based channel estimation,” IEEE Commun. Lett., vol. 23, no. 4,
pp. 652–655, 2019.

[143] M. Honkala, D. Korpi, and J. M. Huttunen, “DeepRx: Fully convolu-
tional deep learning receiver,” IEEE Trans. Wireless Commun., vol. 20,
no. 6, pp. 3925–3940, 2021.

[144] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Advances in Neural Information

Processing Systems (NeurIPS), pp. 3104–3112, 2014.
[145] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[146] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:

Continual prediction with LSTM,” Neural Computation, vol. 12, pp.
2451–2471, 2000.

[147] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations us-
ing RNN encoder-decoder for statistical machine translation,” arXiv

preprint arXiv:1406.1078, 2014.
[148] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural

networks: LSTM cells and network architectures,” Neural computation,
vol. 31, no. 7, pp. 1235–1270, 2019.

28

[149] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee,
“Recent advances in recurrent neural networks,” arXiv preprint
arXiv:1801.01078, 2017.

[150] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long
short-term memory model,” Artificial Intelligence Review, vol. 53, pp.
5929–5955, 2020.

[151] N. Farsad and A. Goldsmith, “Neural network detection of data
sequences in communication systems,” IEEE Trans. Signal Process.,
vol. 66, no. 21, pp. 5663–5678, 2018.

[152] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, 2008.

[153] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[154] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, 2020.

[155] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, 2020.
[156] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
[157] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,

and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[158] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric
deep learning: Grids, groups, graphs, geodesics, and gauges,” arXiv
preprint arXiv:2104.13478, 2021.

[159] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proc.

Advances in Neural Information Processing Systems (NeurIPS), vol. 30,
2017.

[160] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” Proc. Advances in neural information

processing systems (NeurIPS), vol. 33, pp. 1877–1901, 2020.
[161] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,

T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“LLaMA: Open and efficient foundation language models,” arXiv

preprint arXiv:2302.13971, 2023.
[162] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,

P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “PaLM: Scal-
ing language modeling with pathways,” Journal of Machine Learning

Research, vol. 24, no. 240, pp. 1–113, 2023.
[163] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut,

J. Schalkwyk, A. M. Dai, A. Hauth et al., “Gemini: a family of highly
capable multimodal models,” arXiv preprint arXiv:2312.11805, 2023.

[164] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” AI

Open, vol. 3, pp. 111–132, 2022.
[165] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,

“Transformers in vision: A survey,” ACM computing surveys (CSUR),
vol. 54, no. 10s, pp. 1–41, 2022.

[166] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao,
C. Xu, Y. Xu et al., “A survey on vision transformer,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 45, no. 1, pp. 87–110, 2022.
[167] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,

T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16×16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[168] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak supervi-
sion,” in Proc. International Conference on Machine Learning (ICML),
pp. 28 492–28 518, 2023.

[169] Y. Wang, Z. Gao, D. Zheng, S. Chen, D. Gunduz, and H. V.
Poor, “Transformer-empowered 6G intelligent networks: From mas-
sive MIMO processing to semantic communication,” IEEE Wireless
Communications, vol. 30, no. 6, pp. 127–135, 2022.

[170] Z. Chang, G. A. Koulieris, and H. P. Shum, “On the design fundamen-
tals of diffusion models: A survey,” arXiv preprint arXiv:2306.04542,
2023.

[171] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang,
B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey
of methods and applications,” ACM Computing Surveys, vol. 56, no. 4,
pp. 1–39, 2023.

[172] H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, and S. Z. Li,
“A survey on generative diffusion models,” IEEE Trans. Knowl. Data

Eng., 2024.

[173] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Proc. Advances in Neural Information Processing Systems
(NeurIPS), vol. 33, pp. 6840–6851, 2020.

[174] B. Fesl, M. Baur, F. Strasser, M. Joham, and W. Utschick, “Diffusion-
based generative prior for low-complexity MIMO channel estimation,”
arXiv preprint arXiv:2403.03545, 2024.

[175] M. Letafati, S. Ali, and M. Latva-aho, “Denoising diffusion proba-
bilistic models for hardware-impaired communications,” arXiv preprint

arXiv:2309.08568, 2023.
[176] ——, “Probabilistic constellation shaping with denoising diffu-

sion probabilistic models: A novel approach,” arXiv preprint

arXiv:2309.08688, 2023.
[177] M. Kim, R. Fritschek, and R. F. Schaefer, “Learning end-to-end

channel coding with diffusion models,” in Proc. 26th International

ITG Workshop on Smart Antennas and 13th Conference on Systems,

Communications, and Coding (WSA & SCC), pp. 1–6, 2023.
[178] T. Wu, Z. Chen, D. He, L. Qian, Y. Xu, M. Tao, and W. Zhang,

“CDDM: Channel denoising diffusion models for wireless communi-
cations,” IEEE Trans. Wireless Commun., 2024.

[179] H. Du, R. Zhang, Y. Liu, J. Wang, Y. Lin, Z. Li, D. Niyato, J. Kang,
Z. Xiong, S. Cui et al., “Beyond deep reinforcement learning: A tutorial
on generative diffusion models in network optimization,” arXiv preprint

arXiv:2308.05384, 2023.
[180] L. Bariah, Q. Zhao, H. Zou, Y. Tian, F. Bader, and M. Debbah, “Large

generative AI models for telecom: The next big thing?” IEEE Commun.

Mag., 2024.
[181] M. Letafati, S. Ali, and M. Latva-aho, “WiGenAI: The symphony

of wireless and generative AI via diffusion models,” arXiv preprint

arXiv:2310.07312, 2023.
[182] N. Van Huynh, J. Wang, H. Du, D. T. Hoang, D. Niyato, D. N.

Nguyen, D. I. Kim, and K. B. Letaief, “Generative AI for physical
layer communications: A survey,” arXiv preprint arXiv:2312.05594,
2023.

[183] C. Zhao, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, K. B. Letaief
et al., “Generative AI for secure physical layer communications: A
survey,” arXiv preprint arXiv:2402.13553, 2024.

[184] M. Ebada, S. Cammerer, A. Elkelesh, and S. ten Brink, “Deep learning-
based polar code design,” in Proc. 57th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pp. 177–183,
2019.

[185] L. Huang, H. Zhang, R. Li, Y. Ge, and J. Wang, “AI coding: Learning
to construct error correction codes,” IEEE Trans. Commun., vol. 68,
no. 1, pp. 26–39, 2019.

[186] M. Leonardon and V. Gripon, “Using deep neural networks to predict
and improve the performance of polar codes,” in Proc. 11th Interna-
tional Symposium on Topics in Coding (ISTC), pp. 1–5, 2021.

[187] Y. Liao, S. A. Hashemi, H. Yang, and J. M. Cioffi, “Scalable polar code
construction for successive cancellation list decoding: A graph neural
network-based approach,” IEEE Trans. Commun., vol. 71, no. 11, pp.
6231–6245, 2023.

[188] V. Miloslavskaya, Y. Li, and B. Vucetic, “Neural network based
adaptive polar coding,” IEEE Trans. Commun., 2023.

[189] Y. Li, Z. Chen, G. Liu, Y.-C. Wu, and K.-K. Wong, “Learning to
construct nested polar codes: An attention-based set-to-element model,”
IEEE Commun. Lett., vol. 25, no. 12, pp. 3898–3902, 2021.

