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Course objectives

Introduction to probabilistic reasoning
Algebra of information measures

Some exercises
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Course material :

e These slides : the slides tend to be self-explanatory; wiheressary | have added some notes.
The slides will be available from the WEB :
“http://www.montefiore.ulg.ac.be/"lwh/Cours/Info/”

e Your personal notes
e Detailed course notes (in french; centrale des cours).
e For further reading, some reference books in english

— J. Adamek,Foundations of codingWiley Interscience, 1991.
— T. M. Cover and J. A. Thomaglements of information thearWiley, 1991.
— R. Frey,Graphical models for machine learning and information the®IT Press, 1999.

— D. Hankerson, G. A. Harris, and P. D. Johnsoniroduction to information theory and data compres-
sion CRC Press, 1997.

— D. J.C. MacKay,Information theory, inference, and learning algorithn@@ambridge University Press
2003.

— D. Welsh,Codes and cryptographyxford Science Publications, 1998.
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Course objectives

1. Introduce information theory

Probabilistic (stochastic) systems
Reasoning under uncertainty
Quantifying information

State and discuss coding theorems

2. Give an overview of coding theory and practice

e Data compression
e Error-control coding
e Automatic learning and data mining

3. lllustrate ideas with a large range of practical appica

NB. It is not sure that everything in the slides will be codedeiring the oral course.
You should read the slides and notes (especially those whuilh skip) after each
course and before the next course.
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The course aims at introducing information theory and tlaetical aspects of data compression and error-control
coding. The theoretical concepts are illustrated usingtjma examples related to the effective storage and tremsm
sion of digital and analog data. Recent developments iné¢lekdf channel coding are also discussed (Turbo-codes).

More broadly, the goal of the course is to introduce the bestbniques for reasoning under uncertainty as well
as the computational and graphical tools which are broasky un this area. In particular, Bayesian networks and
decision trees will be introduced, as well as elements araatic learning and data mining.

The theoretical course is complemented by a series of c@njalioratories, in which the students can simulate
data sources, data transmission channels, and use vadfiuare tools for data compression, error-correction,
probabilistic reasoning and data mining.

The course is addressed to engineering students (last, y#dagh have some background in computer science,
general mathematics and elementary probability theory.

The following two slides aim at clarifying the disctinctitwetween deterministic and stochastic systems.
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Classical system (deterministic view)

Obervable
inputs X

Hidden inputs z
(perturbations)

System :

Relation between inputs and
outputs : y = f(x,z)

Observable
Outputs y
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Classical system theory views a system essentially as adnn©r a mapping, in the mathematical sense) between
inputs and outputs.

If the system is static, inputs and outputs are scalars (chove of scalars). If the system is dynamic, inputs and

outputs are temporal signals (continuous or discrete timédynamic system is thus viewed as a mapping between
Input signalsand outpusignals

In classical system theory the issue of unobserved inputsvardeling imperfection is handled through stability,

sensitivity and robustness theories. In this context uagdy is essentially modeled by subsets of possible pertur
bations.
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Stochastic system (probabilistic view)

Observable
inputs

Hidden inputs
(perturbations)

P(2)

P(x)

System :

Probabilistic relation
Outputs : P(y|x,z)

Observable

Outputs

P(y)
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Here we use probability theory as a tool (a kind of calculas)rider to model and quantify uncertainty. Note that
there are other possible choices (e.g. fuzzy set theomenee theory...) to model uncertainty, but probabilityotlye

Is the most mature and most widely accepted approach. tBelie are philosphical arguments and controverses
around the interpretation of probability in real-life : e.glassical (objective) notion of probability vs bayesian
(subjective) notion of probability.

Theory of stochastic systems is more complex and more gaharadeterministic system theory. Nevertheless, the
present trend in many fileds is to use probability theory datissics more systematically in order to build and use
stochastic system models of reality. This is due to the faattih many real-life systems, uncertainty plays a major
role. Within this context, there are two scientific disanglé which become of growing importance for engineers :

1. Data mining and machine learning : how to build models for stochastic systems from observation

2. Information theory and probabilistic inference : how to use stochastic systems in an optimal manner.

Examples of applications of stochastic system theory :

e Complex systems, where detailed models are intractaldéo(ly, sociology, computer networks. . .)

