Introduction to information theory and coding

Louis WEHENKEL
Set of slides No 5

State of the art in data compression
Stochastic processes and models for information sources

First Shannon theorem : data compression limit

Overview of state of the art in data compression

Relations between data mining and data compression

IT 2000-5, slide 1

Optimal prefix codes - Huffman Algorithm
Note : illustrations in the binary case.
Letn be the length of the longest codeworddry code).

Completeg-ary tree of deptn : acyclic graph built recursively starting at the root
(cf figure).

Oriented arcs labeled by tlecode symbols.

Father, son, siblings (brothers), descendants, ascendant
Interior vs terminal nodes (leaves)

Path : sequence of ar¢s;, , u;,) whereu;, = U(i—1)s-

Levels : root = level O,

IT 2000-5, slide 2

level 4

® |eaves 0 partial tree of level 1 erased
O interior nodes o - 0 RS
0 1 0 1
0 0
levell 0 1 S 0 .- 1
1 1
R
0 0
1 0 1 1 0.- 1
0 Q
0 - 0
1 S 1
1 e) 1. .7
Root @ Root
level O ' 0 :erased 0....-.
0 1 . 0.
1 2 .
0
0 1 S
1™ e N\ /S il
&
O D e, 1sed
1 0 1 e 1 N 0 i
0
1 S
1

(a) complete tree (b) incomplete treer 5400.5 gjide 3

Incomplete trees
Complete tree of which some complete subtrees have beesetEra
1 trees which are neither complete nor incomplete

But “tree is complete or incomplete>

A=(L-1)—-

q—1
Relations between trees and codes

The paths towards the leaves of completary tree of deptm are in one-to-one
relation with sequences of lengthbuilt from ag-ary alphabet.

Each and every instantaneous (prefix-free) code may besamex by a complete or
iIncomplete tree, and reciprocally, every such tree definesfax-free code.

(Nb. Some leaves may possibly not be labeled by a codeword)

IT 2000-5, slide 4

Proof :
Let assume we have a prefix-free code of word-lengths
Let

"= z:I{laXQ{HZ}

We start with a complete tree of depth

All codewords necessarily correspond to paths in the tregisg at the root and
ending somewhere in the complete tree (at a leave or mayloenat iterior node).

All these paths are different, since the code is necessagiylar.
The complete tree initially has a total @f leaves.

Let us construct the uncomplete tree corresponding to ttie lop pruning away some
of its (complete) subtrees.

How ?

IT 2000-5, slide 5

We merely insert all the codewords and mark the end-nodeleotorresponding
paths.

Now, letm; be one of these codewords : we erase all successor nodedadithede
In the corresponding path.

By doing this, we will not delete any of the marked nodes. Why ?

In addition, the number of leaves of the complete tree thatemove In this process
IS equal tag™ ",

Thus, we remove like this a total @?:1 q" " leaves of the original complete tree,
by iterating the deletion process through all codeword#haut removing any of the
() nodes originally marked as a codeword.

Consequence Since the original tree hag' leaves, and since (obviously) this pro-
cess works, we deduce that

Q@
an—ni < q'n
1=1
= prefix-free code must satisfy the Kraft inequality.

IT 2000-5, slide 6

Now let us show that if Kraft is true there exists a uniquelgattable code with the
given word length :

If the n; verify Kraft inequality, the an instantaneous code (hence uniquely decod-
able) based on these lengths.

Let us start withy " ; ri¢" " < q": = Vp<n: Yt rigP " < qP.
Why is it true ? ¢; is the number of words of lengti)
(Multiply Kraft by ¢?~", and truncate the sum after theh term.)

Now let us proove that we can build a prefix-free code with thgimal word lengths
(r; words of length, V7).

1. r1 words of lengthl : is it possible ?
2. ro words of lengti2 : is it still possible ? We must havg — r1)q < r2 (?)

3. r, words of lengthp : suppose we have already chosenghe 1 first groups of
words, and then verify that there is still enough room to e, words of lengthp.

IT 2000-5, slide 7

Questions.

If | give you the word lengths of an instantaneous code, cgaldbuild any such a code compatible ?
Under which condition can we complete the code with more w@rd

If we want to add words of minimal length :

How many words of lengtk< n» can we certainly add ?