[190] S. K. Ankireddy, S. A. Hebbar, H. Wan, J. Cho, and C. Zhang,
“Nested construction of polar codes via Transformers,” arXiv preprint

arXiv:2401.17188, 2024.
[191] S. A. Hebbar, S. K. Ankireddy, H. Kim, S. Oh, and P. Viswanath,

“DeepPolar: Inventing nonlinear large-kernel polar codes via deep
learning,” arXiv preprint arXiv:2402.08864, 2024.

[192] S. K. Mishra, D. Katyal, and S. A. Ganapathi, “A modified Q-
learning algorithm for rate-profiling of polarization adjusted convo-
lutional (PAC) codes,” in Proc. IEEE Wireless Communications and

Networking Conference (WCNC), pp. 2363–2368, 2022.
[193] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of

capacity-approaching irregular low-density parity-check codes,” IEEE

Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, 2001.
[194] R. Mori and T. Tanaka, “Performance of polar codes with the construc-

tion using density evolution,” IEEE Commun. Lett., vol. 13, no. 7, pp.
519–521, 2009.

[195] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–
1737, Oct. 2001.

[196] E. Nisioti and N. Thomos, “Design of capacity-approaching low-
density parity-check codes using recurrent neural networks,” arXiv

preprint arXiv:2001.01249, 2020.

29

[197] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.

Theory, vol. 59, no. 10, pp. 6562–6582, 2013.
[198] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE

Trans. Commun., vol. 60, no. 11, pp. 3221–3227, 2012.
[199] H. Ochiai, P. Mitran, and H. V. Poor, “Capacity-approaching polar

codes with long codewords and successive cancellation decoding based
on improved gaussian approximation,” IEEE Trans. Commun., vol. 69,
no. 1, pp. 31–43, 2021.

[200] H. Ochiai, K. Ikeya, and P. Mitran, “A new polar code design based
on reciprocal channel approximation,” IEEE Trans. Commun., vol. 71,
no. 2, pp. 631–643, 2023.

[201] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.

Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[202] L. Huang, H. Zhang, R. Li, Y. Ge, and J. Wang, “Reinforcement

learning for nested polar code construction,” in Proc. IEEE Global

Communications Conference (GLOBECOM), pp. 1–6, 2019.
[203] Y. Liao, S. A. Hashemi, J. M. Cioffi, and A. Goldsmith, “Construction

of polar codes with reinforcement learning,” IEEE Trans. Commun.,
vol. 70, no. 1, pp. 185–198, 2021.

[204] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint

arXiv:1706.06083, 2017.
[205] V. Miloslavskaya, Y. Li, and B. Vucetic, “Design of compactly specified

polar codes with dynamic frozen bits based on reinforcement learning,”
IEEE Trans. Commun., vol. 72, no. 3, pp. 1257–1272, 2024.

[206] C. Schürch, “A partial order for the synthesized channels of a polar
code,” in Proc. IEEE International Symposium on Information Theory
(ISIT), pp. 220–224, 2016.

[207] M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic proper-
ties of polar codes from a new polynomial formalism,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 230–234,
2016.

[208] G. He, J.-C. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang,
Y. Ge, R. Zhang et al., “Beta-expansion: A theoretical framework for
fast and recursive construction of polar codes,” in Proc. IEEE Global

Communications Conference (GLOBECOM), pp. 1–6, 2017.
[209] M. Mondelli, S. H. Hassani, and R. Urbanke, “Construction of polar

codes with sublinear complexity,” IEEE Trans. Inf. Theory, 2018.
[210] V. Bioglio, C. Condo, and I. Land, “Design of polar codes in 5G new

radio,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp.
29–40, 2020.

[211] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Proc. Advances

in Neural Information Processing Systems (NeurIPS), vol. 12, 1999.
[212] S. B. Korada, E. Şaşoğlu, and R. Urbanke, “Polar codes: Characteriza-

tion of exponent, bounds, and constructions,” IEEE Trans. Inf. Theory,
vol. 56, no. 12, pp. 6253–6264, 2010.

[213] E. Arıkan, “From sequential decoding to channel polarization and back
again,” arXiv preprint arXiv:1908.09594, 2019.

[214] M. Moradi and A. Mozammel, “A monte-carlo based construction
of polarization-adjusted convolutional (PAC) codes,” arXiv preprint

arXiv:2106.08118, 2021.
[215] T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep

learning-based channel decoding,” in Proc. 51st Annual Conference

on Information Sciences and Systems (CISS), pp. 1–6, 2017.
[216] J. Seo, J. Lee, and K. Kim, “Decoding of polar code by using deep

feed-forward neural networks,” in Proc. International Conference on
Computing, Networking and Communications (ICNC), pp. 238–242,
2018.

[217] C. T. Leung, R. V. Bhat, and M. Motani, “Low-latency neural decoders
for linear and non-linear block codes,” in Proc. IEEE Global Commu-

nications Conference (GLOBECOM), pp. 1–6, 2019.
[218] ——, “Low latency energy-efficient neural decoders for block codes,”

IEEE Trans. Green Commun. Netw., vol. 7, no. 2, pp. 680–691, 2023.
[219] W. Lyu, Z. Zhang, C. Jiao, K. Qin, and H. Zhang, “Performance

evaluation of channel decoding with deep neural networks,” in Proc.

IEEE International Conference on Communications (ICC), pp. 1–6,
2018.

[220] R. Sattiraju, A. Weinand, and H. D. Schotten, “Performance analysis of
deep learning based on recurrent neural networks for channel coding,”
in Proc. IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS), pp. 1–6, 2018.

[221] H. Zhu, Z. Cao, Y. Zhao, and D. Li, “Learning to denoise and decode:
A novel residual neural network decoder for polar codes,” IEEE Trans.

Veh. Technol., vol. 69, no. 8, pp. 8725–8738, 2020.
[222] Y. Choukroun and L. Wolf, “Error correction code transformer,” Proc.

Advances in Neural Information Processing Systems (NeurIPS), vol. 35,
pp. 38 695–38 705, 2022.

[223] ——, “Denoising diffusion error correction codes,” arXiv preprint

arXiv:2209.13533, 2022.
[224] A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep learning for de-

coding of linear codes-a syndrome-based approach,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1595–1599,
2018.

[225] J. K. S. Kamassury and D. Silva, “Iterative error decima-
tion for syndrome-based neural network decoders,” arXiv preprint

arXiv:2012.00089, 2020.
[226] D. Artemasov, K. Andreev, P. Rybin, and A. Frolov, “Soft-output deep

neural network-based decoding,” arXiv preprint arXiv:2304.08868,
2023.

[227] Y. Wang, Z. Zhang, S. Zhang, S. Cao, and S. Xu, “A unified deep
learning based polar-ldpc decoder for 5G communication systems,” in
Proc. 10th International Conference on Wireless Communications and

Signal Processing (WCSP), pp. 1–6, 2018.
[228] Y. Jiang, H. Kim, H. Asnani, and S. Kannan, “Mind: Model indepen-

dent neural decoder,” in Proc. IEEE International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), pp. 1–5,
2019.

[229] H. Lee, E. Y. Seo, H. Ju, and S.-H. Kim, “On training neural network
decoders of rate compatible polar codes via transfer learning,” Entropy,
vol. 22, no. 5, p. 496, 2020.