e How to take decisions involving an uncertain future (juséfions of investments, portfolio management) ?
e How to take decisions under partial/imperfect knowledgedival diagnosis) ?

e Forecasting the future... (wheather, ecosystems, stadtaege. . .)

e Modeling human behavior (economics, telecommunicatioos)puter networks, road traffic...)

e Efficient storage and transmission of digital (and analog) dta
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Information and coding theory will be the main focus of the caurse

1. Whatis it all about ?

e 2 complementary aspects
= Information theory : general theoretical basis
= Coding : compress, fight against noise, encrypt data

e Information theory
= Notions of data source and data transmission channel
= Quantitative measures of information content (or uncetya
= Properties : 2 theorems (Shannon theorems) about fesslllits
= Discrete vs continuous signals

e Applications to coding
= How to reach feasibility limits
= Practical implementation aspects (gzip, Turbo-codes...)
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Relations between information theory and other disciplins

Théorie

des
Probabilités

communications

Théorémes

limites
Ev. rares

Statistique

Théorie
de

Thermo

dynamique,

I'information

Inégalités

Mathématiques

Complexité
de

Kolmogorov

Informatique

théorique
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Shannon paradigm

computer

man

SOURCE

optic fibre
magnetique tape
acoustic medium

message

computer

man

Message :

CHANNEL

perturbations

thermal noise
read or write errors

acoustic noise

RECEIVER

- sequence of symbols, analog signal (sound, image, smell..
- messages are choserradom
- channel perturbations arandom
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The foundations of information theory where laid down by @e E. Shannon, shortly after the end of the sec-
ond worldwar in a seminal paper entitiddmathematical theory of communication (1948 this paper, all the
main theoretical ingedients of modern information theoheve already present. In particular, as we will see later,
Shannon formulated and provided proofs of the two main @ptheorems.

Shannon theory of communication is based on the so-calledir®m paradigm, illustrated on this slide : a data
source produces a message which is sent to a receiver thaouighperfect communication channel. The possible
source messages can generally be modeled by a sequencelaflsyohosen in some way by the source which
appears as unpredictable to the receiver. In other wordsrebthe message has been sent, the receiver has some
uncertainty about what will be the next message. It is pedgithe existence of this uncertainty which makes
communication necessary (or useful) : after the messagbdaasreceived, the corresponding uncertainty has been
removed. We will see later that information will be measuogdhis reduction in uncertainty.

Most real life physical channels are imperfect due to theterice of some form of noise. This means that the
message sent out will arrive in a corrupted version to theivec (some received symbols are different from those
emitted), and again the corruption is unpredictable for#doeiver and for the source of the message.

The two main questions posed by Shannon in his early papasdmlows :

e Suppose the channel is perfect (no corruption), and suppedeave a probabilistic description (model) of the
source, what is the maximum rate of communication (sourogbsys per channel usage), provided that we use
an appropriate source code. This problem is presently tkaseghesource coding problerar as the reversible
data compression probleriVe will see that the answer to this question is given by theopg of the source.

e Suppose now that the channel is noisy, what is then the mairate of communication without errors between
any source and receiver using this channel ? This is the IEdahannel coding probleror error-correction
coding problemwe will see that the answer here is tb@pacityof the channel, which is the upper bound of
mutual information between input and output messages.
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Use of source and channel coding

Normalized source Normalized receiver

Source [ |CS [ | CC[| Channegi~| DC -1 DS[| Reveiver

Normalized channel

Source coding :remove redundancy (make message as short as possible)
Channel coding : make data tranmission reliable (fight against noise)

Nota bene :

1. Source redundancy may be useful to fight againts noises ot necessarily adapted to
the channel characteristics.

2. Once redundancy has been removed from the source, atlesohave the same behavior
(completely unpredictable behavior).

3. Channel coding : fight against channel noise without sppresources.

4. Coding includes conversion of alphabets.
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The two main results of information theory are thus the cttara&zation of upper bounds in terms of data compression
on the one hand, and error-less communication on the other.

A further result of practical importance is that (in mostt hat all situations) source and channel coding problems
can be decoupled. In other words, data compression algwitdan be designed independently from the type of data
communication channel that will be used to transmit (oregtthhe data. Conversely, channel coding can be carried
out irrespectively of the type of data sources that will bedus transmit information over them. This result has led
to the partition of coding theory into its two main subparts.

