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Course material :

• These slides : the slides tend to be self-explanatory; wherenecessary I have added some notes.
The slides will be available from the WEB :
“http://www.montefiore.ulg.ac.be/˜lwh/Cours/Info/”

• Your personal notes

• Detailed course notes (in french; centrale des cours).

• For further reading, some reference books in english

– J. Ad́amek,Foundations of coding, Wiley Interscience, 1991.

– T. M. Cover and J. A. Thomas,Elements of information theory, Wiley, 1991.

– R. Frey,Graphical models for machine learning and information theory, MIT Press, 1999.

– D. Hankerson, G. A. Harris, and P. D. Johnson Jr,Introduction to information theory and data compres-
sion, CRC Press, 1997.

– D. J.C. MacKay,Information theory, inference, and learning algorithms, Cambridge University Press
2003.

– D. Welsh,Codes and cryptography, Oxford Science Publications, 1998.
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Course objectives

1. Introduce information theory

• Probabilistic (stochastic) systems
• Reasoning under uncertainty
• Quantifying information
• State and discuss coding theorems

2. Give an overview of coding theory and practice

• Data compression
• Error-control coding
• Automatic learning and data mining

3. Illustrate ideas with a large range of practical applications

NB. It is not sure that everything in the slides will be covered during the oral course.
You should read the slides and notes (especially those whichI will skip) after each
course and before the next course.
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The course aims at introducing information theory and the practical aspects of data compression and error-control
coding. The theoretical concepts are illustrated using practical examples related to the effective storage and transmis-
sion of digital and analog data. Recent developments in the field of channel coding are also discussed (Turbo-codes).

More broadly, the goal of the course is to introduce the basictechniques for reasoning under uncertainty as well
as the computational and graphical tools which are broadly used in this area. In particular, Bayesian networks and
decision trees will be introduced, as well as elements of automatic learning and data mining.

The theoretical course is complemented by a series of computer laboratories, in which the students can simulate
data sources, data transmission channels, and use various software tools for data compression, error-correction,
probabilistic reasoning and data mining.

The course is addressed to engineering students (last year), which have some background in computer science,
general mathematics and elementary probability theory.

The following two slides aim at clarifying the disctinctionbetween deterministic and stochastic systems.
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Classical system (deterministic view)

Obervable

inputs x

Hidden inputs z

(perturbations)

Observable

Outputs y

System : 

outputs : y = f(x,z)

Relation between inputs and
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Classical system theory views a system essentially as a function (or a mapping, in the mathematical sense) between
inputs and outputs.

If the system is static, inputs and outputs are scalars (or vectors of scalars). If the system is dynamic, inputs and
outputs are temporal signals (continuous or discrete time); a dynamic system is thus viewed as a mapping between
input signalsand outputsignals.

In classical system theory the issue of unobserved inputs and modeling imperfection is handled through stability,
sensitivity and robustness theories. In this context uncertainty is essentially modeled by subsets of possible pertur-
bations.
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Stochastic system (probabilistic view)

Observable

inputs

Hidden inputs

(perturbations)

Observable

Outputs

System : 

Probabilistic relation 

Outputs : P(y|x,z)
P(x) P(y)

P(z)
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Here we use probability theory as a tool (a kind of calculus) in order to model and quantify uncertainty. Note that
there are other possible choices (e.g. fuzzy set theory, evidence theory...) to model uncertainty, but probability theory
is the most mature and most widely accepted approach. Still,there are philosphical arguments and controverses
around the interpretation of probability in real-life : e.g. classical (objective) notion of probability vs bayesian
(subjective) notion of probability.

Theory of stochastic systems is more complex and more general than deterministic system theory. Nevertheless, the
present trend in many fileds is to use probability theory and statistics more systematically in order to build and use
stochastic system models of reality. This is due to the fact that in many real-life systems, uncertainty plays a major
role. Within this context, there are two scientific disciplines which become of growing importance for engineers :

1. Data mining and machine learning :how to build models for stochastic systems from observations.

2. Information theory and probabilistic inference : how to use stochastic systems in an optimal manner.

Examples of applications of stochastic system theory :

• Complex systems, where detailed models are intractable (biology, sociology, computer networks. . . )

• How to take decisions involving an uncertain future (justifications of investments, portfolio management) ?

• How to take decisions under partial/imperfect knowledge (medical diagnosis) ?

• Forecasting the future... (wheather, ecosystems, stock exchange. . . )

• Modeling human behavior (economics, telecommunications,computer networks, road traffic...)

