Introduction to information theory and coding

Louis WEHENKEL
Set of slides No 2

Entropies and information measures
Chain rules for entropy and information

More about independence, and conditional independence

Translation of these properties into properties of infarorameasures

Data processing inequality

Bayesian networks and decision trees
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Conditional (a posteriori) entropy

H(X|Y) = ZZPX NY;)log P(X;|Y;). (1)

1=17=1

The entropy oft’ knowing that)y =Y is
H(X|Y;) = - z P(X|Y;)log P(X,[Y). @)
it IS positive (it is an entropy) and ;ne has
H(X|Y) = Z P(Y;)H (X]Y;), (3)

hence this latter is also positive.

And concavity of H,, implies : H(X|)Y) < H(X), which is a fundamental prop-
erty !
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Joint entropy and its relationship with conditional entropy
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Inequalities related to the entropy

One deduces the following inequalities :
H(X,Y) > max (H(X), H(Y))

H(X,Y) < H(X)+ H(Y)

Conclusion:
HX,Y)<HWX)+H(Y) <2H(X,)) (4)

Particular cases :

X et)independent H(X,Y)=H(X)+ H())

(because the®w(X; NY;) = P(X;)P(Y;)) (= H(X|Y) = H(X))
X functionofY : H(X,Y) = H()).

(because the#/ (X'|Y) = 0) (sinceH (X|Y;) =0,Vj =1,...,m)
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Mutual information

— P(X;NYj)

I(X;)) :+ZZP(XZ-ﬂYj)logP(X.)P(Yj).

i=1 j=1 z

One can derive :
[(X;Y) = H(X) - HX[]Y) = H(Y) - HY|X)

and hence
[(X;Y)=H(X)+ H(Y) - H(X,))

which we may also write as

H(X,Y) = H(X)+ H(QY) - I(X;))

Main conclusion :

0 < I(X;)Y) <min{H(X), H(Y)}

(5)
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Exercises.

1. Show that indeed (and in the given order)

1. H(X,Y)=H() + H(X|Y) = H(X) + H(Y|X)

2. HX,Y) > max{H(X),H())}

3. HX|Y) < H(X)

4. HX,Y) < H(X)+ H(Y)

5. I(X;Y) = H(X)+ H(Y) - HX,Y) = H(X) — H(X|Y)

2. A tournament between two teams consists of a sequencenafsits games which stops as soon as one of the two
teams has won three games. betndb denote the two teams atdda r.v. which represents the issue of a tournament
betweems andb. For example X = aaa, babab, bbaaa are possible values of (there are other possible values).

Let Y denote the random variable which denotes the number of gplagsd (thugy = {3,4,5}).

Suppose that the teams are of the same strength and the estafrthe successive games are independent, and
computeH (X),H(Y), H(X|Y) andH (Y| X).

Let Z = {a, b} denote the random variable which identifies the team winttiagournament. Determiné (X' | 2),
compare withH (X') and justify the result. Determin€ (Z|X), and justify.
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Summary H(Y|X) H(X|Y)

Particular cases

X et) independent 7(X’; V) = 0 (necessary and sufficient).
X functionof Y : I(X;Y) = H(X).

X one-to-one functionay : I(X;Y) = H(X) = H())
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Exercises.

1. Consider the following contingency table

>.<

2

Compute (logarithms in base 2) :

6. Draw a Venn diagram.

2. Consider three random variablaés ), Z.

Prove thatd (X, Y|Z) = H(X|Z) + H(X|Y, Z).

Owl»—\:ﬂ

W—WIH
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Other important properties
1. Chain rules

A. Entropies

H(X), Xy, ..., X)) =) H(X|Xiq,..., X))

B. Informations

I(‘Xl)XQa"'aXn;y) :ZI(XMJ}‘X’L—h)Xl)
1=1

NB: Conditional mutual information o’ and)’ given Z is defined by

I(X:Y|2) 2 H(X|2) - HX|Y, Z).

Almost same as before but one uggs|Z) (and averaging w.r.tz;).
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Outline of proofs.