Source coding aims at removing redundancy in the sourceagessso as to make them appear shorter and purely
random. On the other hand, channel coding aims at introgua@dundancy into the message, so as to make it
possible to decode the message in spite of the uncertatnbgluced by the channel noise.

Because of the decomposition property, these problemsaerglly solved separately. However, there are examples
of situations where the decomposition breaks down (likeesomlti-user channels) and also situations where from

the engineering point of view it is much easier to solve the problems simultaneously than seperately. This latter

situation appears when the source redundancy is parficuwatl adapted to the channel noise (e.g. spoken natural
language redundancy is adapted to acoustic noise).

Examples of digital sources are : scanned images, completeofinatural language text, computer programs, binary
executable files.... From your experience, you already kihatvcompression rates of such different sources may
be quite different.

Examples of channels are : AM or FM modulated radio chantie&raet cable, magnetic storage (tape or hard-disk);
computer RAM; CD-ROM.... Again, the characteristics ofghehannels may be quite different and we will see
that different coding techniques are also required.
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Quantitative notion of information content
Information provided by a message : vague but widely usead ter

Aspects :
- unpredictable character of a message
- Interpretation : truth, value, beauty. ..

Interpretation depends on the context, on the observer caamlex and probably
not appropriate as a measure...

The unpredictable character may be measuseguantitative notion of information
= A message carries more information if it is more unpredietab
= Information quantity : decreasing function of probabilitffoccurrence

Nota bene.

Probability theory (not statistics) provides the main neatlatical tool of information
theory.

Notations :(2, £, P(-)) = probability space
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Information and coding.

Think of a simple coin flipping experiment (the coin is faiow much information is gained when you learn (i) the
state of a flipped coin ; (ii) the states of two flipped coing) {he outcome when a four-sided die is rolled ? How
much memory do you need to store these informations on aybawanputer ?

Consider now the double coin flipping experiment, wherewwedoins are thrown together and are indistinguishable
once they have been thrown. Both coins are fair. What are disilple issues of this experiment ? What are the
probabilities of these issues ? How much information is gaiwhen you observe any one of these issues ? How
much is gained in average per experiment (supposing thatgmeat it indefinitely) ? Supposing that you have to
communicate the result to a friend through a binary chameV, could you code the outcome so that in the average,
you will minimize channel use ?
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Probability theory : definitions et notations

Probability space : triplef€2, £, P(-))

(2 . universe of all possible outcomes of random experimemhfda space)
w,w,wj ... elements of) (outcomes)

£ . denotes a set of subsets{ofcalled the event space)

A, B,C...:.elements of, i.e. events.

The event space models all possible observations.

An event corresponds to a logical statement ahout

Elementary events : singletofis; }

P(-) : probability measure (distribution)

P(-) : for eachA € & provides a numbeg [0, 1].
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Probability space : requirements

Event spacef . must satisfy the following properties

-Qef

-Aef=>-Aef

- VA1, As, ... € € (finite or countable number)J, A; € £

= one says thaf is ac-algebra

Measure P(-) : must satisfy the following properties (Kolmogorov axioms
- P(A) € |0,1],VA € &

- P(Q) =1

- If A1, Ag,...efandA;NA; =0 for i # 5 P(U; 4i) = >, P(A)

= one says thaP(-) is a probability measure
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Finite sample spaces
We will restrict ourselves to finite sample spacésis finite
We will use the maximab-algebra :£ = 2% which contains all subsets 6.

Conditional probability

Definition : conditional probability measureP(A|B) = —Pg‘égf)

Careful : P(A|B) defined only ifP(B) > 0.

Check that it is indeed a probability measure(6n &) (Kolomogorov axioms)
Note that :P(A|B|C') = P(A|C|B) = NotationP(A|B,C) = P(A|BNC).
Independent events 4 1 B)

Definition: A L B :if P(A|B) = P(A)

If P(A)andP(B) are positive:A 1. B< B 1 A.
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Random variables

From a physical viewpoint, a random variable is an elemgntay of perceiving
(observing) outcomes.

From a mathematical viewpoint, a random variable is a famctefined ot} (the
values of this function may be observed).

Because we restrict ourselves to finite sample spaces,atiatidom variables are
necessarily discrete and finite : they have a finite numbeos$iple values.

Let us denote by’ (-) a function defined of and byX = {X3,..., X,,} its range
(set of possible values).

