Introduction to information theory and coding

Louis WEHENKEL
Set of slides No 3

e Probabilisticdeductivanference in graphical models

— Important classes of DAGs
— Hidden Markov chains and propagation algorithms
— Comments on generalized versions of these algorithms

e Automatic learning of graphical models

— Classes of learning problems for BNs
— Top down induction of decision trees
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Probabilistic deductivanference in Bayesian networks

Approaches

e Brute force approach (table lookup plus marginalization)
= intractable for large networks...

e Network reduction (transfiguration)

To determine impact of observatiolj = Xf on distribution of X remove all
other variables from graph
Removal of a variable creates new links among its neighbors

=- analogy with circuit theory (e.g. optimal ordering of nodienenation)
e Monte-Carlo simulation technigues

e Local propagation of information (using the network strue)
= generalized forward-backward procedure

Works only for singly-connected graphs (polytrees)
= need to transform general DAG into polytree
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Bayesian network structures (DAGS)

Unconnected graphs
Decompose overall problem into independent subproblems

Markov chains
Every variable has at most one father and one son.

Hidden Markov chain
Like a Markov chain where each node has one additional son

Trees
All nodes except one (called root) has exactly one father.
NB. Markov (hidden or not) chains are a subclass of trees

Polytrees
DAG such that the corresponding undirected graph has nes)ck. is singly
connected)

This is the most general type of DAG on which local propagaiorks
NB. Trees are also polytrees.
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Building of Bayesian belief networks

Algorithm
Choose variables, and choose their ordefing
For:=1,2,...
e Create nodev;;
e select a minimal subset ¢ft}, ..., X;_1} to becomeP(X;).
e Create arcs frorP(X;) — A.
e Create table?(X;|P(X;)).
Comments
Complexity of resulting structure is highly dependent od@ordering.

In practice, use physical insight to choose appropriaterord
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Duplication and merging of nodes in a DAG

Can be used to transform graph into polytree :

(a) General DAG (b) duplication of inputs (c) Polytree obtained after merging

General algorithm : based gunction trees.
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Inference

For example :

Observations:
Couleurs des yeux de GPP, GMM, M et E

Question:
Quelle est la couleur la plus probable des
yeux de e?
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Typical inference problem.

Given some observatiorns (the values for a subset of variables) determine the pos
sible values of all other variables and their probabilit&st;|O).

Remark.

Not all variables are used in all inference problems.

D-separation may be exploited to remove nodes from network.

= often possible to simplify network structure before sofyvinference problem.

Observations:
Couleurs des yeux de GPP, M et E

Question:

Quelle est la couleur la plus probable des
yeux de e?
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Hidden Markov chains

=)= o e

e setofindices =1,2,...,7 (e.g. to represent time)
e successive states of the ch&in form a markov chain

e the observation®; : P(O;|&;, W) = P(O;|&;) where)V denotes any subset of
states and observations.

= Model instance characterized (&), P(&;11|&:), andP(O;|&;),

Time invariance : P(&;11|&;) andP(O;|&;) are independent of time (i.e. of
= fundamental assumption in coding theory, and here it matesasier...

Notation :; é P(gl = i),HZ"j é P(gk—i—l = ]|gk = Z), Zz’,j é P(Ok = ]|gk = Z)
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Examples of applications of Hidden Markov chains

A highly structured generalization of Markov chains, wheésites are not observed
directly = large class of stochastic processes can be modelled in &lyis w

o Artificial intelligence :handwritten text and spoken text recognition.

¢ Information and coding theoriesmemoryless channel fed with a Markov chain,
channel coding and decoding processes

e Bioinformatics :models for complex molecules (proteins, DNA, ...)

e Computer Sciencestochastic automata
Further generalizations

Markov random fields and hidden markov fields (e.g. imagerason).
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Inference with hidden Markov chains : problem No 1

Let us consider a time invariant HMC characterized by

A : A : : A : :
T, — P(gl — Z), Hi,j = P(gk—i—l — ]|gk — Z), et Ei,j = P(Ok — ]|gk — Z).