[230] D. Artemasov, K. Andreev, and A. Frolov, “On a unified deep neural
network decoding architecture,” in Proc. IEEE 98th Vehicular Technol-

ogy Conference (VTC2023-Fall), pp. 1–5, 2023.
[231] F. Carpi, C. Häger, M. Martalò, R. Raheli, and H. D. Pfister, “Rein-

forcement learning for channel coding: Learned bit-flipping decoding,”
in Proc. 57th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), pp. 922–929, 2019.
[232] J. Gao and K. Niu, “A reinforcement learning based decoding method

of short polar codes,” in Proc. IEEE Wireless Communications and

Networking Conference Workshops (WCNCW), pp. 1–6, 2021.
[233] E. Kavvousanos, V. Paliouras, and I. Kouretas, “Simplified deep-

learning-based decoders for linear block codes,” in Proc. IEEE In-

ternational Conference on Electronics, Circuits and Systems (ICECS),
pp. 769–772, 2018.

[234] E. Kavvousanos and V. Paliouras, “Hardware implementation aspects
of a syndrome-based neural network decoder for BCH codes,” in Proc.

IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP

and International Symposium of System-on-Chip (SoC), pp. 1–6, 2019.
[235] ——, “Optimizing deep learning decoders for FPGA implementation,”

in Proc. 31st International Conference on Field-Programmable Logic

and Applications (FPL), pp. 271–272, 2021.
[236] ——, “A low-latency syndrome-based deep learning decoder archi-

tecture and its FPGA implementation,” in Proc. 11th International

Conference on Modern Circuits and Systems Technologies (MOCAST),
pp. 1–4, 2022.

[237] B. Cavarec, H. B. Celebi, M. Bengtsson, and M. Skoglund, “A
learning-based approach to address complexity-reliability tradeoff in
OS decoders,” in Proc. 54th Asilomar Conference on Signals, Systems,

and Computers, pp. 689–692, 2020.
[238] N. Raviv, A. Caciularu, T. Raviv, J. Goldberger, and Y. Be’ery,

“perm2vec: Graph permutation selection for decoding of error correc-
tion codes using self-attention,” IEEE J. Sel. Areas Commun., vol. 39,
no. 1, pp. 79–88, 2020.

[239] A. Kurmukova and D. Gunduz, “Friendly attacks to improve channel
coding reliability,” arXiv preprint arXiv:2401.14184, 2024.

[240] A. Tsvieli and N. Weinberger, “Learning maximum margin channel
decoders,” IEEE Trans. Inf. Theory, vol. 69, no. 6, pp. 3597–3626,
2023.

[241] X. Zhong, K. Cai, Z. Mei, and T. Q. Quek, “Deep learning-based
decoding of linear block codes for spin-torque transfer magnetic
random access memory,” IEEE Transactions on Magnetics, vol. 57,
no. 2, pp. 1–5, 2020.

[242] X. Zhong, K. Cai, P. Kang, G. Song, and B. Dai, “Deep learning-
based adaptive error-correction decoding for spin-torque transfer mag-
netic random access memory (STT-MRAM),” IEEE Transactions on

Magnetics, vol. 59, no. 11, 2023.
[243] C. T. Leung, R. V. Bhat, and M. Motani, “Multi-label neural decoders

for block codes,” in Proc. IEEE International Conference on Commu-

nications (ICC), pp. 1–6, 2020.
[244] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath,

“Communication algorithms via deep learning,” in Proc. International
Conference on Learning Representations (ICLR), pp. 1–17, 2018.

[245] Z. Cao, H. Zhu, Y. Zhao, and D. Li, “Learning to denoise and decode:
A novel residual neural network decoder for polar codes,” in Proc.

30

IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), pp. 1–
6, 2020.

[246] S.-J. Park, H.-Y. Kwak, S.-H. Kim, S. Kim, Y. Kim, and J.-S. No,
“How to mask in error correction code Transformer: Systematic and
double masking,” arXiv preprint arXiv:2308.08128, 2023.

[247] Y. Choukroun and L. Wolf, “A foundation model for error correc-
tion codes,” in Proc. International Conference on Machine Learning

(ICML), 2024.
[248] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von

Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On
the opportunities and risks of foundation models,” arXiv preprint

arXiv:2108.07258, 2021.
[249] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting

Codes. Elsevier, 1977, vol. 16.
[250] I. Dimnik and Y. Be’ery, “Improved random redundant iterative HDPC

decoding,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1982–1985, 2009.
[251] L. Tallini and P. Cull, “Neural nets for decoding error-correcting codes,”

in IEEE Technical applications conference and workshops, p. 89, 1995.
[252] R. M. Pyndiah, “Near-optimum decoding of product codes: Block turbo

codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, 1998.
[253] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy

of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[254] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41,
no. 5, pp. 1379–1396, Sep. 1995.

[255] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief
propagation list decoding of polar codes,” IEEE Commun. Lett., vol. 22,
no. 8, pp. 1536–1539, 2018.

[256] A. Kurakin, I. J. Goodfellow, and S. Bengio, Adversarial examples in

the physical world. Chapman and Hall/CRC, 2018.
[257] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear

codes using deep learning,” in Proc. 54th Annual Allerton Conference

on Communication, Control, and Computing (Allerton), pp. 341–346,
2016.

[258] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 119–
131, 2018.

[259] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in
Proc. IEEE International Symposium on Information Theory (ISIT),
pp. 1361–1365, 2017.

[260] B. Dai, R. Liu, and Z. Yan, “New min-sum decoders based on deep
learning for polar codes,” in Proc. IEEE International Workshop on

Signal Processing Systems (SiPS), pp. 252–257, 2018.
[261] H. Yu, M.-M. Zhao, M. Lei, and M.-J. Zhao, “Neural adjusted min-sum

decoding for LDPC codes,” in Proc. IEEE 98th Vehicular Technology

Conference (VTC2023-Fall), pp. 1–5, 2023.
[262] Y.-L. Hsu, L.-W. Liu, Y.-C. Liao, and H.-C. Chang, “GC-Like LDPC

code construction and its NN-aided decoder implementation,” IEEE

Open J. Circuits Syst., vol. 5, pp. 189–198, 2024.
[263] X. Wu, M. Jiang, and C. Zhao, “Decoding optimization for 5G LDPC

codes by machine learning,” IEEE Access, vol. 6, pp. 50 179–50 186,
2018.

[264] T. Kim and J. Park, “Neural self-corrected min-sum decoder for NR
LDPC codes,” IEEE Commun. Lett., 2024.

[265] C.-F. Teng, K.-S. Ho, C.-H. Wu, S.-S. Wong, and A.-Y. Wu, “Convolu-
tional neural network-aided bit-flipping for belief propagation decoding
of polar codes,” arXiv preprint arXiv:1911.01704, 2019.

[266] C.-F. Teng and A.-Y. A. Wu, “Convolutional neural network-aided
tree-based bit-flipping framework for polar decoder using imitation
learning,” IEEE Trans. Signal Process., vol. 69, pp. 300–313, 2020.

[267] C.-F. Teng, A. K.-S. Ho, C.-H. D. Wu, S.-S. Wong, and A.-Y. A. Wu,
“Convolutional neural network-aided bit-flipping for belief propagation
decoding of polar codes,” in Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 7898–7902,
2021.

[268] Y. Sun, Y. Shen, W. Song, Z. Gong, X. You, and C. Zhang, “LSTM
network-assisted belief propagation flip polar decoder,” in Proc. Asilo-

mar Conference on Signals, Systems, and Computers, pp. 979–983,
2020.

[269] B. Liu, Y. Xie, and J. Yuan, “A deep learning assisted node-classified
redundant decoding algorithm for BCH codes,” IEEE Trans. Commun.,
pp. 1–1, 2020.