What is the meaning of the conditioE:?:1 riqg b =17

And in terms of code tree ?

IT 2000-5, note 7

Given source symbol probabilitiesP(.S;), how to build an optimal code ?

NB: optimal = average word length minimal.

Let us explore the problem in the particular case whereg; = 2 (binary code)
A first idea to construat) prefix free codewords :

Start with a complete tree of depth= [log, Q|.

NB :if Q = 2™ andP(.S;) uniform, it is not necessary to work further (Why ?).
Otherwise : if() < 2™ we delet&™ — () subtrees of depth — 1.

IS it possible ?

= We have an algorithm to build a first, not necessarily optimaj code-tree
ldea : try to modify the tree, until it becomes an optimal tree.

Search operator : exchange subtrees in such a way that the aege word length
always decreases, and detect when optimality has been reach

IT 2000-5, slide 8

Optimality : is 7 = >% , n; P(S;) minimal ?

How to recognize an optimal tree ?

How to improve the tree in order to reach optimality ?

Reasoning tool : node probabilities

We decorate the leaves of the tree with the source symboéapirities.

We propagate this information upwards towards the root :dgemeceives the sum of
the probabillities of its sons.

The recursive structure of the code and of the tree, imphasit a codetree is opti-
mal, than all its subtrees are also optimal (with respectibesource alphabets).

In particular, the partial (pending) trees must be optinwalthe subset of source
symbols. Why ?

And also, the reduced trees that we would get by deleting soiniee subtrees,
must be optimal with respect to the probabilities attachdldeacorresponding nodes.

Why ?

IT 2000-5, slide 9

But there is more :

An optimal tree must also respeaban-localcondition which implies pairs of partial
trees of different levels :

If 177 and T, are two partial trees of different levels (levels of theiotpand of
different probabillities, then the most probable of the twestibe the least deep one.

Indeed, otherwise we could swap the two subtrees and thengtrpve (reduce)
average wordlength. By how much ?

For example ifn; < ng andp; < ps: A= (no — n1)(p2 — p1).
This criterion provides a nice criterion to improve our ctrde!

We merely need to localise subtrees of different levels affdrdnt probabilities
which violate the condition, and swap them to improve ourecod

IT 2000-5, slide 10

lllustration(s)

0.1 0.4 0.4

0.5 0.8 0.6 0.1
0.4 0.4

0.2
1 1 1 0.1

0.1 0.1

0.5 0.2 0.4
0.4 0.1

(a) Average length : 2 (b) Average length : 2 (c) Average length : 1.8

Can we exchange the partial trees which should be exchangeximproving (strictly)
the average codelength ?

Do we have an algorithm ?

Yes, but it doesn’t work... (in all cases)

IT 2000-5, slide 11

Conclusion :

We need to impose one more (at least) constraint on our a&jatr order to be
optimal.

Actually, we can (easily) prove the following :

For any source probability distribution, there exists artiopal prefix-free code that
satisfies the following properties :

1. Ifp; > p;, thenn,; < n,.
2. The two longest codewords have the same length

3. The two longest codewords differ only in the last bit andespond to the least
likely symbols.

Summary : ifp; > pa > ... > pg, then there exists an optimal (binary code) with
length satisfyingr; < ny < ... < ng_1 = ng, and codewordsng_; andmg
differing only in the last bit.

= We can restrict our search in the class of codes which satisfipese properties.

IT 2000-5, slide 12

Huffman Algorithm
Who has guessed ?

Who does remember ?

Sy 0. 0. 0. S5 0.1/_70.4/_70.4/
Ss 0.4/0.4/ S3 0.4 ___70.4"'
(a) Code construction (b) Building of code-tree

This produces an optimal prefix-less code (not unique iniggnhe

IT 2000-5, slide 13

Synthesis.

Huffman produces an optimal code tree and prefix-free cadd that

H(5) <n< H(5) +1
lOg q log q
Absolutely optimal code: If 7 = ﬁg

Iff n; = — logq P(Sz),VZ <~ P(Sz) = q~ ", Vi.
Reciprocally :

For every set of word lengths which respect the Kraft equality, there exists a source
probability distributiong; such that the optimal code has these word lengths and i
absolutely optimal.

What if p; # ¢;? One can show that in this case (binary code)

= Hq(pt,....pQ) + D((p1,....00) (a1, -, 4Q))-
What if g-ary code ?

