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1. Intuitive introduction to channel coding

How can we communicate in reliable fashion over noisy channels ?

Examples of noisy communication channels :

1. Phone line (twisted pair : thermal noise, distortions, cross-talk. . . )

2. Satellite (cosmic rays. . . )

3. Hard-disk (read or write errors, imperfect material)

Simplistic model : binary symmetric channel (p = probability of error)
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Let us suppose that :p = 0.1 (one error every 10 bits, on the average)

But in order to use the channel (say, a hard-disk) : we want to make sure that during
the whole lifecycle of 100 disks there is no more than one error.

E.g. : life period = 10 years. And let us suppose that we transfer 1GB every day on
the disk :

⇒ Pe < 10−15 (requested)

Two engineering approaches :

1. Physical aproach : better circuits, lower density, better cooling, increase signal
power. . .

2. System approach : compensate for the bad performances by using the disk in an
“intelligent” way
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Information theory (and coding) ⇒ system approach (and solutions)

Add redundancy to the input message and exploit this redundancy when decoding the
received message

Information theory :

Which are the possibilities (and limitations) terms of performance tradeoffs ?

⇒ analysis problem

Coding theory :

How to build practical error-compensation systems ?

⇒ design problem

(Cf. analogy with “Systems theory vs Control theory”)
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Some preliminary remarks

Analysis problem : - more or less solved for most channels (but not for networks)

Design problam : - Very difficult in general
- Solved in a satisfactory way for a subset of problems only.

Cost of the system approach :- performance tradeoff, computational complexity,
- loss of real-time characteristics (in some cases).

Cost of the physical approach :- investment, power (energy).

⇒ Tradeoff depends on application contexts

Example : (deep space communication)

Each dB of coding gain (which allows to reduce power, size . . .of antennas) leads to
decrease in cost of $80.000.000 for the Deep Space Network!

⇒ coding can make “infeasible” projects “feasible”
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Error handling systems

Error
avoidance

and
redundancy
encoding

Coded
Modu-
lation

Channel
or

Storage
Medium
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ulation

Error
detection

Error
correction

Error
conceal-

ment

Retransmission request

Abstract channel

(Error concealment : exploits natural redundancy to interpolate “missing values”)

NB:

Error detection with retransmission request is an alternative to error correction, but is
not always possible.

In some protocols, error detection merely leads to droppingpackets.

⇒ We will come back later to the discussion of “error detectionand retransmission”
versus “forward error correction”.
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Codes for detecting and/or correcting errors on the binary symmetric channel

1. Repetition codes :

Source Code
0 000
1 111

Decoder : majority vote.

Example of transmission :T = 0010110.

s 0 0 1 0 1 1 0
x 000 000 111 000 111 111 000
b 000 001 000 000 101 000 000
y 000 001 111 000 010 111 000

(b: noise vector)

Decoding :T̂ = 0010010

Pe (per source bit) :p3 + 3p2(1 − p) = 0.028 and code rate :R = 1/3

NB: to reachPe ≤ 10−15 we needR ≤ 1/60 . . .

Other properties : correction of single errors, detection of double errors.
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2. Linear block codes (Hamming(7, 4))

We would like to maximize the code rate under the reliabilityconstraintPe ≤ 10−15

Block codes : to a block ofK source bits we associate a codeword of lengthN ≥ K.

Example : Hamming(7, 4)
s x

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s x
0100 0100110
0101 0101101
0110 0110001
0111 0111010

s x
1000 1000101
1001 1001110
1010 1010010
1011 1011001

s x
1100 1100011
1101 1101000
1110 1110100
1111 1111111

This code may be written in compact way by (s andx denote line vectors)

x = sG with G =









1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1









= [I4P ]

⇒ linear block code (additions and multiplications modulo 2)
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Definition (linear code) We say that a code is linear if all linear combinations of
codewords are also codewords.

Binary codewords of lengthn form ann−dimensional linear space. A linear code
consists of a linear subspace of this space.

In our example⇒ first 4 bits = source word, last 3 bits = parity control bits.
E.g. : 5th bit = parity (sum mod. 2) of the first 3 bits.

Some more definitions

Hamming distanced(x, y) of two vectors : nb of bits different.

Hamming weightof a bit-vector : number of bits equal to 1.

Minimum distanceof a code : minimum distance of any two codewords

For a linear code : minimum distance = minimum weight of non-zero codewords.

⇒ Minimum distance of Hamming(7, 4) code : = 3
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Decoding :

Let r = x + b denote the received word (b = error vector)

Maximum likelihood decoding :

Guess that codeword̂x was sent which maximizes the probabilityp(x̂|r).