[270] Y. Wei, M.-M. Zhao, M.-J. Zhao, and M. Lei, “ADMM-based decoder
for binary linear codes aided by deep learning,” IEEE Commun. Lett.,
vol. 24, no. 5, pp. 1028–1032, 2020.

[271] T. Wadayama and S. Takabe, “Deep learning-aided trainable projected
gradient decoding for LDPC codes,” in Proc. IEEE International
Symposium on Information Theory (ISIT), pp. 2444–2448, 2019.

[272] ——, “Proximal decoding for LDPC codes,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 106, no. 3, pp. 359–367, 2023.

[273] N. Doan, S. A. Hashemi, and W. J. Gross, “Decoding polar codes
with reinforcement learning,” in Proc. IEEE Global Communications

Conference (GLOBECOM), pp. 1–6, 2020.

[274] S. Habib, A. Beemer, and J. Kliewer, “Learned scheduling of LDPC
decoders based on multi-armed bandits,” in Proc. IEEE International

Symposium on Information Theory (ISIT), pp. 2789–2794, 2020.

[275] ——, “Belief propagation decoding of short graph-based channel codes
via reinforcement learning,” IEEE J. Sel. Inf. Theory, vol. 2, no. 2, pp.
627–640, 2021.

[276] ——, “Reldec: Reinforcement learning-based decoding of moderate
length LDPC codes,” IEEE Trans. Commun., vol. 71, no. 19, pp. 5661–
5674, 2023.

[277] L. Lugosch and W. J. Gross, “Learning from the syndrome,” in Proc.

Asilomar Conference on Signals, Systems, and Computers, pp. 594–
598, 2018.

[278] C.-F. Teng and Y.-L. Chen, “Syndrome-enabled unsupervised learning
for neural network-based polar decoder and jointly optimized blind
equalizer,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 10, no. 2, pp.
177–188, 2020.

[279] E. Nachmani and Y. Be’ery, “Neural decoding with optimization of
node activations,” IEEE Commun. Lett., vol. 26, no. 11, pp. 2527–
2531, 2022.

[280] C.-F. Teng, C.-H. D. Wu, A. K.-S. Ho, and A.-Y. A. Wu, “Low-
complexity recurrent neural network-based polar decoder with weight
quantization mechanism,” in Proc. IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 1413–1417,
2019.

[281] Z. Ibrahim and Y. Fahmy, “Enhanced learning for recurrent neural
network-based polar decoder,” in Proc. International Conference on

Electrical Engineering (ICEENG), pp. 105–109, 2022.

[282] X. Xiao, B. Vasic, R. Tandon, and S. Lin, “Finite alphabet iterative
decoding of LDPC codes with coarsely quantized neural networks,” in
Proc. IEEE Global Communications Conference (GLOBECOM), pp.
1–6, 2019.

[283] X. Xiao, B. Vasić, R. Tandon, and S. Lin, “Designing finite alphabet
iterative decoders of LDPC codes via recurrent quantized neural
networks,” IEEE Trans. Commun., vol. 68, no. 7, pp. 3963–3974, 2020.

[284] Y. Lyu, M. Jiang, Y. Zhang, C. Zhao, N. Hu, and X. Xu, “Optimized
non-surjective FAIDs for 5G LDPC codes with learnable quantization,”
IEEE Commun. Lett., vol. 28, no. 2, pp. 253–257, 2023.

[285] M. Lian, C. Häger, and H. D. Pfister, “What can machine learning
teach us about communications?” in Proc. IEEE Information Theory

Workshop (ITW), pp. 1–5, 2018.

[286] M. Lian, F. Carpi, C. Häger, and H. D. Pfister, “Learned belief-
propagation decoding with simple scaling and SNR adaptation,” in
Proc. IEEE International Symposium on Information Theory (ISIT),
pp. 161–165, 2019.

[287] Q. Wang, S. Wang, H. Fang, L. Chen, L. Chen, and Y. Guo, “A model-
driven deep learning method for normalized min-sum LDPC decoding,”
in Proc. IEEE International Conference on Communications Workshops

(ICC Workshops), pp. 1–6, 2020.

[288] Q. Wang, Q. Liu, S. Wang, L. Chen, H. Fang, L. Chen, Y. Guo, and
Z. Wu, “Normalized min-sum neural network for LDPC decoding,”
IEEE Trans. Cogn. Commun. Netw., vol. 9, no. 1, pp. 70–81, 2022.

[289] J. Dai, K. Tan, Z. Si, K. Niu, M. Chen, H. V. Poor, and S. Cui,
“Learning to decode protograph LDPC codes,” IEEE J. Sel. Areas

Commun., vol. 39, no. 7, pp. 1983–1999, 2021.

[290] Y. Liang, C.-T. Lam, and B. K. Ng, “A low-complexity neural
normalized min-sum LDPC decoding algorithm using tensor-train
decomposition,” IEEE Commun. Lett., vol. 26, no. 12, pp. 2914–2918,
2022.

[291] ——, “Joint-way compression for LDPC neural decoding algorithm
with tensor-ring decomposition,” IEEE Access, vol. 11, pp. 22 871–
22 879, 2023.

[292] Y. Cheng, W. Chen, L. Li, and B. Ai, “Rate compatible LDPC neural
decoding network: A multi-task learning approach,” IEEE Trans. Veh.

Technol., vol. 73, no. 5, pp. 7374–7378, 2024.

[293] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i Amat,
“Pruning and quantizing neural belief propagation decoders,” IEEE J.

Sel. Areas Commun., vol. 39, no. 7, pp. 1957–1966, 2020.

31

[294] ——, “Learned decimation for neural belief propagation decoders,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8273–8277, 2021.

[295] V. G. Satorras and M. Welling, “Neural enhanced belief propagation
on factor graphs,” in Proc. International Conference on Artificial

Intelligence and Statistics (AISTATS), pp. 685–693, 2021.

[296] S. Cammerer, J. Hoydis, F. A. Aoudia, and A. Keller, “Graph neural
networks for channel decoding,” in Proc. IEEE Global Communica-

tions Conference Workshops (GC Wkshps), pp. 486–491, 2022.

[297] K. Tian, C. Yue, C. She, Y. Li, and B. Vucetic, “A scalable graph neural
network decoder for short block codes,” in Proc. IEEE International
Conference on Communications, pp. 1268–1273, 2023.

[298] S. K. Ankireddy and H. Kim, “Interpreting neural min-sum decoders,”
in Proc. IEEE International Conference on Communications (ICC), pp.
6645–6651, 2023.

[299] S. Adiga, X. Xiao, R. Tandon, B. Vasić, and T. Bose, “Generalization
bounds for neural belief propagation decoders,” IEEE Trans. Inf.

Theory, vol. 70, no. 6, pp. 4280–4296, 2024.

[300] J. Clausius, M. Geiselhart, D. Tandler, and S. t. Brink, “Graph
neural network-based joint equalization and decoding,” arXiv preprint
arXiv:2401.16187, 2024.

[301] R. Wiesmayr, C. Dick, J. Hoydis, and C. Studer, “DUIDD: Deep-
unfolded interleaved detection and decoding for MIMO wireless sys-
tems,” in Proc. 56th Asilomar Conference on Signals, Systems, and

Computers, pp. 181–188, 2022.

[302] H. Lee, Y.-S. Kil, M. Y. Chung, and S.-H. Kim, “Neural network aided
impulsive perturbation decoding for short raptor-like LDPC codes,”
IEEE Commun. Lett., vol. 11, no. 2, pp. 268–272, 2021.