IT 2000-5, slide 14

Data compression algorithms

1. Reversible text compression

e Zero order methods-» arithmetic coding
e Higher order methods

e Adaptative methods

e Dictionary methods

2. Image compression

e Multi-dimensional information structures
e Sources of redundancy
e Image transform based methods

IT 2000-5, slide 15

1. Reversible text compression

Let us assume binary input and output alphabets.
T . input text (sequence of bits)

U = C(T) : coded text (sequence of bits)

/(+) : length

Compression rate a@f’ on textT" : g(g(TT)))

Realized rate . average of texts
Preliminary stage :

Choice of a source alphabet segmentation of text into a sequence of words

S:{Sl,...,sm}

Parsingofl’: T' ~ s;1 - - - s,

IT 2000-5, slide 16

Zero order methods

Intuitively : we take into account only the frequencies df th

(Higher order : we take also into account correlations ansuugessive symbols)
Non-adaptative : code independent of the position in the tex

(Adaptative : code evolves as the text is screened)

NB. Text screened by increasing order of indexes

= One-dimensional (oriented) structure (time : from leftight)

1. Replacement schemes

ldea : replace eachy — w; (Shannon, Fano, Huffman)

2. Arithmetic codes

Remplace the whole textl’ — r € [0, 1].

IT 2000-5, slide 17

Example : 7"=111110111111101110111101110110

Let’s suppose that the are chosen as follows

S1 — 0

S9 = 10

s3 = 110 (1)
sq4 = 1110

s5 = 1111,

= parsing ofl’ gives ;' = $55955545455515453.

Let the code b€’ : s; — w;
s1 — 1111

S9 — 1110

S3 — 110 (2)
Sq4 — 10

S5 — 0.

= C'(T) = 01110010100111110110.
Thusé(C(T)) = 20 (et4(T) = 30) = compression rate &f/2.

IT 2000-5, slide 18

Questions

How to chose the; ? (source alphabet)

How to chose thev; ? (code)

NB: both influence the compression rate.

E.g.:ifS ={0,1}, replacement scheme always gives a compressiorrate
1. Choice ofS

Which types ofS make sense ?

We restrict our choice to the sets which are sufficiently tmiparse any sequence
of bits, and at the same time sufficiently small to do the parsn a single way (no
ambiguity).

This will mean that for such af, every binary text may be parsed in a single way
Into a sequence of symbols i

IT 2000-5, slide 19

Definition : SPP.

S ={s1,s2,...,Sm} (binary words) verify thestrong parsing propertPP)

& every binary text is representable in the form afraqueconcatenation,
T:Sil"'S@'tV, (3)

of some of thes; and a suffixv (possibly empty), such that none of thas a prefix

of v, andé(u) < Maxi<i<m E(Sz)

v = |leafof the parsing ofl" by thes;.

Uniqueness :If
I'=siy -8y, = 8j, - S5,

with v andyu having none of the; as prefix and/(v), £(1) < maxi<i<m £(s;), then
t=r,11 :jl,...,it:ir,andu:u.

Necessary and sufficient condition for SPP no prefix + Kraft equality

Y2t =1, (4)

S; €S

IT 2000-5, slide 20

Avantage prefix-less : efficient and on-line parsing
Avantage completeness : works for any text

Examples :

1. S = {0,1}* : fixed block lengths

E.g. L = 8 computer files (cf bytes).

Interest . natural redundancy its for 60 ASCII characters)
= free compressionmn = 60.

2. Complete prefix-free codes (cf. codetrees).

NB: we are going to neglect the parsing leaf in what follows..

How to choose the; ? Standard solution$ = {0,1}%, but...

IT 2000-5, slide 21

2. Choice of the (data compression) code

T given in binary, then parsed int6 using a source alphab8&t(SPP) :
Z =583 -8, (+possiblyr)

Choice of aw; for eachs;, suchthat(U) = ¢(w;, - - - w;,) IS minimal
LU) =) U wy;) =n) fil(w). (5)
j=1 i=1

NB: mathematically same problem than source coding- f;).
Conclusion : same solutions applicable, and same limnat{&hannon).
Optimal solution : Huffman using thé.

NB:

If f; change from text to text

— code changes» must transmit the; or the code— overhead.
Or we take a fixed source model.