• Efficient storage and transmission of digital (and analog) data
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Information and coding theory will be the main focus of the course

1. What is it all about ?

• 2 complementary aspects
⇒ Information theory : general theoretical basis
⇒ Coding : compress, fight against noise, encrypt data

• Information theory
⇒ Notions of data source and data transmission channel
⇒ Quantitative measures of information content (or uncertainty)
⇒ Properties : 2 theorems (Shannon theorems) about feasibility limits
⇒ Discrete vs continuous signals

• Applications to coding
⇒ How to reach feasibility limits
⇒ Practical implementation aspects (gzip, Turbo-codes...)
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Relations between information theory and other disciplines
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théorique

Kolmogorov

de
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Shannon paradigm

CHANNEL

perturbations

thermal noise

acoustic noise

read or write errors

magnetique tape

acoustic medium

SOURCE

man

computer

RECEIVER

computer

man

optic fibre

message

Message :

- sequence of symbols, analog signal (sound, image, smell. .. )

- messages are chosen atrandom

- channel perturbations arerandom
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The foundations of information theory where laid down by Claude E. Shannon, shortly after the end of the sec-
ond worldwar in a seminal paper entitledA mathematical theory of communication (1948). In this paper, all the
main theoretical ingedients of modern information theory where already present. In particular, as we will see later,
Shannon formulated and provided proofs of the two main coding theorems.

Shannon theory of communication is based on the so-called Shannon paradigm, illustrated on this slide : a data
source produces a message which is sent to a receiver throughan imperfect communication channel. The possible
source messages can generally be modeled by a sequence of symbols, chosen in some way by the source which
appears as unpredictable to the receiver. In other words, before the message has been sent, the receiver has some
uncertainty about what will be the next message. It is precisely the existence of this uncertainty which makes
communication necessary (or useful) : after the message hasbeen received, the corresponding uncertainty has been
removed. We will see later that information will be measuredby this reduction in uncertainty.

Most real life physical channels are imperfect due to the existence of some form of noise. This means that the
message sent out will arrive in a corrupted version to the receiver (some received symbols are different from those
emitted), and again the corruption is unpredictable for thereceiver and for the source of the message.

The two main questions posed by Shannon in his early paper areas follows :

• Suppose the channel is perfect (no corruption), and supposewe have a probabilistic description (model) of the
source, what is the maximum rate of communication (source symbols per channel usage), provided that we use
an appropriate source code. This problem is presently termed as thesource coding problemor as the reversible
data compression problem. We will see that the answer to this question is given by the entropy of the source.

• Suppose now that the channel is noisy, what is then the maximum rate of communication without errors between
any source and receiver using this channel ? This is the so-called channel coding problemor error-correction
coding problem; we will see that the answer here is thecapacityof the channel, which is the upper bound of
mutual information between input and output messages.
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Use of source and channel coding

Source Channel ReveiverCS CC DC DS

Normalized receiver

Normalized channel

Normalized source

Source coding :remove redundancy (make message as short as possible)

Channel coding : make data tranmission reliable (fight against noise)

Nota bene :

1. Source redundancy may be useful to fight againts noise, butis not necessarily adapted to
the channel characteristics.

2. Once redundancy has been removed from the source, all sources have the same behavior
(completely unpredictable behavior).

3. Channel coding : fight against channel noise without spoiling resources.

4. Coding includes conversion of alphabets.
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The two main results of information theory are thus the characterization of upper bounds in terms of data compression
on the one hand, and error-less communication on the other.

A further result of practical importance is that (in most, but not all situations) source and channel coding problems
can be decoupled. In other words, data compression algorithms can be designed independently from the type of data
communication channel that will be used to transmit (or store) the data. Conversely, channel coding can be carried
out irrespectively of the type of data sources that will be used to transmit information over them. This result has led
to the partition of coding theory into its two main subparts.

Source coding aims at removing redundancy in the source messages, so as to make them appear shorter and purely
random. On the other hand, channel coding aims at introducing redundancy into the message, so as to make it
possible to decode the message in spite of the uncertainty introduced by the channel noise.

Because of the decomposition property, these problems are generally solved separately. However, there are examples
of situations where the decomposition breaks down (like some multi-user channels) and also situations where from
the engineering point of view it is much easier to solve the two problems simultaneously than seperately. This latter
situation appears when the source redundancy is particularly well adapted to the channel noise (e.g. spoken natural
language redundancy is adapted to acoustic noise).

Examples of digital sources are : scanned images, computer files of natural language text, computer programs, binary
executable files. . . . From your experience, you already knowthat compression rates of such different sources may
be quite different.

Examples of channels are : AM or FM modulated radio channel, ethernet cable, magnetic storage (tape or hard-disk);
computer RAM; CD-ROM. . . . Again, the characteristics of these channels may be quite different and we will see
that different coding techniques are also required.
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Quantitative notion of information content

Information provided by a message : vague but widely used term

Aspects :

- unpredictable character of a message

- interpretation : truth, value, beauty. . .