[303] Y. Wang, S. Zhang, C. Zhang, X. Chen, and S. Xu, “A low-complexity
belief propagation based decoding scheme for polar codes-decodability
detection and early stopping prediction,” IEEE Access, vol. 7, pp.
159 808–159 820, 2019.

[304] M. P. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, 1999.

[305] J. Chen, A. Dholakia, E. Eleftheriou, M. P. Fossorier, and X.-Y.
Hu, “Reduced-complexity decoding of LDPC codes,” IEEE Trans.

Commun., vol. 53, no. 8, pp. 1288–1299, 2005.

[306] John R. Hershey, Jonathan Le Roux, and Felix Weninger, “Deep
unfolding: Model-based inspiration of novel deep architectures,” arXiv

preprint arXiv:1409.2574, 2014.

[307] N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-based
deep learning,” Proceedings of the IEEE, vol. 11, no. 5, pp. 465–499,
2023.

[308] A. Jagannath, J. Jagannath, and T. Melodia, “Redefining wireless
communication for 6G: Signal processing meets deep learning with
deep unfolding,” IEEE Trans. Artif. Intell., vol. 2, no. 6, pp. 528–536,
2021.

[309] E. Nachmani, E. Marciano, D. Burshtein, and Y. Be’ery, “RNN
decoding of linear block codes,” arXiv preprint arXiv:1702.07560,
2017.

[310] N. Shah and Y. Vasavada, “Neural layered decoding of 5G LDPC
codes,” IEEE Commun. Lett., vol. 25, no. 11, pp. 3590–3593, 2021.

[311] T. Richardson, S. Kudekar, and L. Vincent, “Adjusted mim-sum de-
coder,” Patent, vol. 20, no. 180, p. 109, 2018.

[312] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A bit-serial
approximate min-sum LDPC decoder and FPGA implementation,” in
Proc. IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 4–pp, 2006.

[313] F. Angarita, J. Valls, V. Almenar, and V. Torres, “Reduced-complexity
min-sum algorithm for decoding LDPC codes with low error-floor,”
IEEE Trans. Circuits Syst. I, vol. 61, no. 7, pp. 2150–2158, 2014.

[314] V. Savin, “Self-corrected min-sum decoding of LDPC codes,” in Proc.
IEEE International Symposium on Information Theory (ISIT), pp. 146–
150, 2008.

[315] W. Xu, Z. Wu, Y.-L. Ueng, X. You, and C. Zhang, “Improved polar
decoder based on deep learning,” in Proc. IEEE International workshop

on signal processing systems (SiPS), pp. 1–6, 2017.

[316] W. Xu, X. You, C. Zhang, and Y. Be’ery, “Polar decoding on sparse
graphs with deep learning,” in Proc. Asilomar Conference on Signals,
Systems, and Computers, pp. 599–603, 2018.

[317] S. Cammerer, M. Ebada, A. Elkelesh, and S. ten Brink, “Sparse
graphs for belief propagation decoding of polar codes,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 1465–1469,
2018.

[318] N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier, and W. J.
Gross, “Neural belief propagation decoding of CRC-polar concatenated
codes,” in Proc. IEEE International Conference on Communications

(ICC), pp. 1–6, 2019.

[319] W. Xu, X. Tan, Y. Be’ery, Y.-L. Ueng, Y. Huang, X. You, and C. Zhang,
“Deep learning-aided belief propagation decoder for polar codes,” IEEE

J. Emerg. Sel. Top. Circuits Syst., vol. 10, no. 2, pp. 189–203, 2020.

[320] Y. Yu, Z. Pan, N. Liu, and X. You, “Belief propagation bit-flip decoder
for polar codes,” IEEE Access, vol. 7, pp. 10 937–10 946, 2019.

[321] E. Nachmani and L. Wolf, “Hyper-graph-network decoders for block
codes,” in Proc. Advances in Neural Information Processing Systems

(NeurIPS), pp. 2329–2339, 2019.

[322] V. K. Chauhan, J. Zhou, P. Lu, S. Molaei, and D. A. Clifton,
“A brief review of hypernetworks in deep learning,” arXiv preprint

arXiv:2306.06955, 2023.

[323] E. Nachmani and L. Wolf, “A gated hypernet decoder for polar codes,”
in Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 5210–5214, 2020.

[324] ——, “Autoregressive belief propagation for decoding block codes,”
arXiv preprint arXiv:2103.11780, 2021.

[325] M. Benammar and P. Piantanida, “Optimal training channel statistics
for neural-based decoders,” in Proc. 52nd Asilomar Conference on

Signals, Systems, and Computers, pp. 2157–2161, 2018.

[326] I. Be’Ery, N. Raviv, T. Raviv, and Y. Be’Ery, “Active deep decoding
of linear codes,” IEEE Trans. Commun., vol. 68, no. 2, pp. 728–736,
2019.

[327] B. Settles, “Active learning literature survey,” Technical Report, 2009.

[328] T. Raviv, N. Raviv, and Y. Be’ery, “Data-driven ensembles for deep
and hard-decision hybrid decoding,” in Proc. IEEE International Sym-

posium on Information Theory (ISIT), pp. 321–326, 2020.

[329] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence Review,
vol. 33, pp. 1–39, 2010.

[330] T. Raviv, A. Goldmann, O. Vayner, Y. Be’ery, and N. Shlezinger,
“CRC-aided learned ensembles of belief-propagation polar decoders,”
arXiv preprint arXiv:2301.06060, 2023.

[331] T. Raviv, A. Goldman, O. Vayner, Y. Be’ery, and N. Shlezinger,
“CRC-aided learned ensembles of belief-propagation polar decoders,”
in Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 8856–8860, 2024.

[332] H.-Y. Kwak, D.-Y. Yun, Y. Kim, S.-H. Kim, and J.-S. No, “Boosting
learning for LDPC codes to improve the error-floor performance,” arXiv

preprint arXiv:2310.07194, 2023.

[333] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer

and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[334] T. R. Halford and K. M. Chugg, “Random redundant soft-in soft-
out decoding of linear block codes,” in Proc. IEEE International

Symposium on Information Theory (ISIT), pp. 2230–2234, 2006.

[335] T. Hehn, J. B. Huber, S. Laendner, and O. Milenkovic, “Multiple-bases
belief-propagation for decoding of short block codes,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 311–315,
2007.

[336] J. Feldman, “Decoding error-correcting codes via linear programming,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2003.

[337] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE

Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[338] S. Barman, X. Liu, S. C. Draper, and B. Recht, “Decomposition
methods for large scale LP decoding,” IEEE Trans. Inf. Theory, vol. 59,
no. 12, pp. 7870–7886, 2013.

[339] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and

trends® in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[340] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief
propagation decoding of polar codes on permuted factor graphs,” in
Proc. IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1–6, 2018.

[341] N. Doan, S. A. Hashemi, M. Mondelli, and W. J. Gross, “On the
decoding of polar codes on permuted factor graphs,” in Proc. IEEE
Global Communications Conference (GLOBECOM), pp. 1–6, 2018.

[342] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar
codes for channel and source coding,” in Proc. IEEE International
Symposium on Information Theory (ISIT), pp. 1488–1492, 2009.

[343] S. Habib and D. G. Mitchell, “Reinforcement learning for sequential
decoding of generalized LDPC codes,” in Proc. 12th International
Symposium on Topics in Coding (ISTC), pp. 1–5, 2023.

[344] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

32

[345] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The com-
putational limits of deep learning,” arXiv preprint arXiv:2007.05558,
2020.