Chain rule for entropies, by repeated application of theanable expansion rule :

H(Xl, XQ) = H(Xl) + H(X2|X1) (6)
H(X1,X2,X3) = H(X;)+ H(X2, X3|A1) (7)

= H(X1)+H(X2|X1)—|—H(X3|X2,X1) (8)

. (9)

H(Xl,XQ,...,Xn) = H(Xl)—I—H(X2|X1)—|—...—I—H(Xn|Xn_1,...,X1) (10)

Chain rule for information :

I(X), Xoy o, X)) = H(X1, Xa,...,Xp) — H(X, Xo, ..., Xn|Y) (11)

- ZH(Xi|X’i—17"'7X1)_ZH(Xi|Xi—17"'7X17y) (12)
=1 =1

1=1

Equivalent definition off (X; V| Z)

P(Xi7 YJ|ZI<:)
(Xi|Zk)P(Y;|Zy

I(X;V12) = ) P(X,Yj, Zx) log 5
1,7,k

;= Z P(Z)I(X; Y| Zs) (14)
k
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2. Conditional independence and data processing inequayit

Consider three discrete random variablés,), Z

They are said to form a Markov chainif is conditionally indep. oft’ given)).
Notation:Z L X|Y & Z; L X,|Yy, Vi, 5, k.

In other wordsP(Z|X,Y) = P(Z|)Y)

Interpretation :

Conditioning : suppos® = Y}, given= P(-) — P(-|Y%)

The probability measure becomes a conditional probaligasure.
Cond. indep= independence under the conditional measure, forYany
Independence is a symmetric relatiog . L X|Y < X 1L Z|).

X,Y, Z form a Markov chain which is denoted By < Y «— Z

B e e
Do
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The graphical representation is again a particular caséBafyasian belief network, which will be introduced more
precisely later on.

Bayesian belief networks provide a general and very powéofal in order to handle conditional independence.
Conditional independence is very important as a notionabse for many physical problems it may be used to
represent causal relationships. Thus, the structure afitonal independence of stochastic models may be deduced
from physical causality and structure.

Consider a communication system composed of two channskxies : X represents messages chosen by a source,
Y messages at the receiving end of the first channel, and Z éssages at the receiving end of the second channel.
These three random variables obviously represent a Mathkaw c

Similarly, look at an industrial two stage process : X repreas the characteristics of the input material; Y the
characteristics of the output of the first stage and Z theadtaristics of the output of the second stage. If Y is a
precise enough description, then again we have a Markowcfiis means that if we are able to observe the output
of the first stage, and want to predict what will happen dutimg second stage, the histaity of the material is
irrelevant.

This notion ofsufficiently preciselescription of a process at an intermediate stage, is whatlWa system theory
the stateof the system.
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NB : these ideas may be applied to sets of variables :

)Cl,)dg,...<—>y1,y2,...e>21,22,...

X:[(—)XQH...HX]CH...(—)Xn_lHXn
Remarks.

If ¥ <) <« Zthen
P(X,Y,Z) = P(X)P(Y|X)P(Z|Y) = P(Z2)P(Y|Z)P(X|).
Data processing inequality

If ¥ <~ ) < Z form a Markov chain thed(X’;)) > I(X; Z).

Indeed : chain rule of information applied in two waysliot’; ), Z):

I(X;2) + 1(X;0|12) = 1(X;),2) = 1(X;)) + [(X; Z|).
SinceX et Z are conditionally independent, we haveY'; Z|)) = 0, and hence
(X 2) < I(X;)).
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Examples

If Z is a function of) it is conditionally independent ot'.

(Hence alsot «+ ) < )))

If Z is a function of) and another r.v. independent&fand), it is also condition-
ally independent oft’.

Interpretation

The theorem tells us that whatever we do wiln terms of data processing, there is
no hope to gain more information abotitthan what is provided by
= no way to create information by data processing.

Questions:

If A is an event of positive probability, what is the valueftfA|A)?
What is the meaning (value) ¢t(X, ), )) ?
Is it true thatP (Y| X, Y) = P(Y|Y) ?
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Another consequence

If X — )Y« Zthenl(X;V|2) < I(X;)).

In other words, in a Markov chain conditioning decreasesuaunformation.
This property is not true in general.

In other words, it is possible thdtX; Y| Z) > I(X;)) whenX'; ), Z do not form
a Markov chain.