Interpretation depends on the context, on the observer : toocomplex and probably
not appropriate as a measure...

The unpredictable character may be measured⇒ quantitative notion of information

⇒ A message carries more information if it is more unpredictable

⇒ Information quantity : decreasing function of probabilityof occurrence

Nota bene.
Probability theory (not statistics) provides the main mathematical tool of information
theory.

Notations :(Ω, E , P (·)) = probability space
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Information and coding.

Think of a simple coin flipping experiment (the coin is fair).How much information is gained when you learn (i) the
state of a flipped coin ; (ii) the states of two flipped coins; (iii) the outcome when a four-sided die is rolled ? How
much memory do you need to store these informations on a binary computer ?

Consider now the double coin flipping experiment, where the two coins are thrown together and are indistinguishable
once they have been thrown. Both coins are fair. What are the possible issues of this experiment ? What are the
probabilities of these issues ? How much information is gained when you observe any one of these issues ? How
much is gained in average per experiment (supposing that yourepeat it indefinitely) ? Supposing that you have to
communicate the result to a friend through a binary channel,how could you code the outcome so that in the average,
you will minimize channel use ?
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Probability theory : definitions et notations

Probability space : triplet(Ω, E , P (·))

Ω : universe of all possible outcomes of random experiment (sample space)

ω, ω′, ωi . . . : elements ofΩ (outcomes)

E : denotes a set of subsets ofΩ (called the event space)

A, B, C . . . : elements ofE , i.e. events.

The event space models all possible observations.

An event corresponds to a logical statement aboutω

Elementary events : singletons{ωi}

P (·) : probability measure (distribution)

P (·) : for eachA ∈ E provides a number∈ [0, 1].
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Probability space : requirements

Event spaceE : must satisfy the following properties

- Ω ∈ E

- A ∈ E ⇒ ¬A ∈ E

- ∀A1, A2, . . . ∈ E (finite or countable number) :
⋃

i Ai ∈ E

⇒ one says thatE is aσ-algebra

MeasureP (·) : must satisfy the following properties (Kolmogorov axioms)

- P (A) ∈ [0, 1], ∀A ∈ E

- P (Ω) = 1

- If A1, A2, . . . ∈ E andAi ∩Aj = ∅ for i 6= j : P (
⋃

i Ai) =
∑

i P (Ai)

⇒ one says thatP (·) is a probability measure
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Finite sample spaces

We will restrict ourselves to finite sample spaces :Ω is finite

We will use the maximalσ-algebra :E = 2Ω which contains all subsets ofΩ.

Conditional probability

Definition : conditional probability measure :P (A|B)
△
= P (A∩B)

P (B)

Careful :P (A|B) defined only ifP (B) > 0.

Check that it is indeed a probability measure on(Ω, E) (Kolomogorov axioms)

Note that :P (A|B|C) = P (A|C|B)⇒ NotationP (A|B, C) = P (A|B ∩ C).

Independent events (A ⊥ B)

Definition : A ⊥ B : if P (A|B) = P (A)

If P (A) andP (B) are positive :A ⊥ B ⇔ B ⊥ A.
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Random variables

From a physical viewpoint, a random variable is an elementary way of perceiving
(observing) outcomes.

From a mathematical viewpoint, a random variable is a function defined onΩ (the
values of this function may be observed).

Because we restrict ourselves to finite sample spaces, all the random variables are
necessarily discrete and finite : they have a finite number of possible values.

Let us denote byX (·) a function defined onΩ and byX = {X1, . . . , Xn} its range
(set of possible values).

We will not distinguish between
{

a value (sayXi) of X (·) and
the subset{ω ∈ Ω|X (ω) = Xi}

Thus a random variable can also be viewed as a partition{X1, . . . , Xn} of Ω.

Theoretical requirement :Xi ∈ E (always true ifΩ is finite andE maximal).
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The random variableX (·) induces a probability measure onX = {X1, . . . , Xn}

PX (X = Xi)
△
= PΩ(Xi), which we will simply denote byP (Xi).

We will denote byP (X ) the measurePX (·).

Ω

PΩ

X2

X1
X3

X (·)

PX

X2

X1

X3

X

A random variable providescondensedinformation about the experiment.
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Some more notations . . .

X andY two discrete r.v. on(Ω, E , P (·)).

Notation :X = {X1, . . . , Xn} etY = {Y1, . . . , Ym}. (n andm finite).

Xi (resp.Yj) value ofX (resp.Y) ≡ subsets ofΩ.

⇒We identify a r.v. with the partition it induces onΩ.