[346] E. D. Karnin, “A simple procedure for pruning back-propagation
trained neural networks,” IEEE Trans. Neural Netw., vol. 1, no. 2, pp.
239–242, 1990.

[347] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[348] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv preprint arXiv:1810.05270, 2018.

[349] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?” Proceedings of Machine Learning
and Systems, vol. 2, pp. 129–146, 2020.

[350] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in deep learning: Pruning and growth for efficient inference and training
in neural networks,” Journal of Machine Learning Research, vol. 22,
no. 241, pp. 1–124, 2021.

[351] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko,
M. Van Baalen, and T. Blankevoort, “A white paper on neural network
quantization,” arXiv preprint arXiv:2106.08295, 2021.

[352] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” in Low-Power Computer Vision. Chapman and Hall/CRC, 2022,
pp. 291–326.

[353] T. Wadayama and S. Takabe, “Joint quantizer optimization based
on neural quantizer for sum-product decoder,” arXiv preprint
arXiv:1804.06002, 2018.

[354] M. Geiselhart, A. Elkelesh, J. Clausius, F. Liang, W. Xu, J. Liang,
and S. Ten Brink, “Learning quantization in LDPC decoders,” in Proc.

IEEE Global Communications Conference Workshops (GC Wkshps),
pp. 467–472, 2022.

[355] J. Gao, K. Niu, and C. Dong, “Learning to decode polar codes with
one-bit quantizer,” IEEE Access, vol. 8, pp. 27 210–27 217, 2020.

[356] B. Vasić, X. Xiao, and S. Lin, “Learning to decode LDPC codes
with finite-alphabet message passing,” in Proc. Information Theory and

Applications Workshop (ITA), pp. 1–9, 2018.
[357] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating

gradients through stochastic neurons for conditional computation,”
arXiv preprint arXiv:1308.3432, 2013.

[358] L. Wang, X. Dong, Y. Wang, L. Liu, W. An, and Y. Guo, “Learnable
lookup table for neural network quantization,” in Proc. IEEE/CVF

conference on computer vision and pattern recognition (CVPR), pp.
12 423–12 433, 2022.

[359] T. T. Nguyen-Ly, K. Le, V. Savin, D. Declercq, F. Ghaffari, and
O. Boncalo, “Non-surjective finite alphabet iterative decoders,” in Proc.

IEEE International Conference on Communications (ICC), pp. 1–6,
2016.

[360] L. Wang, S. Chen, J. Nguyen, D. Dariush, and R. Wesel, “Neural-
network-optimized degree-specific weights for LDPC minsum decod-
ing,” arXiv preprint arXiv:2107.04221, 2021.

[361] L. Wang, C. Terrill, D. Divsalar, and R. Wesel, “LDPC decoding with
degree-specific neural message weights and RCQ decoding,” IEEE

Trans. Commun., vol. 72, no. 4, pp. 1912–1924, 2024.
[362] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scien-

tific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.
[363] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring

decomposition,” arXiv preprint arXiv:1606.05535, 2016.
[364] T. Filler and J. Fridrich, “Binary quantization using belief propagation

with decimation over factor graphs of LDGM codes,” arXiv preprint

arXiv:0710.0192, 2007.
[365] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine

Learning. MIT press, 2018.
[366] H. Lee, Y.-S. Kil, M. Jang, S.-H. Kim, O.-S. Park, and G. Park, “Multi-

round belief propagation decoding with impulsive perturbation for short
LDPC codes,” IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1491–
1494, 2020.

[367] D. Xiao, J. Lu, C. Lin, and B. Jiao, “A perturbation method for
decoding LDPC concatenated with CRC,” in Proc. IEEE Wireless

Communications and Networking Conference (WCNC), pp. 667–671,
2007.

[368] X. Han, R. Liu, Y. Li, C. Yi, J. He, and M. Wang, “Accelerating neural
BP-based decoder using coded distributed computing,” IEEE Trans.

Veh. Technol., 2024.
[369] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, 2017.

[370] E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis,
V. Nikitin, X. Tang, S. Watts, S. Wang et al., “Advances and future
prospects of spin-transfer torque random access memory,” IEEE Trans-

actions on Magnetics, vol. 46, no. 6, pp. 1873–1878, 2010.
[371] H. Chen, K. Zhang, X. Ma, and B. Bai, “Comparisons between

reliability-based iterative min-sum and majority-logic decoding algo-
rithms for LDPC codes,” IEEE Trans. Commun., vol. 59, no. 7, pp.
1766–1771, 2011.

[372] Y.-H. Liu and D. Poulin, “Neural belief-propagation decoders for
quantum error-correcting codes,” Physical Review Letters, vol. 122,
no. 20, p. 200501, 2019.

[373] D. Poulin and Y. Chung, “On the iterative decoding of sparse quantum
codes,” arXiv preprint arXiv:0801.1241, 2008.

[374] A. Gong, S. Cammerer, and J. M. Renes, “Graph neural networkrs
for enhanced decoding of quantum LDPC codes,” arXiv preprint

arXiv:2310.17758, 2023.
[375] S. Miao, A. Schnerring, H. Li, and L. Schmalen, “Neural belief

propagation decoding of quantum LDPC codes using overcomplete
check matrices,” in Proc. IEEE Information Theory Workshop (ITW),
pp. 215–220, 2023.

[376] S. Cammerer, T. Gruber, J. Hoydis, and S. ten Brink, “Scaling deep
learning-based decoding of polar codes via partitioning,” in Proc. IEEE

Global Communications Conference (GLOBECOM), pp. 1–6, 2017.
[377] J. Gao and R. Liu, “Neural network aided SC decoder for polar

codes,” in Proc. IEEE 4th International Conference on Computer and

Communications (ICCC), pp. 2153–2157, 2018.
[378] N. Doan, S. A. Hashemi, and W. J. Gross, “Neural successive cancel-

lation decoding of polar codes,” in Proc. IEEE International Workshop

on Signal Processing Advances in Wireless Communications (SPAWC),
pp. 1–5, 2018.

[379] I. Wodiany and A. Pop, “Low-precision neural network decoding
of polar codes,” in Proc. IEEE International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), pp. 1–5,
2019.

[380] S. A. Hebbar, V. V. Nadkarni, A. V. Makkuva, S. Bhat, S. Oh, and
P. Viswanath, “CRISP: Curriculum based sequential neural decoders
for polar code family,” in Proc. International Conference on Machine

Learning (ICML), pp. 12 823–12 845, 2023.
[381] X. Wang, H. Zhang, R. Li, L. Huang, S. Dai, Y. Huangfu, and J. Wang,

“Learning to flip successive cancellation decoding of polar codes with
lstm networks,” in Proc. IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), pp. 1–5, 2019.

[382] B. He, S. Wu, Y. Deng, H. Yin, J. Jiao, and Q. Zhang, “A machine
learning based multi-flips successive cancellation decoding scheme
of polar codes,” in Proc. IEEE Vehicular Technology Conference
(VTC2020-Spring), pp. 1–5, 2020.

[383] N. Doan, S. A. Hashemi, F. Ercan, T. Tonnellier, and W. J. Gross,
“Neural dynamic successive cancellation flip decoding of polar codes,”
in Proc. IEEE International Workshop on Signal Processing Systems
(SiPS), pp. 272–277, 2019.

[384] ——, “Neural successive cancellation flip decoding of polar codes,”
Journal of Signal Processing Systems, vol. 93, pp. 631–642, 2021.

[385] X. Wang, J. He, J. Li, and L. Shan, “Reinforcement learning for bit-
flipping decoding of polar codes,” Entropy, vol. 23, no. 2, p. 171, 2021.