For example

Consider the double coin flipping experiment.

Computel (H1;S) andI(H1; S|Ha).

This finishes our study of information measures (algebra).

We will come back later to these notions for continuous randm variables.
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Exercises

1. LetX, ), Z be three binary random variables. One gives the followifigrmation :

e P(X=0)=P(Y=0)=0.5,
e P(X,YV)=PX)P(Y)
e Z=(X4+YmoR (ie.Z =1 X #)).
(a) What s the value oP(Z = 0) ?
(b) Whatis the value oHH (X)), H(Y),H(Z) ?
(c) WhatisthevalueoH(X,)), H(X,Z),H(Y,Z),H(X,Y,2Z)?
(d) Whatisthe value of (X; V), I(X;2),1(V;2) ?
(e) Whatisthe value of (X; Y, 2), 1(V; X, 2),1(Z;X,))?
() Whatisthevalue of (X;V|2),1(V; X|2),I(Z;X|)Y) ?
(g) Canyou draw a Venn diagram which summarizes the situ&tio

2. LetX,), Z be three discrete random variables. Show that

(@) H(X,Y|2) =2 H(X|2);

(b) 1(X,Y;2) > I(X; Z);

(c) HX,V,2) - H(X,Y) < H(X,Z) - H(X);
d) I(X; Z|Y) > I(Z;V|X) — [(Z;Y) + 1(X; 2).
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Graphical models for probabillistic inference
Classical logic :

- Start with a theory : set of axioms which are supposed to imalkde physical world
(if X has wings then X is a bird)

- Add observations from the real world : facts (Tweety hasgsin

- Infer conclusions about other properties of the real woildieety is a bird.
Probabilistic logic :

Same, but statements and axioms are of probabilistic nature

Inference : from a probabilistic model and observationsnftbe real world, draw
conclusions about unobserved variables.

Graphical models : represent relationships among variables by a graph.

NB.: not all models are graphical...
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Main questions

1. How to build models : from first principles, from obsereais of nature, from both
2. How to use modelsdeductive inference

Now, we focus on probabillistic (deductive) inference withghical models :

= Bayesian networks, decision trees.

Model probabilistic relationships among a set of variables

- We will consider only discrete variables, but theory exi®to continuous variables
- Bayesian networks : models for joint probability disttilans P(A, B, ..., U)

- Decision trees : models for conditional probability disittions P(A|B, . .., U)
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Bayesian networks :models forP(A, B, ..., U)
NB:

We consider only the case where B, . .., U take a finite number of value. Thus,
the number of possible combinations of values is also finite.

Thus P(A, B, ...,U) can be represented explicitly as a multidimensional table o
numbers in0; 1] : contingency table

But :

1. Explicit representation becomes quickly intractabla€wthe number of variables
Increases).

2. Explicit representation says nothing about structlaktionships of variables (e.qg.
conditional independence)

Bayesian networks : compact representation, tractabteia@rpretable (explicitly).
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Example of inference using an explicit representation :

GivenP(A,B,C,D, &, F) (model) and the fact (observation or hypothesis) that
B; andC = Cy, what is the probability of eved = A; ?

In other words compute P(A;|B;, Cy)
Answer :

P(A;,B;,C
1. P(Ai| By, Cy) = “hoec.

2. P(A;, By, Cy) = ZDED ZEES ZFE]—“ P(A;, Bj, Ck, D, I, F)
3. P(ij Ck) = D A€A2.DeD 2 EcE 2LFEF P(A, Bj, Ck, D, E, F)
Comments :

Suppose that the variables assume three values eachPthén3.C, D, &, F) is
given by3% — 1 = 728 numbers.

The two sums concerns respectivly= 27 and3* = 81 terms.

In applications (e.g. coding) : thousands of variabiesrivial method breaks down.
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Same problem :we add some structural knowledge

Suppose we know (e.g. because of physical knowledge abepttiblem that :
P(A,B,C.,D,E,F)=P(A,B,C)P(D, &, F|A)

and that
P(A,B,C) = P(B)P(C)P(A|BC)

Now we need to specify the model :

— For P(B) andP(C) we needl = 2 + 2

— For P(A|BC) we nee® x 3 x 3 = 18.