. o a value (sayX;) of X'(-) and
We will not distinguish betweer{ the subsefw € QX (w) = X;}

Thus a random variable can also be viewed as a parftion . . ., X,,} of Q.

Theoretical requirementX; € £ (always true i€} is finite and€ maximal).
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The random variabl&’(-) induces a probability measure éh= { X1, ..., X, }

Py (X = X;) = Pqo(X;), which we will simply denote byP(X;).
We will denote byP(X’) the measuré’y (-).

X ()

Pq

A random variable providesondensedhformation about the experiment.
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Some more notations ...

X and) two discrete r.v. o2, &, P(+)).

Notation : X = {X1,..., X, } ety ={Yi,..., Y }. (nandm finite).
X; (resp.Y;) value of X (resp.)) = subsets of).

= We identify a r.v. with the partition it induces di.

Contingency table

1 .] Di,- = P(XZ) %
X1 = P(X = X;)
| j = P(Y) —— %
X’L 2.1 i p:] - J
p.,] i, = P(Y=Y))
X Di,j EP(szlfj)EP(XZ,}/]) —— %
- p'. =P([X=X; ] N[Y =Y
"5J
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Complete system of events

Reminder : evert= subset of?

(€ = set of all events=- o-algebra)

Definition : A, ... A,, form acomplete system of everits
- Vi#j : A;NA; =0 (they are incompatible two by two) and if
- Ui A; = Q (they coven).

Conclusion : a discrete r.«&= complete system of events.

Remark : we suppose thdt # ()

But, this does not imply thaP(A4;) > 0 !l

Some authors give a slightly different definition, where seeond condition is re-
placed by :P(U; 4;) = 1.

If then |J;" A; # (2, one may complete such a system by adjoining one more ever
Apa1 (non empty but of zero probability)

IT 2012, slide 16



Calculus of random variables

On a given(2 we may define an arbitrary number of r.v. In reality, randomalaes
are the only practical way to observe outcomes of a randorarerpnt.

Thus, a random experiment is oftdefinedby the properties of a collection of ran-
dom variables.

Composition of r.v. : X(-) is a r.v. defined orf2 and )(-) is a random variable
defined ont’, then) (X' (-)) is also a r.v. defined ofl.

ConcatenationZ of X = {X4,..., X, } andy = {Y1,...,Y,,} defined o2 :
Z=X,Ydefined o2 by Z(w) = (X¥(w),V(w)) = P(Z) = P(X,)).

Independenceof X = {X;1,..., X, }andy = {Y1,..., Y}
-IffVi<n,j<m :X; LY.
- Equivalent to factorisation of probability measur(Xx’, ) = P(X)P())
- OtherwiseP(X,)) = P(X)P(Y|X) = P(Y)P(X|Y)
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Example 1 : coin flipping
Experiment : throwing two coins at the same time.
Random variables :

- 'H1 € {T, F'} true if first coin falls on heads
- Hy € {T, F'} true if second coin falls on heads
- § € {T, F'} true if both coins fall on the same face

ThusS = (H1 A Ha) V (= H1 A =Ha).
Coins are independent; | Ho, andP (S, H1, He) = P(S|H1, Ha)P(H1)P(Hz).

Graphically : @ @
@/ A first example of Bayesian network

Suppose the coins are both fair, and compte).
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This is a very simple example (and classical) of a random raxaat.
The first structural information we have is that the two cdmehave independently (this is a very realistic, but
not perfectly true assumption). The second structuralrmétion we have is that the third random variable is a

(deterministic) function of the other two, in other words Value is a causal consequence of the values of the first
two random variables.

Using only the structural information one can depict graplly the relationship between the three variables, as
shown on the slide. We will see the precise definition of a Baybelief network tomorrow, but this is actually
a very simple example of this very rich concept. Note thatahsence of any link between the two first variables
indicates independence graphically.

To yield a full probabilistic description, we need to spgdifie following three probability measuresP(H1),
P(H2) and P(S|H1,H2), i.e. essentially 2 real numbers (sinB¢S|H1, Hz2) is already given by the functional
description ofS).

If the coins are identical, then we have to specify only onmber, e.g.P(H1 =T).
If the coins are fair, then we know everything, i(H; = T) = 0.5,
Show that if the coins are fair, we haté; | S 1 Ho. Still, we don’'t haveH; L H2|S. Explain intuitively.