Assuming that all codewords are equiprobable, this is equivalent to maximizingp(r|x̂)

If d(x̂, r) = k thenp(r|x̂) = pk(1 − p)n−k (heren = 7)

Hence :p(r|x̂) maximal⇔ d(x̂, r) minimal (supposing thatp < 0.5).

For the Hamming (7, 4) code :

If Hamming weight ofb ≤ 1 : correct decoding.

If Hamming weight ofb ≤ 2 : correct detection.

Otherwise, minimum distance decoding will make errors.
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Pictorial illustration

Repetition code(3, 1)

111

000
100

110

101001

011

010

⇒ maximum likelihood decoding≡ nearest neighbor decoding

But : there is a more efficient way to do it than searching explicitly for the nearest
neighbor (syndrom decoding)
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Let us focus on correcting single errors with the Hamming(7, 4) code

Meaning of the 7 bits of a codeword

s1 s2 s3 s4 p1 p2 p3

4 signal bits 3 parity check bits

If error on any of the 4 first bits (signal bits)→ two or three parity check violations.

If single error on one of the parity check bits : only this parity check is violated.

In both cases, we can identify erronous bit.
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Alternative representation : parity circles

p1

p2 p3

s3

s4

s2 s1

Parity within each circle must be even if no error.

If this is not the case, we should flip one single received bit so as to realize this
condition (always possible).

For instance, if parity in the green (upper right) and blue (lower) circles are not even
⇒ flip bit s1
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Syndrom decoding

Syndrom : difference between the received parity bit vectorand those which are
recomputed from the received signal bits.

⇒ Syndrom is a vector of three bits⇒ 23 = 8 possible syndroms

The syndrom contains all the information needed for optimaldecoding :

8 possible syndroms→ 8 most likely error patterns (can be precomputed).

E.g. : suppose thatr = 0101111 :
- signal bits0101 → codeword0101101 (parity101)
- syndrom :101 + 111 = 010 (bit per bit)
- more probable error pattern :0000010

- decoded word :0101101

E.g. : suppose thatr = 0101110 :
- signal bits0101 → codeword0101101 (parity101)
- syndrom :101 + 110 = 011 (bit per bit)
- more probable error pattern :0001000

- decoded signal bits :0100 (code0100110).
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Summary

Like the repetition code, the Hamming code(7, 4) corrects single errors and detects
double errors, but uses longer words (7 bits instead of 3) andhas a higher rate.

If p = 0.1 : probability of error per code word : 0.14

→ (signal) bit error rate (BER) of : 0.07

Less good in terms of BER but better in terms of code-rate :R = 4/7.

There seems to be a compromize between BER and Code-rate.

Intuitively : limPe→0 R(Pe) = 0

(this is what most people still believed not so long ago...)

And then ?

...Shannon came...
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Second Shannon theorem

States that ifR < C(p) = 1 − H2(p) thenPe = 0 may be attained.

Third Shannon theorem (rate distorsion :Pe > 0 tolerated)

Using irreversible compression we can further increase thecode rate by a factor
1

1−H2(Pe)
if we accept to reduce realiability (i.e.Pe ր).

Conclusion : we can operate in a region satisfyingR ≤ C(p)
1−H2(Pe)

10 0.53

0.1
0.01

1e-11

R

Impossible

Possible

log Pe

Conclusion : we only need two
disks and a very good code to
reachPe ≤ 10−15.
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2nd Shannon theorem(channel coding)

What is a channel ?

....

Noisy Version of input

Later and/or elsewhere

..... Channel

Abstract model :

Y1,Y2, . . .

X1,X2, . . .

P (Y1,Y2, . . . |X1,X2, . . .)

in other words, the specification of (all) the conditional probability distributions

P (Y1, . . . ,Ym|X1, . . . ,Xn),

defined∀m, n = 1, 2, . . .
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Simplifications

Causal channel : if∀m ≤ n

P (Y1, . . . ,Ym|X1, . . . ,Xn) = P (Y1, . . . ,Ym|X1, . . . ,Xm). (1)

Causal and memoryless channel : if∀k ≥ 2

P (Yk|X1, . . . ,Xk,Y1, . . . ,Yk−1) = P (Yk|Xk), (2)

Causal, memoryless and stationary channel : if∀k ≥ 1 we have

P (Yk|Xk) = P (Y|X ), (3)

⇒ this will be our working model

1 symbol enters at timek → 1 symbol comes out at timek.

If stationary process at the input→ stationary process out

If ergodic process at the input→ ergodic process at the output

(NB: one can generalize to stationary channels of finite memory...)

IT 2000-8, slide 18



Information capacity of a (stationary memoryless) channel

By definition :
C = max

P (X )
I(X ;Y). (4)

Remarks

This quantity relates to one single use of the channel (one symbol)

I(X ;Y) depends both on source and channel properties.