Contingency table

Y1 · · · Yj · · · Ym

X1
...

...
...

Xi · · · · · · pi,j · · · · · · pi,·
...

...

Xn

...
p·,j

pi,· ≡ P (Xi) ←− ∗
≡ P (X = Xi)

p·,j ≡ P (Yj) ←− ∗
≡ P (Y = Yj)

pi,j ≡ P (Xi ∩ Yj) ≡ P (Xi, Yj) ←− ∗
≡ P ([X = Xi] ∧ [Y = Yi])
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Complete system of events

Reminder : event≡ subset ofΩ

(E ≡ set of all events⇒ σ-algebra)

Definition : A1, . . . An form acomplete system of eventsif
- ∀i 6= j : Ai ∩Aj = ∅ (they are incompatible two by two) and if
-

⋃n
i Ai = Ω (they coverΩ).

Conclusion : a discrete r.v.≡ complete system of events.

Remark : we suppose thatAi 6= ∅

But, this does not imply thatP (Ai) > 0 !!!

Some authors give a slightly different definition, where thesecond condition is re-
placed by :P (

⋃n
i Ai) = 1.

If then
⋃n

i Ai 6= Ω, one may complete such a system by adjoining one more event
An+1 (non empty but of zero probability)
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Calculus of random variables

On a givenΩ we may define an arbitrary number of r.v. In reality, random variables
are the only practical way to observe outcomes of a random experiment.

Thus, a random experiment is oftendefinedby the properties of a collection of ran-
dom variables.

Composition of r.v. : X (·) is a r.v. defined onΩ andY(·) is a random variable
defined onX , thenY(X (·)) is also a r.v. defined onΩ.

ConcatenationZ of X = {X1, . . . , Xn} andY = {Y1, . . . , Ym} defined onΩ :
Z = X ,Y defined onΩ byZ(ω) = (X (ω),Y(ω))⇒ P (Z) = P (X ,Y).

Independenceof X = {X1, . . . , Xn} andY = {Y1, . . . , Ym}

- Iff ∀i ≤ n, j ≤ m : Xi ⊥ Yj .

- Equivalent to factorisation of probability measure :P (X ,Y) = P (X )P (Y)

- OtherwiseP (X ,Y) = P (X )P (Y|X ) = P (Y)P (X |Y)
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Example 1 : coin flipping

Experiment : throwing two coins at the same time.

Random variables :

- H1 ∈ {T, F} true if first coin falls on heads
- H2 ∈ {T, F} true if second coin falls on heads
- S ∈ {T, F} true if both coins fall on the same face

ThusS = (H1 ∧H2) ∨ (¬H1 ∧ ¬H2).

Coins are independent :H1 ⊥ H2, andP (S,H1,H2) = P (S|H1,H2)P (H1)P (H2).

Graphically : H2

S

H1

A first example of Bayesian network

Suppose the coins are both fair, and computeP (S).
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This is a very simple example (and classical) of a random experiment.

The first structural information we have is that the two coinsbehave independently (this is a very realistic, but
not perfectly true assumption). The second structural information we have is that the third random variable is a
(deterministic) function of the other two, in other words its value is a causal consequence of the values of the first
two random variables.

Using only the structural information one can depict graphically the relationship between the three variables, as
shown on the slide. We will see the precise definition of a Baysian belief network tomorrow, but this is actually
a very simple example of this very rich concept. Note that theabsence of any link between the two first variables
indicates independence graphically.

To yield a full probabilistic description, we need to specify the following three probability measures :P (H1),
P (H2) andP (S|H1,H2), i.e. essentially 2 real numbers (sinceP (S|H1,H2) is already given by the functional
description ofS).

If the coins are identical, then we have to specify only one number, e.g.P (H1 = T ).

If the coins are fair, then we know everything, i.e.P (H1 = T ) = 0.5.

Show that if the coins are fair, we haveH1 ⊥ S ⊥ H2. Still, we don’t haveH1 ⊥ H2|S. Explain intuitively.

In general (i.e. for unfair coins) however, we don’t haveH1 ⊥ S. For example, suppose that both coins are biased
towards heads.

You can use the “javabayes” application on the computer to play around with this example. More on this later. . .
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Example 2 : binary source with independent symbolsωi ∈ {0, 1}

P (1) : probability that the next symbol is1.

P (0) = 1− P (1) : probability that the next symbol is 0.

Let us denote byh(ω) the information provided by one symbolω.

Then : -h(ω) = f( 1
P (ω)) wheref(·) is increasing and

- limx→1 f(x) = 0 (zero information if event is certain)

On the other hand (symbols are independent) :

For two successive symbolsω1, ω2 we should haveh(ω1, ω2) = h(ω1) + h(ω2).