In general (i.e. for unfair coins) however, we don’'t ha¥e | S. For example, suppose that both coins are biased
towards heads.

You can use the “javabayes” application on the computerag atound with this example. More on this later. . .
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Example 2 : binary source with independent symbols; € {0,1}

P(1) : probability that the next symbol is
P(0) =1— P(1) : probability that the next symbol is O.

Let us denote by (w) the information provided by one symbol

Then: -h(w) = f(ﬁw)) wheref(-) is increasing and

- lim,_,; f(x) = 0 (zero information if event is certain)

On the other hand (symbols are independent) :
For two successive symbals, wy we should havéy(wi, w2) = h(wy) + h(w2).

But: h(wy,ws) = f(m) - f(P(wl)lP(wz))
= f(zy) = f(x) + f(y) = f(-) oclog(:)

Definition : the self-informationprovided by the observation of an evetite £ is
given by :h(A) = —log, P(A) Shannon

Note: h(A) > 0. WhenP(A) — 0 : h(A) — +o0.
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Comments.

The theory which will be developped is not really dependenthe@ base used to compute logarithms. Base 2 will be
the default, and fits well with binary codes as we will see.

You should convince yourself that the definition of selfemhation of an event fits with the intuitive requirements
of an information measure.

It is possible to show from some explicit hypotheses thatethe no other possible choice for the definition of a
measure of information (remember the way the notion of tleelynamic entropy is justified).

Nevertheless, some alternative measures of informatiea been proposed based on relaxing some of the require-
ments and imposing some others.

To be really convinced that this measure is the right ong,nieicessary to wait for the subsequent lectures, so as to
see what kind of implications this definition has.

Example : questionnaire, weighting strategies.
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Conditional information
Let us consideranevent = AN B :

We have :h(C) =h(ANB)=—logP(ANB) = —log P(A)P(B|A)

—log P(A) —log P(B|A)

One defines theonditionalself-information of the evenB given that (or supposing
that) the eventl is true :h(B|A) = —log P(B|A)

Thus, once we know that € A, the information provided by the observation that
w € B becomes-log P(B|A).

Note that :h(B|A) > 0
One can write h(AN B) = h(A) + h(B|A) = h(B) + h(A|B)
In particular :A 1 B: h(ANB) = h(A) + h(B)

Thus :h(A N B) > max{h(A), h(B)} = monotonicity of self-information
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lllustration : transmission of information

- = Q,; x ), : all possible input/output pairs of a channel-source coauton.
- A : denotes the observation of a input messdgjan output message.

- Linked by transition probability?( B| A) (stochastic channel model).

- P(A) : what a receiver can guess about the sent message befoserit igknowing
only the model of the source).

- P(A|B) : what a receiver can guess about the sent message after cocatmn
has happened and the output messad®s been received.

- P(B|A) represents what we can predict about the output, once we kvioah
message will be sent.

- Channel without noise (or deterministic)P(B|A) associates one single possible
output to each input.

- For example if inputs and outputs are binak (w; |w,) = d; 6
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Mutual information of two events
) — h(A|B).

(A
P(A|B P(ANB .
iy = log prapiny = (5 A)

Definition : ¢(A; B) =

Thus :i(A; B) = log
= mutual information is by definition symmetric.

Discussion :
h(A|B) may be larger or smaller thar{ A)
= mutual information may be positive, zero or negative.

It is equal to zero iff the events are independent.

Particular cases :

If AD BthenP(A|B)=1= h(A|B)=0=1i(A;B)=h(A).

If AD Bthenh(B) > h(A).

But converse Is not true...
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Exercise.
Let us consider the coin throwing experiment.

Suppose that the two coins are identical (not necessaitly énd say thap € [0; 1] denotes the probability to get
heads for either coin.

Computé the following quantities under the two assumptipns % (fair coins), ang = 1.0 (totally biased coins).

h(Hi =T),h(H1 =F),h(H2 =T),h(H2 = F).

1Use base 2 for the logarithms.
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Entropy of a memoryless time-invariant source

Source : at successive timeg {tg,t; ...} sends symbols(t) chosen from dinite
alphabetS = {s1,...,s,}.