[386] N. Doan, S. A. Hashemi, F. Ercan, and W. J. Gross, “Fast SC-Flip
decoding of polar codes with reinforcement learning,” in Proc. IEEE
International Conference on Communications (ICC), pp. 1–6, 2021.

[387] S. A. Hashemi, N. Doan, T. Tonnellier, and W. J. Gross, “Deep-
learning-aided successive-cancellation decoding of polar codes,” in
Proc. Asilomar Conference on Signals, Systems, and Computers, pp.
532–536, 2019.

[388] N. Doan, S. A. Hashemi, and W. J. Gross, “Fast successive-cancellation
list flip decoding of polar codes,” IEEE Access, vol. 10, pp. 5568–5584,
2022.

[389] C.-H. Chen, C.-F. Teng, and A.-Y. A. Wu, “Low-complexity LSTM-
assisted bit-flipping algorithm for successive cancellation list polar
decoder,” in Proc. IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 1708–1712, 2020.
[390] Y. Tao and Z. Zhang, “DNC-aided SCL-flip decoding of polar codes,”

in Proc. IEEE Global Communications Conference (GLOBECOM), pp.
1–6, 2021.

[391] F.-S. Liang, S. Lu, and Y.-L. Ueng, “Deep-learning-aided successive
cancellation list flip decoding for polar codes,” IEEE Trans. Cogn.

Commun. Netw., vol. 10, no. 2, pp. 374–386, 2024.
[392] J. Li, L. Zhou, Z. Li, W. Gao, R. Ji, J. Zhu, and Z. Liu, “Deep learning-

assisted adaptive dynamic-SCLF decoding of polar codes,” IEEE Trans.

Cogn. Commun. Netw., 2024.

33

[393] Y. Lu, M. Zhao, M. Lei, C. Wang, and M. Zhao, “Deep learning
aided SCL decoding of polar codes with shifted-pruning,” China
Communications, vol. 20, no. 1, pp. 153–170, 2023.

[394] X. Liu, S. Wu, Y. Wang, N. Zhang, J. Jiao, and Q. Zhang, “Exploiting
error-correction-CRC for polar SCL decoding: A deep learning based
approach,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 2, pp. 817–
828, 2020.

[395] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list
decoders for polar codes,” IEEE J. Sel. Areas Commun., vol. 34, no. 2,
pp. 318–328, 2015.

[396] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-
complexity improved successive cancellation decoder for polar codes,”
in Proc. 48th Asilomar Conf. Signals, Systems and Computers (ACSSC),
pp. 2116–2120, 2014.

[397] L. Chandesris, V. Savin, and D. Declercq, “Dynamic-SCFlip decoding
of polar codes,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2333–2345,
2018.

[398] F. Ercan, T. Tonnellier, N. Doan, and W. J. Gross, “Practical dynamic
SC-flip polar decoders: Algorithm and implementation,” IEEE Trans.

Signal Process., vol. 68, pp. 5441–5456, 2020.
[399] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-

cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15,
no. 12, pp. 1378–1380, 2011.

[400] S. A. Hashemi, C. Condo, and W. J. Gross, “A fast polar code list
decoder architecture based on sphere decoding,” IEEE Trans. Circuits

Syst. I, vol. 63, no. 12, pp. 2368–2380, 2016.
[401] ——, “Fast and flexible successive-cancellation list decoders for polar

codes,” IEEE Trans. Signal Process., vol. 65, no. 21, pp. 5756–5769,
2017.

[402] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ra-
malho, J. Agapiou et al., “Hybrid computing using a neural network
with dynamic external memory,” Nature, vol. 538, no. 7626, pp. 471–
476, 2016.

[403] M. Rowshan and E. Viterbo, “Improved list decoding of polar codes by
shifted-pruning,” in Proc. IEEE Information Theory Workshop (ITW),
pp. 1–5, 2019.

[404] W. G. Teich, R. Liu, and V. Belagiannis, “Deep learning versus
high-order recurrent neural network based decoding for convolutional
codes,” in Proc. IEEE Global Communications Conference (GLOBE-

COM), pp. 1–7, 2020.
[405] Y. Jiang, S. Kannan, H. Kim, S. Oh, H. Asnani, and P. Viswanath,

“DeepTurbo: Deep turbo decoder,” in Proc. IEEE International Work-

shop on Signal Processing Advances in Wireless Communications

(SPAWC), pp. 1–5, 2019.
[406] Y. He, J. Zhang, S. Jin, C.-K. Wen, and G. Y. Li, “Model-driven DNN

decoder for turbo codes: Design, simulation, and experimental results,”
IEEE Trans. Commun., vol. 68, no. 10, pp. 6127–6140, 2020.

[407] S. A. Hebbar, R. K. Mishra, S. K. Ankireddy, A. V. Makkuva, H. Kim,
and P. Viswanath, “TinyTurbo: Efficient turbo decoders on edge,” in
Proc. IEEE International Symposium on Information Theory (ISIT), pp.
2797–2802, 2022.

[408] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13, no. 2,
pp. 260–269, 1967.

[409] C. Cardinal, D. Haccoun, F. Gagnon, and N. Baatani, “Turbo decoding
using convolutional self doubly orthogonal codes,” in Proc. IEEE

International Conference on Communications (ICC), vol. 1, pp. 113–
117, 1999.

[410] M. Mostafa, W. G. Teich, and J. Lindner, “Analysis of high order
recurrent neural networks for analog decoding,” in Proc. International

Symposium on Turbo Codes and Iterative Information Processing

(ISTC), pp. 116–120, 2012.
[411] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear

codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol.
IT-20, pp. 284–287, Mar. 1974.

[412] X. Chen and M. Ye, “Cyclically equivariant neural decoders for cyclic
codes,” in Proc. International conference on machine learning (ICML),
pp. 1771–1780, 2021.

[413] ——, “Improving the list decoding version of the cyclically equivariant
neural decoder,” in Proc. IEEE International Symposium on Informa-

tion Theory (ISIT), pp. 2344–2349, 2022.
[414] H. Pirayesh and H. Zeng, “Jamming attacks and anti-jamming strategies

in wireless networks: A comprehensive survey,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 2, pp. 767–809, 2022.

[415] D. Adesina, C.-C. Hsieh, Y. E. Sagduyu, and L. Qian, “Adversarial
machine learning in wireless communications using RF data: A review,”

IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 77–100,
2022.

[416] M. Sadeghi and E. G. Larsson, “Physical adversarial attacks against
end-to-end autoencoder communication systems,” IEEE Commun. Lett.,
vol. 23, no. 5, pp. 847–850, 2019.

[417] J. Chen, J. Ge, S. Zheng, L. Ye, H. Zheng, W. Shen, K. Yue, and
X. Yang, “AIR: Threats of adversarial attacks on deep learning-based
information recovery,” IEEE Trans. Wireless Commun., 2024.

[418] P. J. Phillips, C. A. Hahn, P. C. Fontana, D. A. Broniatowski, and
M. A. Przybocki, “Four principles of explainable artificial intelligence
(draft),” NIST Interagency/Internal Report (NISTIR), 2020.

[419] R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman, “Met-
rics for explainable AI: Challenges and prospects,” arXiv preprint
arXiv:1812.04608, 2018.

[420] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey
on explainable artificial intelligence (XAI),” IEEE Access, vol. 6, pp.
52 138–52 160, 2018.