C solely depends on channel properties.

We will see later that this quantity coincides with the notion of operational capacity.

NB: How would you generalize this notion to more general classes of channels ?
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Examples of discrete channels and values of capacity

Channel transition matrix :

[P (Yj|Xi)] =







P (Y1|X1) · · · P (Y|Y||X1)
...

. ..
...

P (Y1|X|X |) · · · P (Y|Y||X|X |)







1. Binary channel without noise

Input and output alphabets are binary :[P (Yj|Xi)] =

[

1 0
0 1

]

.

I(X ;Y) = H(X ), maximal whenH(X ) is maximal (=1 Shannon).

Achievable rate (without errors) : 1 source symbol/channeluse.

Can we do better ?

No, unless we admitPe > 0.
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2. Noisy channel without overlapping outputs

E.g. : transition matrix
[

p (1 − p) 0 0
0 0 q (1 − q)

]

.

H(X |Y) = 0 ⇒ I(X ;Y) = H(X ) ⇒ C = 1. (Achievable...)

3. Noisy type-writer

Input alphabet : a, b, c,. . . , z Output alphabet : a, b, c,. . . , z

P (a|a) = 0.5, P (b|a) = 0.5, P (b|b) = 0.5, P (c|b) = 0.5, . . .P (z|z) = 0.5, P (a|z) =
0.5

I(X ;Y) = H(Y)−H(Y|X ) with H(Y|X ) = 1 ⇒ max if outputs are equiprobable
E.g. if inputs are equiprobable :H(Y) = log2 26 ⇒ C = log2 13

Achievable : just use the right subset of input alphabet...

(NB: this isTHE idea of channel coding)
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4. Binary symmetric channel

0

1

0

1

1 − p

1 − p

p

p

[P (Yj|Xi)] =

[

1 − p p
p 1 − p

]

.

Information capacity of this channel :

I(X ;Y) = H(Y) − H(Y|X ) = H(Y) −
∑

X∈X

P (X)H(Y|X)

= H(Y) −
∑

X∈X

P (X)H2(p) = H(Y) − H2(p) ≤ 1 − H2(p),

Equal to 0, ifp = 0.5 and equal to 1 ifp = 0.0. Symmetric :C(p) = C(1 − p).

Achievable ? : less trivial...
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Main properties of the information capacity

1. C ≥ 0.

2. C ≤ min{log |X |, log |Y|}.

Moreover, one can show thatI(X ;Y) is continuous and concave with respect to
P (X ).

Thus every local maximum must be a global maximum (on the convex set of input
probability distributionsP (X )).

Since the functionI(X ;Y) is upper bounded capacity must be finite.

One can use powerful optimisation techniques to compute information capacity for a
large class of channels with the desired accuracy.

In general, the solution can not be obtained analytically.
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Communication system

P (Y|X )

Xn Y nW

Message

Ŵ

Estimated
message

ENCODER
CHANNEL

DECODER

A messageW (finite set of possible messagesW = {1, 2, . . . , M}) is encoded by
theencoder into a sequence ofn channel input symbols, denoted byXn(W ).

At the other end of the channel another (random) sequence of channel output symbols
Y n is received (distributed according toP (Yn|Xn(W )).)

The sequenceY n is then decoded by thedecoder, who chooses an elementŴ (Y n) ∈

W → the receiver makes anerror if Ŵ (Y n) 6= W .

In what follows, we will suppose that the encoder and the decoder operate in a deter-
ministic fashion :

- Xn(W ) is the coding rule (or function);

- Ŵ (Y n) is the decoding rule (or function).
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Memoryless channel specification

Input and output alphabetsX andY , and theP (Yk|Xk) are given

Channel is used without feedback :

In this case :P (Yn|X n) =
∏n

i=1 P (Yi|Xi).

Definitions that will follow :

- Channel code(M, n)

- Different kinds of error rates...

- Communication rate.

- Achievable rates.

- Operational capacity.
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(M, n) Code

An (M, n) code for a channel(X , P (Y|X ),Y) is defined by

1. A set of indices{1, . . . , M};

2. A coding functionXn(·) : {1, . . . , M} → X n, which gives the codebook
Xn(1), . . . , Xn(M).

3. A decoding function
g(·) : Yn → {1, . . . , M}, (5)

which is a deterministic mapping from all possible output strings into an input
indexg(Y n).