IT 2000-5, slide 22

Binary expansion of a numberr € [0, 1]

r=lim » a;277, a;€{0,1} (6)
j=1

Then first bits : — a wordaias - - - a,,.

Notation :0.aias - - an = 27— a;j277.

Dyadic fraction, ifd ‘exact’ finite expansion.

Dyadic fraction=- two binary representations :
0.ayja9---an—11 =0.a7a9---a,—-1011111 ...

Convention

If dyadic : we use finite expansion

Otherwise 3 1 single expansion (infinite).

IT 2000-5, slide 23

Shannon code

We have already seen the word lengths (proof of first Sharimsorém), but not the
method invented by Shannon to build the prefix-free codegusiase word-lengths.

Let thesq, ..., s, besorted suchthgy > fo > ---> f,, >0
(we can remove thosg which do not appear at all after parsing té&x}
Let F; = 0 andFy, = Y #~ f;,2 < k < m and denote by = [log, f; *].

The Shannon codg; — w; consists in using fotw; the ¢; first bits of the binary
expansion oft;.

Question : is this code prefix-free ?
Convince yourself...

Average length: -
shannon< Hm(fla U fm) + 1. (7)

IT 2000-5, slide 24

Example : s5s055545455518483 — f1 = fo = f3 =1/9, fa = f5 =3/9

Sort:s, =s5_;41 — 0] =0, =2andly =0, =t =4

= 0 =(00...)
;= 3/9 =(01..)
Fl— 6/9 =(.1010...) (8)
Fl= 7/9 =(.1100...)
Fl = 8/9 =(.1110...)

Shannon code
s5 = 7 — 00
s4 = 85 — 01
s3 = s5 — 1010 (9)
so = sy — 1100
S1 — 8/5 — 1110

Average length i8/3 = 2.666, to compare withH = 2.113.

Compression ratg/4 (24 bits to represent the tekg).

IT 2000-5, slide 25

Fano code (philosophy)
Construction of a codetree in a “top-down” fashion.
Strategy is similar to decision tree building techniques.

We start with source entropl{ (.S) (given) : how to divide the set of symbols so as
to minimize average conditional entropy ?

Question

S H(5)=H(S5,Q) = H(5|Q)+ H(Q)

=- maximizeH (Q)
= equilibrate probabilities

Code : decision tree

IT 2000-5, slide 26

Fano code (algorithm)

- fi ands; sorted by decreasing order of tlie

- we split according to this order, so as to maximiZéQ) :

= 2521 fiand)_ ", ;| f; as close as possible
- one proceeds recursively with each subsesingletons

Example :
S1 — 3/9
S92 — 3/9
S3 — 1/9
sq = 1/9
S5 — 1/9

Average lengtl20/9 = 2.222.

In general :

One can show thatlrano < H,, (f1, - ..

NB: if for each questiodd (Q) = 1, thenlrano= H,,(f1, . ..

— 00

— 01

el =

Ol O

— 10

1 0 — 110

1 1 — 111.

7fm)

(10)

IT 2000-5, slide 27

Huffman code
Bottom-up construction of the codetree optimal.

Example

s1 — 0

s1 — 10

s1 — 110

s1 — 1110

s1 — 1111

Average lengtl20/9 = 2.222.

We have /pyfiman < Hy(f1, -5 fm) + 1.

IT 2000-5, slide 28

Summary (symbol codes) :

What about the choice of the source alphaét
What about thef; ?

Given by a source model

Or estimated from each given text :

- necessity to transmit code (what is the overhead ?)
- necessity to adopt some conventions in code construcigamignms
- Is not an on-line method.

Optimality :

CHuffman < miﬂ{KShannon gFano} but gShannor?z?gFano

What if thepz- 7é fz ?

What if we consider the extended source ?

IT 2000-5, slide 29

Arithmetic coding (the Rolls)

|dea (stream code)

For a given source text lengii.

We associate to each possible text a sub-intervdl.df (they don’t overlap)
Sub-interval defined by a probabilistic model of the source.