But : h(ω1, ω2) = f( 1
P (ω1,ω2)

) = f( 1
P (ω1)P (ω2)

)

⇒ f(xy) = f(x) + f(y)⇒ f(·) ∝ log(·)

Definition : theself-informationprovided by the observation of an eventA ∈ E is
given by :h(A) = − log2 P (A) Shannon

Note : h(A) ≥ 0. WhenP (A)→ 0 : h(A)→ +∞.
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Comments.

The theory which will be developped is not really dependent on the base used to compute logarithms. Base 2 will be
the default, and fits well with binary codes as we will see.

You should convince yourself that the definition of self-information of an event fits with the intuitive requirements
of an information measure.

It is possible to show from some explicit hypotheses that there is no other possible choice for the definition of a
measure of information (remember the way the notion of thermodynamic entropy is justified).

Nevertheless, some alternative measures of information have been proposed based on relaxing some of the require-
ments and imposing some others.

To be really convinced that this measure is the right one, it is necessary to wait for the subsequent lectures, so as to
see what kind of implications this definition has.

Example : questionnaire, weighting strategies.
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Conditional information

Let us consider an eventC = A ∩B :

We have :h(C) = h(A ∩B) = − log P (A ∩B) = − log P (A)P (B|A)
= − log P (A)− log P (B|A)

One defines theconditionalself-information of the eventB given that (or supposing
that) the eventA is true :h(B|A) = − log P (B|A)

Thus, once we know thatω ∈ A, the information provided by the observation that
ω ∈ B becomes− log P (B|A).

Note that :h(B|A) ≥ 0

One can write :h(A ∩B) = h(A) + h(B|A) = h(B) + h(A|B)

In particular :A ⊥ B : h(A ∩B) = h(A) + h(B)

Thus :h(A ∩B) ≥ max{h(A), h(B)} ⇒monotonicity of self-information
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Illustration : transmission of information

- Ω = Ωi × Ωo : all possible input/output pairs of a channel-source combination.

- A : denotes the observation of a input message;B an output message.

- Linked by transition probabilityP (B|A) (stochastic channel model).

- P (A) : what a receiver can guess about the sent message before it issent (knowing
only the model of the source).

- P (A|B) : what a receiver can guess about the sent message after communication
has happened and the output messageB has been received.

- P (B|A) represents what we can predict about the output, once we knowwhich
message will be sent.

- Channel without noise (or deterministic) :P (B|A) associates one single possible
output to each input.

- For example if inputs and outputs are binary :P (ωi|ωo) = δi,o
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Mutual information of two events

Definition : i(A; B) = h(A)− h(A|B).

Thus :i(A; B) = log P (A|B)
P (A) = log P (A∩B)

P (A)P (B) = i(B; A)

⇒mutual information is by definition symmetric.

Discussion :

h(A|B) may be larger or smaller thanh(A)

⇒mutual information may be positive, zero or negative.

It is equal to zero iff the events are independent.

Particular cases :

If A ⊃ B thenP (A|B) = 1⇒ h(A|B) = 0⇒ i(A; B) = h(A).

If A ⊃ B thenh(B) ≥ h(A).

But converse is not true...
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Exercise.

Let us consider the coin throwing experiment.

Suppose that the two coins are identical (not necessarily fair), and say thatp ∈ [0; 1] denotes the probability to get
heads for either coin.

Compute1 the following quantities under the two assumptionsp = 1
2

(fair coins), andp = 1.0 (totally biased coins).

h(H1 = T ), h(H1 = F ), h(H2 = T ), h(H2 = F ).

h([H1 = T ] ∧ [H2 = T ])

h([H1 = T ] ∧ [H1 = F ])

h([S = T ]), h([S = F ]),

h([H1 = T ]|[H2 = T ])

h([H1 = T ]|[S = T ])

h([H1 = T ]|[S = T ], [H2 = T ]))

1Use base 2 for the logarithms.
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Entropy of a memoryless time-invariant source

Source : at successive timest ∈ {t0, t1 . . .} sends symbolss(t) chosen from afinite
alphabetS = {s1, . . . , sn}.

Assumption : successive symbols are independent and chosenaccording to the same
probability measure (i.e. independant oft)⇒Memoryless and time-invariant

Notation :pi = P (s(t) = si)

Definition : Source entropy: H(S)
△
= E{h(s)} = −

∑n
i=1 pi log pi

Entropy : measures average information provided by the symbols sent by the source :
Shannon/symbol

If F denotes the frequency of operation of the source, thenF ·H(S) measures average
information per time unit : Shannon/second.

Note that, because of the law of large numbers the per-symbolinformation pro-
vided by any long message produced by the source converges (almost surely) towards
H(S).
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Examples.