Assumption : successive symbols are independent and choserding to the same
probability measure (i.e. independantpts- Memoryless and time-invariant

Notation :p; = P(s(t) = s;)

Definition : Source entropy: H(S) = E{h(s)} = —> 1= pilogp;

Entropy : measures average information provided by the s{srgent by the source :
Shannon/symbol

If F'denotes the frequency of operation of the source, fidi(.S) measures average
Information per time unit : Shannon/second.

Note that, because of the law of large numbers the per-symbmimation pro-
vided by any long message produced by the source convetgess{aurely) towards
H(S).
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Examples.

Compute the entropy (per symbol) of the following sources :

A source which always emits the same symbol.

A source which emits zeroes and ones according to two fair fipping processes.

How can you simulate a fair coin flipping process with a coinalihs not necessarily fair ?
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Generalization : entropy of a random variable

Let X be a discrete r.v. X defines the partitiof X, ..., X, } of Q2.

Entropy of X : H(X) 2 — 7, P(X;) log P(X;)

What if some probs. are zerdim, .o zlogx = 0 : the terms vanish by continuity.
Note : H(X") does only depend on the valuB$X;)

Particular case : n = 2 (binary source, an event and its negation)

H(X)= —plogp— (1 —p)log(l —p) = Ha(p) wherep denotes the probability of
(any) one of the two values of.

Properties o5 (p) :

Hj(p) = Ha(1 - p)
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Ha(p)

1 o Hagpi + (1 —=q)p2)
Halp2) | _____________ qHz(p1) + (1 — q) H2(p2)
Ha(p1) [~ oo

0 . . , p

0 p1 a1+ (1 —a)p2 p, 1

Another remarkable property : concavity (consequencdsaygear later).
Means that/p, # p2 € [0, 1],Vq €]0, 1| we have
Hs(qp1 + (1 — q)p2) > qH2(p1) + (1 — q)H2(p2)
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More definitions

Suppose that = {X,,...,X,} andY = {Y1,...,Y,,} are two (discrete) r.v.
defined on a sample spaQe

Joint entropy of X and ) defined by

H(X,Y) 2 ZZPX NY;)log P(X;NY;). (1)
1=1 7=1

Conditional entropy of X given) defined by

H(X|Y) = ZZPX NY;)log P(X;|Y;). (2)

1=1 j7=1

Mutual information defined by

P(X;NY;)

)1 . 3
+;]ZlPXmY ogP(X)P(Y]) (3)
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Note that the joint entropy is nothing novel : it is just therepy of the random variabl& = (X', )). For the time
being consider conditional entropy and mutual informatsrpurely mathematical definitions. The fact that these
definitions really make sense will become clear from theystfdhe properties of these measures.

Exercise (computational) : Consider our double coin flipping experiment. Suppose tlesare both fair.
ComputeH (H1), H(Hz2), H(S). ComputeH (H1,Hz2), H(H2,H1), H(H1,S), H(H2,S)andH (H1, H2,S)
ComputeH (H1|Hz2), H(Hz2|H1) and thenH (S|H1, H2) and H (H1, H2|S)

Computel (H1;Hz), I(Ha;H1) and thenl (S; H1) andI(S; He) andI(S; Hi, Ha).

Experiment to work out for tomorrow.

You are given 12 balls, all of which are equal in weight exdeptone which is either lighter or heavier. You are
also given a two-pan balance to use. In each use of the bayanceay put any number of the 12 balls on the left
pan, and the same number (of the remaining) balls on thepaynt The result may be one of three outcomes : equal
weights on both pans; left pan heavier; right pan heavieur Yask is to design a strategy to determine which is the
odd ballandwhether it is lighter or heaviagn as few (expected) uses of the balance as possible.

While thinking about this problem, you should consider thiéofving questions :
e How can you measure information ? What is the most informagimu can get from a single weighing ?

e How much information have you gained (in average) when yoe hdentified the odd ball and whether it is
lighter or heavier ?

e What is the smallest number of weighings that might condguad sufficient to always identify the odd ball and
whether it is heavy or light ?

e Asyou design a strategy you can draw a tree showing for eatie dfiree outcomes of a weighing what weighing
to do next. What is the probability of each of the possibleomntes of the first weighing ?
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Properties of the function H,,(- - -)

||

Notation : Hy,(p1,p2,---,Pn) = — > 11 Di logp;

( p; discrete probability distribution, i.e; € [0,1] and> " ; p; = 1)
Positivity : H,,(p1,p2,-..,pn) > 0 (evident)