Possible values of statés2, ..., N, possible values of observatiohg2, . .., M.
Problem formulation

Given a sequence of observatiofd = O;,0,...,Or (a realization of the r.v.
Ol = 0,,...,0r), and the model specification I, ¥ :

Determine (compute) the probabilify(O?)
Applications

Pattern recognition . given a set of candidate HMCs and amrghs8on sequence,
which one among the candidate models is the most liggptanation
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Inference with hidden Markov chains : problem No 2

Problem formulation

Given an observation sequen@é and the model specification I, 3 :
Determine the most likely state sequence

Applications

Decoding : looking at the observations as noisy versionhefdtates, we try to
recover the original state sequence.

Variants

Determine the single most likely state sequence

Determine (or approximate) the conditional probabilitptdbution P(£1]07).
Algorithms

BCJR and Viterbi are two efficient algorithms
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Forward algorithm : efficient solution to problem No 1

NB : see notes for full details and comments.

Idea : find recursive algorithm to compufe(O?!', &) and marginalize oveft
Let us denote by (¢) = P(O102--- Oy, & = i) (for eacht : N numbers ino; 1))
Then we have :

e Initialization : (i) = P(O1,& =1i) = P(&1 =1)P(01|&1 =1) =m0,
e Induction:a;.1(j) = {Z,f\il Oét(’l:)Hi,j:| ¥jo0.4, (Proof follows on next slide).
e Termination :P(O1) =3._; ar(i)
Comment

Number of computations linear ifi x N2

Trivial method (marginalization w.r.€1) : 27 x NT
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Derivation of the induction step :

Exploiting conditional independence one time...

(0102 --- O, 41 = J, O441)

(0102 - O, E41 = Jj)P(O141|0102 - - - Oy, Er11 = J)
(0102 -+ O, &1 = J)P(O41|E41 = 7)

(0102 -0, E41 = J) 25,0041 5

at+1(J)

and a second time

PO &1 =7) = ZP(Or"Ot,gt:i,gtH:j)
= Y P(O1-+-04,& =i)P(Eq1 = j|O1 - O, & = i)

— ZP(Ol O, & = 1) P41 = JlE = 1)
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Initialization
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Local propagation
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Forward-backward algorithm (BCJR) : efficient computation of?(&;|O?) (V).

Remark : P(&;|O1) allows one to guess also a likely valuefaf=- BCJIR algorithm
can be used to minimize BER in channel decoding

ldea : backward recursive algorithm to computgi) = P(Os11,...,07|&E = 1).

Indeed, we have (step (a) by d-separatiodef. .., O, andO;.1,...,Or by &)

PO, & =14 = P(O1,...,04,& =1i,0141,...07)
= P(Oy,...,04& =i)P(Os11,...07|0O1,...,04 & = 1)
= P(O1,...,04,E = i)P(Osy1,...07|E = 1)
= (1) B (3),

HenceP(OT) = SN, ay(i)B:(i) and P(&; = i|OT) = —quldfeld)

Notice that

provides also a forward-backward formula for the compatatif P(O71).
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Backward recursion for G,(7)
1. Initialization: Br(i) =1, 1<i< N
2. Induction :5;(5) = 315 11,i%4.0,, Besa (4).

Proof : try to find it as an exercise

Viterbi algorithm : another (efficient) solution to problem No 2

Suppose that we want to find the state sequence maximizjigf |O1).

This is the single sequence which best explains the obsanvat

Solution : forward-backward algorithm based on dynamigpacming principle.

See notes : we will explain this more in detall in the contéhdlmnnel decoding.

Remark :

Viterbi algorithm minimizes probability of choosing the avrg code word.
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Probability propagation in polytrees

NB: generalization published in the late 1980’s (Pearle§elhalter et al)

Main steps

Convert polytree tdactor graph(which ignores edge directions)

Arrange factor graph as a horizontal tree with an arbitragexchosen as root (on
the right extreme)

Starting with the left most levels : forward passing of mgesaowards the root
Each node in the factor graph stores received forward messag

Backward pass . once message has reached root it is senthackls the leaves.
Each node in the factor graph stores received backward gessa

Finalization : each nod&; combines received messages to comg(i&;| O B.S)

Observed variables : seidgl; messages indicating belief of the observed value.