Compute the entropy (per symbol) of the following sources :

A source which always emits the same symbol.

A source which emits zeroes and ones according to two fair coin flipping processes.

How can you simulate a fair coin flipping process with a coin which is not necessarily fair ?
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Generalization : entropy of a random variable

LetX be a discrete r.v. :X defines the partition{X1, . . . , Xn} of Ω.

Entropy ofX : H(X )
△
= −

∑n
i=1 P (Xi) log P (Xi)

What if some probs. are zero :limx→0 x log x = 0 : the terms vanish by continuity.

Note :H(X ) does only depend on the valuesP (Xi)

Particular case : n = 2 (binary source, an event and its negation)

H(X ) = −p log p− (1− p) log(1− p) = H2(p) wherep denotes the probability of
(any) one of the two values ofX .

Properties ofH2(p) :

H2(p) = H2(1− p)

H2(0) = H2(1) = 0

H2(0.5) = 1 etH2(p) ≤ 1
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p1 p2

H2(qp1 + (1 − q)p2)

qH2(p1) + (1 − q)H2(p2)

H2(p)

p

0 1

0

1

H2(p2)

H2(p1)

qp1 + (1 − q)p2

Another remarkable property : concavity (consequences will appear later).

Means that∀p1 6= p2 ∈ [0, 1], ∀q ∈]0, 1[ we have

H2(qp1 + (1− q)p2) > qH2(p1) + (1− q)H2(p2)

IT 2012, slide 25



More definitions

Suppose thatX = {X1, . . . , Xn} andY = {Y1, . . . , Ym} are two (discrete) r.v.
defined on a sample spaceΩ.

Joint entropy of X andY defined by

H(X ,Y)
△
= −

n
∑

i=1

m
∑

j=1

P (Xi ∩ Yj) log P (Xi ∩ Yj). (1)

Conditional entropy of X givenY defined by

H(X |Y) = −
n
∑

i=1

m
∑

j=1

P (Xi ∩ Yj) log P (Xi|Yj). (2)

Mutual information defined by

I(X ;Y) = +
n
∑

i=1

m
∑

j=1

P (Xi ∩ Yj) log
P (Xi ∩ Yj)

P (Xi)P (Yj)
. (3)
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Note that the joint entropy is nothing novel : it is just the entropy of the random variableZ = (X ,Y). For the time
being consider conditional entropy and mutual informationas purely mathematical definitions. The fact that these
definitions really make sense will become clear from the study of the properties of these measures.

Exercise (computational) :Consider our double coin flipping experiment. Suppose the coins are both fair.

ComputeH(H1), H(H2), H(S). ComputeH(H1,H2), H(H2,H1), H(H1,S), H(H2,S) andH(H1,H2,S)

ComputeH(H1|H2), H(H2|H1) and thenH(S|H1,H2) andH(H1,H2|S)

ComputeI(H1;H2), I(H2;H1) and thenI(S;H1) andI(S;H2) andI(S;H1,H2).

Experiment to work out for tomorrow.

You are given 12 balls, all of which are equal in weight exceptfor one which is either lighter or heavier. You are
also given a two-pan balance to use. In each use of the balanceyou may put any number of the 12 balls on the left
pan, and the same number (of the remaining) balls on the rightpan. The result may be one of three outcomes : equal
weights on both pans; left pan heavier; right pan heavier. Your task is to design a strategy to determine which is the
odd ballandwhether it is lighter or heavierin as few (expected) uses of the balance as possible.

While thinking about this problem, you should consider the following questions :

• How can you measure information ? What is the most information you can get from a single weighing ?
• How much information have you gained (in average) when you have identified the odd ball and whether it is

lighter or heavier ?
• What is the smallest number of weighings that might concevably be sufficient to always identify the odd ball and

whether it is heavy or light ?
• As you design a strategy you can draw a tree showing for each ofthe three outcomes of a weighing what weighing

to do next. What is the probability of each of the possible outcomes of the first weighing ?
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Properties of the functionHn(· · ·)

Notation : Hn(p1, p2, . . . , pn)
△
= −

∑n
i=1 pi log pi

( pi discrete probability distribution, i.e.pi ∈ [0, 1] and
∑n

i=1 pi = 1)

Positivity : Hn(p1, p2, . . . , pn) ≥ 0 (evident)

Annulation : Hn(p1, p2, . . . , pn) = 0⇒ pi = δi,j (also evident)

Maximal : ⇔ pi = 1
n
, ∀i. (proof follows later)

Concavity : (proof follows)

Let (p1, p2, . . . , pn) and(q1, q2, . . . , qn) be two discrete probability distributions and
λ ∈ [0, 1] then

Hn(λp1 + (1− λ)q1, . . . , λpn + (1− λ)qn)

≥ (4)
λHn(p1, . . . , pn) + (1− λ)Hn(q1, . . . , qn),
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The very important properties of the information and entropy measures which have been introduced before, are all
consequences of the mathematical properties of the entropyfunction Hn defined and stated on the slide.