Annulation : H,,(p1,p2,-..,pn) = 0= p; = d; ; (also evident)

Maximal . < p; = %,W. (proof follows later)
Concavity : (proof follows)

Let (p1,po,...,pn) @and(qi, qo, ..., q,) be two discrete probability distributions and
A € [0,1] then
Hn()\pl —+ (1 — )\)ql, ce e )\pn -+ (1 — )\)qn)
> (4)
1

AHn(plv SRR 7pn) =+ ( T )‘)HR(Q17 .. -yQﬂ)a
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The very important properties of the information and engropasures which have been introduced before, are all
consequences of the mathematical properties of the entuoyyion H,, defined and stated on the slide.

The following slides provide proofs respectively of the mmaality and concavity properties which are not trivial.
In addition, let us recall the fact that the function is ingat with respect to any permutation of its arguments.
Questions :

What is the entropy of a uniform distribution ?

Relate entropy function intuitively to uncertainty andriedynamic entropy.

Nota bene :

Entropyfunction : function defined on a (convex) subset/gf*.

Entropymeasure: function defined on the set of random variables defined onengample space.

= strictly speaking these are two different notions, and ih#te reason to use two different notatiois,( vs H).
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Maximum of entropy function (proof)
Gibbs inequality : (Lemma, useful also for the sequel keep it in mind)

Formulation : let(p1,p2,...,pn) €t (q1,qo, ..., q,) two probability distributions.
Then,

S pilog £ <0, (5)

1=1 v

where equality holds if, and only ¥z : p; = q;.
Proof : (we use the fact thalnx < z — 1, with equality< x = 1, slide below)

Let us proove thaf i’ p; In It <0

Inlnx < x — 1 replacex by g— multiply then byp; sum over index, which gives
(when allp; are strictly positive)

i P <UL i — 1) =2 ¢ — i pi=1-1=0

Homework : convince yourself that this remains true even when someegf;th- 0.
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Theorem :

H,(p1,p2,...,pn) <logn, with equalitys Vi : p; = %

Proof
Let us apply Gibbs inequality with; = 1

We find

1 1

' :Zpilog—.—Zpilognng

i 4 R

n
> pilog
i=1

mn 1 n
Hy(p1,p2,---,pn) = 3 _pilog— < > pilogn =logn,

1=1 v 1=1

where equality holds if, and only if al; = ¢; = + O
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Concavity of entropy function (proof)

Let (p1,p2,.--,pn) @and(q1,q2, .- .,q,) be two probability distributions and <
0, 1], then

Hn()\pl -+ (1 — )\)ql, Ce e )\pn -+ (1 — )\)qn)
> (6)
1

AHn(plv SRR 7pn) =+ ( T )‘)HR(Q17 .. -yQﬂ)a

An (apparently) more general (but logically equivalenthfialation :

Mixture of an arbitrary number of probability distributisn

Hp (3271 Ajp1js -5 22521 AjPnj)
> (7)

Z;'nzl A]Hn(plja R 7p’nj)7

where); € [0,1], >, A =1, etVj : > piy = 1.
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Graphiguely : mixing increases entropy (cf thermodynamics)

Zj AjP1,j
Zj AjP2,j
Zj AjP3,j

Zj AjP4,j
777121 )\]Hn(pU’?pn]) < Hn( 7771:1 )‘jpljvaz 1>‘jp’nj)

Proof: f(x) = —wlogxis concave ono, 1} : f(3_ 71, A; :1:]) > > L N f(xy).

Thus we have Hn( ;-n:l )\jplj, ceey m —1 )\jpnj) = —1 f( 1 )\me)
> Y im1 o A (pig)] = 22550 Ay 2 1f(PzJ)
Z 1>‘ Hp (p1]7"'7pn])
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Another interpretation (thermodynamic)

|solated containers /red Containers communicate (at equkyi
e | ® o ¢ o ®e o ® o o ®
© 0 o __ o © g o OO
O @ O @ ® o O . @ @ ® o
O @ O O O @ O
o | ° e "o |0 ® o
e ® 5 ® ® ® 5 e
Pee | e o ° e O g0 © o ©® ®
/
blue Entropy is smaller (before mixing) Entropy is higher (aftexing)

Suppose that you pick a molecule in one of the two cuves anglloayuess which kind of molecule you will obtain :
In both cases you can take into account in which containempycduthe molecule.