Unobserved leaf nodes : send uniform messdge
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Example : medical diagnosis

P(A; =0) =0.95

(&) 3
-

P(D =0|A; =0, 4, =0) = 0.9
D P(D=04;=1,4,=0)=1.0
P(D=0lA; =0,43 =1) = 0.9
P(D=0]4; =1, 4, =1) = 0.0

Let’s computeP(D|S = 0)
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Factor graph : undirected graph representing factorizatiorg9t;)

1 variablenode for each variable +fiinctionnode for each probability table

Notation : we denote by y the func-
fAl fA2 tion node associated to variabléand

by fx (X, P(X)) its tableP(X|P (X))

M
Root node

@ —O0—@-0
O+ e
(&)
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Forward pass

f.Az 7’)

M[As— fp]
\ Root node

/ Messages start at the left most nodes and are sent tc

‘ @ wards root.
’ Terminal function nodes (blue) sent a message in the

form of a vector of prior probabilities :
Hlfai—Ai] fay (i) = P(A; = i) and f 4, (i) = P(Az = 1)

Other nodes store incoming messages, then combin
and propagate towards right.
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Combination rules :

Need to distinguish among function nodes and variablessiode

A. Variable nodesX : propagate.y_, ¢ (7) towards function nod¢ on the right
1. If variable is observed’ = j © ujx_, (i) = i ;

2. If node is terminal in factor graph and variable is not obee : iy, (i) = 1

3. Otherwise : multiply messages received from left (saxfiom nodesf; and f5s) :
pix—g1 () = pigp—x) (D) s -1 (4)

B. Function nodesf : propagate:,_, x () towards variable nod& on the right.

All incoming variables are marginalized out, for exampleriode fp :

:u[fp—ﬂD Z Z fD i, J, k Alﬁf@](j)M[A2—>fD](k)
jeAL k€A2

wherefp(i,j, k) = P(D = i|A; = j, Ay = k)
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Backward pass

Same propagation rules are used as for the forward pasage=piht by left)
Again, each variable node stores its incoming messagedrigdnom the right)

Note that, here the root node intializes the process : shrcedlueS = 0 is observed
It will send the messages_., rs] = 9i,0 towards node's.
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Termination (local)

After forward and backward passes, each variable dodas received a message in
the form of a tablg.+_, x(¢) from each of its adjacent function nodes (left and right).

Using this information, the variable nodeé can compute its local probability distri-
bution

P(X|0)
whereO denotes all the observations (except the observed vanalbles).

E.g. we have
whereg is a normalization constant, i.e.

B =2 igp—p] ({)pzs—p) @)
Remark. Z

Algorithm can be made more elegant (??) and more generaldggdxtra nodes to
the graph for the observations : these nodes are calledraoristodes.

Proof not given here...
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Automatic learning of graphical models(a very quick introduction)
A. Bayesian networks
Suppose structure is given and data is completeley observed

Example :

Base de donresD B

No | A A D &
1 F F F F
2 F F F F
3 F F F F
D 4 F T T T
5 F F F F
6 T F F F
7 F T F F
@ N-1| F F T F
N F F F
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Learning problem : estimate probability tables from database.

Basic idea : consider relevant subsets of data base andéstmobabilities by rela-
tive frequencies.

E.g. To estimatd’(S;|D = T') consider all lines of table suchthiBt= 7' then count
number of lines suchthat alsy = T (andS; = F)...

See course notes, for further details and arguments shdhanghis procedure esti-
mates the model by maximum likelihood.

What if structure is unknown ?

Try out different structures (but combinatorial explogion

What if some attribute values are missing Amissing values or hidden variables)
Remove corresponding objects from tables... Estimateimgisslues from data...
How to take into account constraints among tables ?

E.g. what if we have a time invariance assumption in HMC
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B. Automatic learning of decision trees

Same basic idea : estimate conditional probabilities frata dase by relative fre-
guency counts.

Tree is built top-down.
= leads to recursive partitioning algorithm (very fast)
NB : needs complexity tradeoff to avoid overfitting

See demonstration : dtapplet
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