The following slides provide proofs respectively of the maximality and concavity properties which are not trivial.

In addition, let us recall the fact that the function is invariant with respect to any permutation of its arguments.

Questions :

What is the entropy of a uniform distribution ?

Relate entropy function intuitively to uncertainty and thermodynamic entropy.

Nota bene :

Entropyfunction : function defined on a (convex) subset ofIR
n.

Entropymeasure: function defined on the set of random variables defined on a given sample space.

⇒ strictly speaking these are two different notions, and thatis the reason to use two different notations (Hn vsH).
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Maximum of entropy function (proof)

Gibbs inequality : (Lemma, useful also for the sequel⇒ keep it in mind)

Formulation : let (p1, p2, . . . , pn) et (q1, q2, . . . , qn) two probability distributions.
Then,

n
∑

i=1

pi log
qi

pi
≤ 0, (5)

where equality holds if, and only if,∀i : pi = qi.

Proof : (we use the fact that :lnx ≤ x− 1, with equality⇔ x = 1, slide below)

Let us proove that
∑n

i=1 pi ln qi

pi
≤ 0

In lnx ≤ x − 1 replacex by qi

pi
, multiply then bypi sum over indexi, which gives

(when allpi are strictly positive)
∑n

i=1 pi ln qi

pi
≤
∑n

i=1 pi(
qi

pi
− 1) =

∑n
i=1 qi −

∑n
i=1 pi = 1− 1 = 0

Homework : convince yourself that this remains true even when some of thepi = 0.
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Theorem :

Hn(p1, p2, . . . , pn) ≤ log n, with equality⇔ ∀i : pi = 1
n

.

Proof

Let us apply Gibbs inequality withqi = 1
n

We find
n
∑

i=1

pi log
1

npi
=

n
∑

i=1

pi log
1

pi
−

n
∑

i=1

pi log n ≤ 0⇒

Hn(p1, p2, . . . , pn) =
n
∑

i=1

pi log
1

pi
≤

n
∑

i=1

pi log n = log n,

where equality holds if, and only if allpi = qi = 1
n

2

IT 2012, slide 30



Concavity of entropy function (proof)

Let (p1, p2, . . . , pn) and (q1, q2, . . . , qn) be two probability distributions andλ ∈
[0, 1], then

Hn(λp1 + (1− λ)q1, . . . , λpn + (1− λ)qn)

≥ (6)
λHn(p1, . . . , pn) + (1− λ)Hn(q1, . . . , qn),

An (apparently) more general (but logically equivalent) formulation :

Mixture of an arbitrary number of probability distributions

Hn(
∑m

j=1 λjp1j , . . . ,
∑m

j=1 λjpnj)

≥ (7)
∑m

j=1 λjHn(p1j , . . . , pnj),

whereλj ∈ [0, 1],
∑m

i=j λj = 1, et∀j :
∑n

i=1 pij = 1.
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Graphiquely : mixing increases entropy (cf thermodynamics)

λ1 λ2 λ4 λ5λ3

p2,1

p3,1

p4,1

p1,1 p1,2

p2,2

p3,2

p4,2

p1,5

p2,5

p3,5

p4,5

→

∑

j
λjp4,j

∑

j
λjp3,j

∑

j
λjp2,j

∑

j
λjp1,j

∑m
j=1 λjHn(p1j , . . . , pnj) ≤ Hn(

∑m
j=1 λjp1j , . . . ,

∑m
j=1 λjpnj)

Proof : f(x) = −x log x is concave on[0, 1] : f(
∑m

j=1 λjxj) ≥
∑m

j=1 λjf(xj).

Thus we have :Hn(
∑m

j=1 λjp1j , . . . ,
∑m

j=1 λjpnj) =
∑n

i=1 f(
∑m

j=1 λjpij)

≥
∑n

i=1[
∑m

j=1 λjf(pij)] =
∑m

j=1 λj

∑n
i=1 f(pij)

=
∑m

j=1 λjHn(p1j , . . . , pnj)
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Another interpretation (thermodynamic)

Entropy is smaller (before mixing) Entropy is higher (aftermixing)

Isolated containers Containers communicate (at equilibrium)

blue

red

Suppose that you pick a molecule in one of the two cuves and have to guess which kind of molecule you will obtain :
in both cases you can take into account in which container youpick the molecule.