— For P(D, &, F|A) we need3 x (3% — 1) = 78.

= Structural knowledge reduces the size of our model fragto 4+ 18+ 78 = 100.
Computation ofP(A;|B;, CY) : trivial (table lookup)

What about computation a?(B;, C|A;) ? (with and without structural knowledge)
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Models are useful to provide not only accurate but also caty@presentations of the reality. In general, there is a
tradeoff between model complexity and accuracy. Modelsiaedul only if we are able to exploit them in order to
understand or predict behavior of reality : in most situagicractability is possible only at the expense of accuracy.

Next week, when we will focus on channel coding, we will sea th order to efficiently exploit noisy channels it
IS necessary to manipulate very long sequences of symioolg thessages). For example, in the context of Turbo-
codes typical message lengths which are manipulated dne interval[1000 . . . 100000]. This means that we need
to manipulate joint probability distributions of more tha000 to 100000 binary variables, which would be totally
impossible if we were to use explicit table-lookup models.

For those who are not yet convinced, let us make the expladutation : if N = 1000, a channel code will
comprise21990 ~ 10391 code words. If every electron of the Universe (there are abo¥f) was a 1000 GHz
processor able to store and retrieve the probability of sucbde word in a single instruction, one could handle
1012 x 1089 ~ 1092 code words per second, and in a period equal to the age of tiverda ¢ x 1017 seconds),
these computers would handiex 10199 code words. To handle all words, we would still need to waits@eriod
equal to10'°° times the age of our Universe !

Nevertheless, by using compact models it is possible tolaahd channel encoding and decoding tasks efficiently
(in linear time with respect to the message length).

Later we will introduce stochastic process models. A stetibgrocess is a sequence of random variables corre-
sponding to successive time instants (we will only consdiscrete time models in this course). As time can grow
indefinitely, a stochatsic process is actually an infinithection of random variables. Still, it is possible to devis
very compact probabilistic models of such processes : bgtwdh a few numbers it is possible to characterize the
joint probability distribution of any finite subcollectiaf random variables of the process.
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Bayesian network : definition

Directed acyclic graph :
- nodes model variables (one node for each variable)
- Arcs model causal relations among variables (conditiord@pendence relations)
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The figure illustrates an example Bayesian network, whidugposed to model the relationships among the color
of eyes of different people in a family. The network actuatlgdels the ancestral relationships among the persons of
this family. Each node represents the color (blue or brovilone person. The arcs indicate which are the children
of a person.

Note that this model does not pretend to be a correct view aofddean genetics. We will see later that this model
is slightly more complex, but can still be easily represdritg a Bayesian network. For the time being, we will use
this naive picture of genetics as our running example toarwhain concepts in Bayesian networks.

Terminology and notation

We use the same notation (round uppercase) to represeabkariand nodes, since they are in one-to-one corre-
spondance.

Let X, denote a node in the gragh Then we denote by :

- P(X) the set of parent nodes 4fy., i.e. the origins of the arcs pointing toward.

- F (X)) the children ofxy, i.e. the se{ X; € G|X, € P(X;)}

- D(X}) the descendents &y, i.e. the set of nodes which are (X} ), or descendents of a node (X} ).
- N'D(X},) the nondescendents &f,, i.e. the sef N —({ X} UD(Xy))

The figure illustrates these notions for the nodg and shows how this node partitions the graph.
Defining property of Bayesian networks

For any variableX € G, and any subset of variablé8 € N'D(X), we haveP (X |P(X), W) = P(X|P(X)),
l.e. once the parents of a variable are given, it becomespeddent of all its other non-descendents
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Factorisation property

Suppose we are given a Bayesian netwgrk= {1, ... A, } and for each variable
X; € G we are also give®(X;|P(X;)), then

n

P(X1,...,X,) = HP(Xi\P(Xz‘))

Note that for those variables for whi@h(X;) = () we are given the prioP(X;).

Comments :

As long as theP(X;|P(X;)) are not specified, a Bayesian network is meant to repre
sent all distributions which can be factorized in this way.

Any probability distribution may be represented in many svly a Bayesian net-
work, but not necessarily all conditional independencacstres may be derived
explicitly from a Bayesian network structure.