[421] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, “Explain-
able AI: A brief survey on history, research areas, approaches and
challenges,” in Proc. International Conference on Natural Language

Processing and Chinese Computing, pp. 563–574, 2019.

[422] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable
AI: A review of machine learning interpretability methods,” Entropy,
vol. 23, no. 1, p. 18, 2020.

[423] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcı́a, S. Gil-López, D. Molina, R. Benjamins et al.,
“Explainable artificial intelligence (XAI): Concepts, taxonomies, op-
portunities and challenges toward responsible AI,” Information Fusion,
vol. 58, pp. 82–115, 2020.

[424] D. Minh, H. X. Wang, Y. F. Li, and T. N. Nguyen, “Explainable
artificial intelligence: A comprehensive review,” Artificial Intelligence

Review, pp. 1–66, 2022.

[425] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian,
Z. Wen, T. Shah, G. Morgan et al., “Explainable AI (XAI): Core ideas,
techniques, and solutions,” ACM Computing Surveys, vol. 55, no. 9, pp.
1–33, 2023.

[426] D. Gunning and D. Aha, “DARPA’s explainable artificial intelligence
(XAI) program,” AI magazine, vol. 40, no. 2, pp. 44–58, 2019.

[427] W. Guo, “Explainable artificial intelligence for 6G: Improving trust
between human and machine,” IEEE Commun. Mag., vol. 58, no. 6,
pp. 39–45, 2020.

[428] S. Wang, M. A. Qureshi, L. Miralles-Pechuan, T. Huynh-The, T. R.
Gadekallu, and M. Liyanage, “Applications of explainable AI for 6G:
Technical aspects, use cases, and research challenges,” arXiv preprint

arXiv:2112.04698, 2021.

[429] S. Wang, M. A. Qureshi, L. Miralles-Pechuán, T. Huynh-The, T. R.
Gadekallu, and M. Liyanage, “Explainable AI for 6G use cases:
Technical aspects and research challenges,” IEEE Open J. Commun.

Soc., vol. 5, pp. 2490–2540, 2024.

[430] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,”
Communications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[431] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” arXiv preprint arXiv:1906.02243,
2019.

[432] D. Patterson, J. Gonzalez, U. Hölzle, Q. Le, C. Liang, L.-M. Munguia,
D. Rothchild, D. R. So, M. Texier, and J. Dean, “The carbon footprint
of machine learning training will plateau, then shrink,” Computer,
vol. 55, no. 7, pp. 18–28, 2022.

[433] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng,
G. Chang, F. Aga, J. Huang, C. Bai et al., “Sustainable AI: Envi-
ronmental implications, challenges and opportunities,” Proceedings of
Machine Learning and Systems, vol. 4, pp. 795–813, 2022.

[434] S. Salehi and A. Schmeink, “Data-centric green artificial intelligence:
A survey,” IEEE Trans. Artif. Intell., vol. 5, no. 5, pp. 1973–1989,
2024.

[435] G. Menghani, “Efficient deep learning: A survey on making deep
learning models smaller, faster, and better,” ACM Computing Surveys,
vol. 55, no. 12, pp. 1–37, 2023.

[436] M. H. Jarrahi, A. Memariani, and S. Guha, “The principles of data-
centric AI (DCAI),” arXiv preprint arXiv:2211.14611, 2022.

[437] D. Zha, Z. P. Bhat, K.-H. Lai, F. Yang, and X. Hu, “Data-centric AI:
Perspectives and challenges,” in Proc. SIAM International Conference
on Data Mining (SDM), pp. 945–948, 2023.

[438] D. Zha, Z. P. Bhat, K.-H. Lai, F. Yang, Z. Jiang, S. Zhong, and
X. Hu, “Data-centric artificial intelligence: A survey,” arXiv preprint

arXiv:2303.10158, 2023.

34

[439] P. Botsinis, D. Alanis, Z. Babar, H. Nguyen, D. Chandra, S. X. Ng, and
L. Hanzo, “Quantum algorithms for wireless communications,” IEEE
Communications Surveys & Tutorials, 2018.

[440] T. Matsumine, T. Koike-Akino, and Y. Wang, “Channel decoding
with quantum approximate optimization algorithm,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 2574–2578,
2019.

[441] J. Cui, Y. Xiong, S. X. Ng, and L. Hanzo, “Quantum approximate
optimization algorithm based maximum likelihood detection,” IEEE
Trans. Commun., vol. 70, no. 8, pp. 5386–5400, 2022.

[442] K. Yukiyoshi and N. Ishikawa, “Quantum search algorithm for binary
constant weight codes,” arXiv preprint arXiv:2211.04637, 2022.

[443] M. Kim, S. Kasi, P. A. Lott, D. Venturelli, J. Kaewell, and K. Jamieson,
“Heuristic quantum optimization for 6G wireless communications,”
IEEE Network, vol. 35, no. 4, pp. 8–15, 2021.

[444] S. Kasi, J. Kaewelh, and K. Jamieson, “A quantum annealer-enabled
decoder and hardware topology for nextg wireless polar codes,” IEEE
Trans. Wireless Commun., vol. 23, no. 4, pp. 3780–3794, 2023.

[445] J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, 2018.

[446] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Communications,
vol. 5, no. 1, p. 4213, 2014.

[447] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[448] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea,
A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke et al.,
“Noisy intermediate-scale quantum algorithms,” Reviews of Modern

Physics, vol. 94, no. 1, p. 015004, 2022.
[449] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,

K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al.,
“Variational quantum algorithms,” Nature Reviews Physics, vol. 3,
no. 9, pp. 625–644, 2021.

[450] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to
quantum machine learning,” Contemporary Physics, vol. 56, no. 2, pp.
172–185, 2015.

[451] A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gómez, and R. Biswas,
“Opportunities and challenges for quantum-assisted machine learning
in near-term quantum computers,” Quantum Science and Technology,
vol. 3, no. 3, p. 030502, 2018.

[452] S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduz-
zaman, “Quantum machine learning for 6G communication networks:
State-of-the-art and vision for the future,” IEEE Access, vol. 7, pp.
46 317–46 350, 2019.

[453] H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo,
H. Neven, and J. R. McClean, “Power of data in quantum machine
learning,” Nature Communications, vol. 12, no. 1, p. 2631, 2021.

[454] O. Simeone et al., “An introduction to quantum machine learning for
engineers,” Foundations and Trends® in Signal Processing, vol. 16,
no. 1-2, pp. 1–223, 2022.

[455] B. Narottama, Z. Mohamed, and S. Aı̈ssa, “Quantum machine learning
for next-g wireless communications: Fundamentals and the path ahead,”
IEEE Open J. Commun. Soc., vol. 4, pp. 2204–2224, 2023.

[456] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner,
“The power of quantum neural networks,” Nature Computational
Science, vol. 1, no. 6, pp. 403–409, 2021.

[457] M. Henderson, S. Shakya, S. Pradhan, and T. Cook, “Quanvolutional
neural networks: Powering image recognition with quantum circuits,”
Quantum Machine Intelligence, vol. 2, no. 1, p. 2, 2020.

[458] J. Romero, J. P. Olson, and A. Aspuru-Guzik, “Quantum autoencoders
for efficient compression of quantum data,” Quantum Science and

Technology, vol. 2, no. 4, p. 045001, 2017.
[459] P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adversar-

ial networks,” Physical Review A, vol. 98, no. 1, p. 012324, 2018.
[460] S. Lloyd and C. Weedbrook, “Quantum generative adversarial learn-

ing,” Physical Review Letters, vol. 121, no. 4, p. 040502, 2018.