⇒ there is less uncertainty in the left cuve than in the right. Compute entropies relevant to this problem.
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(Let us open a parenthesis : notions of convexity/concavity

Convex set: a set which contains all the line segments joining any two ofits points.

C ⊂ IRp is convex (by def.) if

x, y ∈ C, λ ∈ [0, 1]⇒ λx + (1− λ)y ∈ C.

Examples :

Convexe Non convexes

In IR : intervals, semi-intervals,IR.
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Examples : sets of probability distributions :n = 2 etn = 3

p1

p2

p3p2

p1

1

1

1

1

1

More generally :

Linear subspaces, semi-planes are convex

Any intersection of convex sets is also convex (ex. polyhedra)

Ellipsoids :{x|(x− xc)
T A−1(x− xc) ≤ 1} (A positive definite)
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Convex functions

f(·) : IRp → IR convex on a convex subsetC of IRp if :

x, y ∈ C, λ ∈ [0, 1]⇒

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

y

x

y = f(x)

x1 x2λx1 + (1 − λ)x2

epigraph :{(x, y)|x ∈ C, f(x) ≤ y}

convex set⇔ f(·) convex

A sum of convex functions is also convex
If g(x, y) if convex inx then also

∫

g(x, y)dy

fi convex, thenmax{fi} convex
f(x) convex⇒ f(Ax + b) convex

Similar properties hold for concave functions...
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Strictly convex function

If equality holds only for the trivial cases

λ ∈ {0, 1} and/or x = y

(Strictly) concave function

If −f(·) is (strictly) convex.

Important properties

- A convex (or concave) function is continuous inside a convex set

- Every local mininum of a convex function is also a global minimum

Criteria :
- convex iff convex epigraph
- convex if second derivative (resp. Hessian) positive (resp. positive definite)

In practice : there exist powerful optimization algorithms...
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Notion ofconvex linear combination,

(
∑m

j λjxj), with λj ≥ 0 and
∑m

j λj = 1.

as a kind of weighted average of the starting points
(non-negative weights)

These are the points which may be written

Associate weights⇒ center of gravity

Convex hull of some points Set of points which are

of these points

convex linear combinations

A convex hull is a convex set.

In fact, it is the smallest convex set which contains the pointsxj .

(≡ Intersection of all convex sets containing these points.)
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Jensen’s inequality :

If f(·) is a convex function defined onIR→ IR andX a real random variable

f(E{X}) ≤ E{f(X )} where, if the function is strictly convex, equality holds iff X
is constant almost surely.

Extension to vectors ...

Concave functions :≤ −→ ≥...

Particular case : convex linear combinations

Theλj ’s act as a discrete probability measure onΩ = {1, . . . , m}.

And xj denotes the value ofX at pointω = i.

Hence :f(
∑m

j λjxj) ≤
∑m

j λjf(xj)

Let us close the parenthesis...)
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Let us return to the entropies.

Strictly concave functionsf(x) = −x log x andg(x) = log x.

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.25 0.5 0.75 1.

x

y

One deduces

H(X ), H(Y), H(X ,Y)
are maximal for uniform distri-
butions.

Also, H(X |Y) is maximal if
for eachj P (X |Yj) is uniform,
which is possible only ifP (X )
is uniform andX indep. ofY .
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The fact thatf(x) = −x log x is strictly concave is clear from the picture. Clearlylog x is also concave.

All inequalities related to the entropy function may be easily deduced from the concavity of these two functions and
Jensen’s inequality. For example, let us introduce here a new quantity called relative entropy or Kullback Leibler
distance. LetP andQ be two discrete probability distributions defined on a discreteΩ = {ω1, . . . , ωn}. The
Kullback Leibler distance (or relative entropy) ofP w.r.t. Q is defined by

D(P ||Q) =
∑

ω∈Ω

P (ω) log
P (ω)

Q(ω)
(8)

Jensen’s inequality allows us to prove that2D(P ||Q) ≥ 0 :

−D(P ||Q) = −
∑

ω∈Ω

P (ω) log
P (ω)

Q(ω)
=
∑

ω∈Ω

P (ω) log
Q(ω)

P (ω)
(9)

≤ log

(

∑

ω∈Ω

P (ω)
Q(ω)

P (ω)

)

= log

(

∑

ω∈Ω

Q(ω)

)

= log 1 = 0 (10)

where the inequality follows from Jensen’s inequality applied to the concave functionlog x. Because the function is

strictly concave, equality holds only ifQ(ω)
P (ω)

is constant overΩ (and hence equal to 1), which justifies the name of
distanceof the relative entropy.

2This is nothing else than Gibbs inequality, which we have already proven without using Jensen’s inequality.
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