There exist probability distributions leading to independe relations which can not
be represented completely by any Bayesian network.
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Simple examples :some (all ?) three variable networks

@@@ ojogo

P(X, ), 2) P(Y|X)P(Z|Y) P(X, Y, 2) P(Y|Z)P(X]Y)

Q@@HZ*’W(%)PM z j P(2)P(X|2)P(Y|2)
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F1

PM

--

F2

The correct Mendel model of eye colors

Produced by JavaBayes tool
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Here is the complete model of our earlier example relatectetc.

We have added new variables denoteddy... for each individual which denote the two versions of the ggheh
determine the eye color for each individual. The variables take on three valuds, bB, and BB, whereb
stands for blue and for brown. We assume that the prior (or marginal) probability of thiksee values for the
grand-parent generation abe25, 0.5, 0.25; all the other (conditional) probability distributionseadeduced from

the Mendel model : the relation between parent and childesotypes assume that one of the two chromosomes is
chosen at random (0.5 probability) and the relation betvpdemotype and genotype is deterministic, assuming that
B (brown) is dominant character.

Notice that this network models tlggnotypggenes) of the individuals, and the relationship betweergdgnotype
and the observed variables (eye colors). In spite of thetiattgenotypes can not be observed directly, it is possible
to use this model to infer unobserved genotypes and phee®fypm the observed phenotypes (eye colors).

One particularity of this network is that all the conditibpaobabilities are identical (all people behave in the same
way from the viewpoint of our model). The network can be edeghto a whole population and be used to model
relationships between successive generations and howaonabserve genetic drift.

The present example is available on the web page http://mantefiore.ulg.ac.be/" lwh/javabayes, where you can
use a Java applet to simulate the network and see how it r@agbservations. On the same page you can also try
out the earlier naive version of the same problem, and coenpardifferences.

The prior probability distributions have been chosen sowhdnout any observations all individuals have the same
marginal probability distribution of genotypes (and hemptenotypes). This is what we will later on denote by
stationaryconditions. It turns out that, even if in the earlier genierad the prior distribution is different from the
stationary distribution, after a large enough number ofegatons the system converges to the stationary distribu-
tion.
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Graphical models of communication systems
First order markov model of a black&white scanner

Same compressed by a 4 bit block code

0/10/110/111 0/10/110/111

Same, encoded and sent through a noisy, memoryless conatianichannel

CaCacatatatatat Il
O e
elelelelelele
HOOHLOHHOHY

Channel noise

@ Received message
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D-separation and conditional independance relations indced by a BN
Some comments on the notion of independance of sets of ranaoables
Let A= {A),..., A} andB = {)1,..., YV} two sets of random variables.
- What is the meaning ol 1. B ?

-Isittrue thatd L B = (Vi,j: X; L &) ?

- And/or is the converse true, i.€v7,5 : X; L X;) = A L B?

D-separation: definition

Let us denote by, B, C three disjoint subsets of r.v. of a BN, and let us assume tha
A andC are non empty.

Let us consider paths over the undirected version of the DAg& A to C.

We say thatd andC ared-separated bg if all paths from.A to C are blocked bys5.
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By definition, a path idlockedif it goes through a variable, say;,
1. The pattern— X}, — appears in the path amt, € B

2. The pattern— X}, <— appears in the path afl X} UD(X)) N B =10
3. The pattern— X;. — appears in the path ad, € B

: S @ d@b

All paths with are not blocked, arer said to be active (w4 to C andB).
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D-separation: fundamental property

If A, B, C are three disjoint sets of variableg (nay be empty) of a bayesian network,
then “.A andC are d-separated bp” = A L C|B.

Notice that, if A andB are d-separated ltyythen any subset ofl is d-separated from
any subset of by B.

Notice also that we can change directions of some arrowigtdph without chang-
Ing d-separations, provided that we don’t change the set df;, < structures.

Thus, to represent the conditional independances one ofies so-called essential
graphs, obtained from a DAG by replacing arrows which do rastigipate in aV/’ -
structure by lines.

Belief propagation
D-separation also leads to the design of effective beligbagation algorithms.