= there is less uncertainty in the left cuve than in the rigldm@ute entropies relevant to this problem.
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(Let us open a parenthesis : notions of convexity/concavity
Convex set a set which contains all the line segments joining any twibsgboints.
C C IR? is convex (by def.) if

r,yc CAe0,l]= ) x+(1-NyeC.

Examples :

Convexe Non convexes

O C~) I

In IR : intervals, semi-intervaldRi.
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Examples : sets of probability distributionga = 2 etn = 3

P2
L

Do P3

P1

More generally :
Linear subspaces, semi-planes are convex
Any intersection of convex sets is also convex (ex. polyagdr

Ellipsoids : {z|(x — x.)T A (& — z.) < 1} (A positive definite)
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Convex functions

f(-) : IRP — IR convex on a convex subsetof IR? if :
x,yc C,Ael0,1] =

fAz + (1= Ny) < Af(z) + (1 - A)f(y).

Y epigraph { (z,y)|z € C, f(z) < y}
/\ convex set= f(-) convex

A sum of convex functions is also convex
y= f(z) |If g(x,y)if convexinz then alsof g(z,y)dy

fi convex, thermax{ f; } convex
f(x) convex=- f(Ax + b) convex

I
I

| ! T Similar properties hold for concave functions. .|
|
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Strictly convex function
If equality holds only for the trivial cases
A€ {0,1} andlorx =y
(Strictly) concave function
If —f(-) is (strictly) convex.
Important properties
- A convex (or concave) function is continuous inside a carsag
- Every local mininum of a convex function is also a global mirmum

Criteria :
- convex Iff convex epigraph
- convex If second derivative (resp. Hessian) positivepressitive definite)

In practice : there exist powerful optimization algorithms...
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Notion of convex linear combination
(Z;n )\jél?j), with )\j > 0 andzyb )‘j — 1.

Convex hull of some points Set of points which are

convex linear combinations
of these points

These are the points which may be written
as a kind of weighted average of the starting points
(non-negative weights)

Associate weightss- center of gravity

A convex hull is a convex set.
In fact, it is the smallest convex set which contains the tsai.

(= Intersection of all convex sets containing these points.)
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Jensen’s inequality :
If f(-) is a convex function defined dk — IR andX a real random variable

f(E{X}) < E{f(X)} where, if the function is strictly convex, equality holds A
IS constant almost surely.

Extension to vectors ...

Concave functions — >...

Particular case : convex linear combinations

The\,’s act as a discrete probability measurefoa= {1,...,m}.

And z; denotes the value ot at pointw = .

Hence :f(3-7" Ajxy) < 37 Ajif(x5)

Let us close the parenthesis...)
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Let us return to the entropies.

Strictly concave functiong(x) = —xlogx andg(x) = log x.

A
Y
0.5
One deduces
0.4,
H(X),H(Y),H(X,))
are maximal for uniform distri-
03, butions.
02| Also, H(X|Y) is maximal if
for each; P(X|Y;) is uniform,
o which is possible only ifP(X)
- IS uniform andX’ indep. of).
0.0 L
0.0 '0.25 ' 0.5 ' 0.75 ’\1>
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The fact thatf (z) = —x log z is strictly concave is clear from the picture. Cleadklg x is also concave.

All inequalities related to the entropy function may be Bedeéduced from the concavity of these two functions and
Jensen’s inequality. For example, let us introduce herenaquantity called relative entropy or Kullback Leibler
distance. LetP and (@ be two discrete probability distributions defined on a disef) = {w1,...,wn}. The
Kullback Leibler distance (or relative entropy) Bfw.r.t. Q is defined by

P(w)
= w) lo 8
D(PIIQ) = ) P(w)log 53 ®)
wel
Jensen’s inequality allows us to prove tR@ (P||Q) > 0 :
DPIQ) = — Y P)los g = Y Plw)los 5 ©
wel we
< log Z P(w)% = log Z Q(w) | =logl =0 (10)
we wel

where the inequality follows from Jensen’s inequality @&bto the concave functidiog . Because the function is

strictly concave, equality holds only E:; Is constant ovef? (and hence equal to 1), which justifies the name of
distanceof the relative entropy.

2This is nothing else than Gibbs inequality, which we haveadly proven without using Jensen’s inequality.
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