⇒ M code words coded usingn input symbols.
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Decoding error rates

1. Conditional Probability of error given that indexi was sent

λi = P (g(Yn) 6= i|X n = Xn(i)) =
∑

Y n∈Yn

P (Y n|Xn(i))(1 − δg(Y n),i)

2. Maximal error probability for and(M, n) code :

λ(n) = max
i∈{1,...,M}

λi

3. The (arithmetic) average probability of error :

P (n)
e =

1

M

M
∑

i=1

λi

⇒ expected error rate ifi has a uniform distribution.
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Optimal decoding rule

By definition : the decoding rule which minimises expected error rate.

For a received wordY n → choosei such thatP (Xn(i)|Y n) is maximal.

⇒ maximises a posteriori probability (MAP)

⇒ minimises for eachY n error probability
⇒ minimises the expected error rate.

⇒ general principle in decision theory :Bayes rule

We use informationY (random variable which is observed).

We want to guess (decide on) a certain variableD (choose amongM possibilities).

Correct decision :D∗ a random variable⇒ P (D∗|Y) known.

Cost of the taken decision :0 if correct,1 if incorrect.

Optimal decision based on informationY : D̂(Y ) = argD max{P (D|Y )}
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For our channel :

P (Xn(i)|Y n) =
P (Y n|Xn(i))P (Xn(i))

∑M
i=1 P (Y n|Xn(i))P (Xn(i))

Since
∑M

i=1 P (Y n|Xn(i))P (Xn(i)) does not depend on the decision, this is the same
than maximizingP (Y n|Xn(i))P (Xn(i)).

Discussion

P (Y n|Xn(i)) : channel specification.

P (Xn(i)) : source specification.

If non-redundant source :P (Xn(i)) independent ofi ⇒ maximizeP (Y n|Xn(i)).

⇒ Maximum likelihood rule : minimizeP
(n)
e

Quasi optimal, if source is quasi non-redundant.

E.g. if we code long source messages (cf. AEP)
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Communication rate : denotedR

The communication rate (denoted byR) of an(M, n) code is defined byR = log M

n

Shannon/channel use≡ input entropy per channel use if inputs are uniformly dis-
tributed.

Achievable rate(more subtle notion)

R is said to be achievable if∃ a sequence of(M(n), n), n = 1, 2, . . . codes suchthat

1. M(n) = ⌈2nR⌉ and 2.limn→∞ λ(n) = 0

⇒ codes of rate≈ R, eventually become “quasi perfect” and remain so (when using
very long codewords)

Remark

Definition is independent of the source distribution (cf. maximal probability of error).

Operational capacity : Co = is the supremum of all achievable rates.

R = 0 is achievable, but we need to check that it is possible to haveCo > 0.
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Second Shannon theorem

Objective : prove that information capacityC is equal to operational capacityCo.

Hypothesis : the pair(X n,Yn) satisfy the AEP (stationary and ergodic : OK for
stationary finite memory channels and ergodic inputs.)

Information capacity (per channel use) :

C = lim
n→∞

1

n
max
P (Xn)

{I(X n;Yn)}

(with X n stationary and ergodic)

For memoryless channels the maximum is obtained for independent source symbols
and the above definition yields indeed :C = maxP (X ) I(X ;Y)

Basic idea : for large block lengths, every channel looks like the noisy typewriter :
- it has a subset of inputs that produce essentially disjointsequences at the output
- the rest of the proof is matter of counting and packing...
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Outline of the proof (Shannon’s random coding ideas)

Let us fix for a momentP (X ), n andM , and construct a codebook by generating
random signals according toP (X ) (M × n drawings)⇒ if n is large the codewords
as well as the received sequences must be typical (AEP)

Xn

1

Xn

3

Xn

2

Typical transition Non-typical transition

X
n

Y
n
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Let us count and pack(approximately and intuitively...)

At the input :2nH(X ) possible typical messages (we chooseM of them at random to
construct our codebook).

At the output : for eachXn (typical)2nH(Y|X ) possible typical output sequences.

The total number of possible (typical outputs) is2nH(Y)

If we want that there is no overlap : we must impose that

2nH(Y)

M
≥ 2nH(Y|X ) ⇒ M ≤ 2nI(Y;X )

Now, let us choose theP (X ) which maximizesI(Y ;X ) = C : it should be possible
to findM ≤ 2nC input sequences such that the output regions do not overlap.

Conclusion

Using long codewords (n → ∞) it is possible to exploit redundancy (correlation
between inputs and outputs) to transmit information in a reliable way.
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Second Shannon theorem

Statement in two parts :

Forwards :R < C ⇒ R achievable (λ(n) → 0).

Backwards :R > C ⇒ R not achievable.

The proof is based on random coding and the joint AEP.

One can show that for a long codewords, a large proportion of the random codes
generated by drawingM = 2n(C−ǫ) words are actually very good.

Caveat

In practice random coding is not a feasible solution becauseof computational limi-
tations, just like typical message data compression is not afeasible approach to data
compression.
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