(See course notes and subseguent lessons).
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There is much more to say about Bayesian belief networkdljratied time in the context of this course does not
allow to go further in depth.

Bayesian networks where proposed in the eighties by Juded Peorder to provide modelling tools for reasoning
under uncertainty in artificial intelligence (e.g. expsmstems for medical diagnosis).

In the meanwhile, both theory and practice have progresgadisantly, and although the field has not yet reached
full maturity there are already many significant real apimns.

One of the complex questions, as regards inference, is igalefficient algorithms to propagate evidence through
the network. If the network has a tree structure this is ra¢iasy task (a generalization of the forward-backward
algorithm used for hidden markov chains, leading to an efficalgorithm). If the network is not a tree, one approach
consists of grouping variables so as to yield a tree (s@dalinction tree algorithm); another approach is to use
approximate (but efficient) algorithms for probability pemation.

The other main problem under consideration in researchezoathe automatic design of probabilistic models from
data. Here also, there is still a lot to do.
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Probabilistic reasoning and questionnaires

Let us consider a medical diagnostic problem and its prdisibimodel. Let us
denote byD a variable which is true when the patient under consideratias a
certain disease (say hepatitis).

(2 set of all possible patients which will visit a M.D.

In order to make a diagnosis, the doctor will typically trylbmk at the symptoms
(concentration of various types of blood cells, eye colkin solor, temperature .. .)
and ask gquestions about antecedents (factors, such asudgeom smooking, ad-
diction to heroin,...).

Note that not all questions have same relevance, and alsenergl the relevance
of a question is dependent on already observed variableyhoW typically the
doctor would like to reach conclusions about the diagndsfi@asking on relevant
and informative questions.

Problem : how to design an efficient strategy for the diagnosi ?
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Probabilistic model
Suppose that we have a model #&(D, A, ..., A,,S1,...,5n).

We can measure the residual uncertainty of the diagnosidgoby
H(D|A,..., A, 51,...,8n)
l.e. the uncertainty which can not be reduced by observation

If the disease is well known, hopefully this quantity will benall.

Note that, if we forbid the use of one of the possible obseaat say.A4,, then the
residual uncertainty increases

H(D|As, ..., Ay, S51,...,8n) > HD|Ay, ..., A,,51,...,8n)
but this does not mean that all questions are relevant irmad &

Suppose we are allowed only to ask one single question (ebsere ofA; or S;),
then we would choos&' € {A,,..., A,,S1,...,S,} maximizingl (X; D).
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Strategy : same as decision tree

Skin colour
Yellow/ w\er
Did you visit Asia Eye color
// \\
/ \
/ \
/ \
y n // \\
y |
Did you eat raw meat Do you take heroin
/// \\ \\\
/ \\ \
)/ 0 Yy ' n
/ b \
y \ \
|

[P(D:T) = o.9§
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The test nodes of the tree (square boxes on the figure) repressentially questions or observations that may be
made by the doctor. The terminal nodes represent conckigia will be drawn : the doctor stops to ask questions
and decides that it is either very likely or very unlikely thiae patient has hepatitis, or possibly decides that he is
still uncertain and the patient should go to a specialisio(will ask more questions).

The tree structure defines the strategy that the doctor sdlta reach a decision : the top-node (root of the tree)
defines the first question, and successors define the selgstisatiepending on the obtained answer. Note that the
terminal nodes of the tree are a functibrof the test variables : using the tree is equivalent to olisgithis variable.

Tree construction algorithms :

A good decision tree is one that minimizes the average donditentropy at the leaf nodes and at the same time
minimizes complexity of the tree (different measures). §knowP(D, A4, ..., An,S1,...,Sm) (say we have
a Bayesian network) we can try to find an optimal tree, say dmelwminimizes

H(D|T) + BComplexity

Brute force :

- generate all possible trees (there is only a finite numbé&eet)

- for each tree comput®! (D|7) + SComplexity (can be done using(D, A1, ..., An,S1,...,5m))
- keep the best one.

Hill climbing :

- select the variable maximizing X’; D) at the root node

- for each valueX; of X useP (D, A4,...,An,S1,...,S5m|X;) to build subtree.
- stop whenH (D|7) 4+ SComplexity starts to increase.
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