C'(T) = r € sub-interval, represented in binary with just enough loitsvoid confu-
sion among different numbers corresponding to differextste

Small sub-intervals = unlikely texts :
= unlikely texts : need many bits to specity
Sub-interval of a text is included in the sub-interval of gmgfix of this text :

= recursive (and on-line) construction

IT 2000-5, slide 30

lllustration

T =111110111111101110111101110110 thus f(0) = 6/30 = 0.2, f(1) = 0.8

0 1 |
| | |
9 1 |
| | |
L9 ! |
| | |
10) i
I |
N) |
] |
0.0 1.0

IT 2000-5, slide 31

How does it work ?
Shannon-Fano-Elias— starting point

Symbol code : cumulative symbol frequency diagram (NB: syisilare in arbitrary
order.)

Fm—l—l
Fitq
fi F;
F;
Fy
S1 S; Sm
T 1
Fi=F, + 5/

|7] : keep thel first bits of the binary expansion of

IT 2000-5, slide 32

Let us take forr = F'; and/; = [—log fi] + 1.

One can check thatd.w; = | F; s, in | F;, Fyyq].
One can also check that cosle— w; Is prefix-free.
Average length 7 < H,,(f1,..., fm) + 2.

NB: we pay for 1 bit because of the prefix condition, which iposed by the nature
of a symbol code (can be dropped for a stream code).

By itself not very efficient, but the idea is at the basis ofranetic coding.

If, instead of coding source symbols we code blocs of sowuo®sls : same idea
still works but the overhead of the rounding and prefix bitsdmee less dramatic.

If we code the whole text (Mega-Block) : no need for the prebrdition : we can
assumé(T) = |—log f(T)].

= Arithmetic code

IT 2000-5, slide 33

How to encode and decode efficiently
NB. For a long text, explicit method doesn’t work.
Letn be the length of the texf.

We use a tree of deptito represent (implicitly) all possible texts of length

0] 1
4)
I\ J ” :C5
T1 T2 T3

The leaves sorted from left to right correspond to the lextaphic order of all pos-
sible texts.

Letn = 5 and let’s suppose thaf represents our text.

IT 2000-5, slide 34

We must determiné’(z°) and f (z°) to encode the text.
f(z™) : given by the source model (see also subsequent discussion)

F(z™) : is in principle laborious, since it is defined as a sumyfof) over all texts
which are on the left of™ : about2™~! terms (in the average).

But, this sum can be decomposed in a different way : sum ofriblesof the subtrees
which are on the left o£™ : only abouts terms.

Let T, 4,--2,_,0 denote the sub-tree pending below the prefixs - - - x5_10. The
frequency of this sub-tree is

f(Tozgeap_i0) = Y, fleize- 2p10ykg1 - Yn) (11)
Yk+1Un
= f(z1z2- - 28-10), (12)

=- coding reduces to the computation of orderalues off(-).
For example, if we use a zero order model, we compgit€) = [, f(x;).

Thus, this improved version will require ordef operations.

IT 2000-5, slide 35

Example
Binary text of the figure, withf(1) =0 et f(0) =1 — 6.
Order zero hypothesis (successive symbols independé(),. .., s,) = f(s1) - f(sn

Let us compute the value @f(01110) (z° on the figure).

We find that
F(01110) = f(T1) + f(T2) + f(T3)
= f(00) + f(010) + f(0110)
= f(0)f(0)+ f(0)f(1)f(0) + f(0)f(1)f(1)f(0)
= SO+ f(1)(1+ f(1)))f(0)

0
Observation : many identical terms in tlié¢) which have to be recomputed.
= Recursive computation of thg-) : linear time complexity
= reduction of the number multiplications/additions by ag to recompute com-

mon factors of thef;.

IT 2000-5, slide 36

Encoding algorithm

The source symbols are treated sequentially :

1. Letz"* be the prefix already treated at stagef (z*) the corresponding relative
frequencyF(z*) the cumulative frequency (left trees), amglthe current node.

2. Initialization: & = 0; 2° empty string;f (z") = 1; F(2") =0
3. Updating : Letb denote £ + 1)-the bit read of the source text.

o if b=1, F(z""1) = F(z%) + f(zF0).
o if b =0, F(z"1) = F(zF).

o 2Tl = 2Fp; f(2*T1) see comments below; current nage, ; is implicitly
updated (following branch) from nodeu;..

4. lteration : if £k < n, we iterate, otherwise the valudg(z™) and f(x") are
returned.

5. Termination : the codeword F'(z") + f(2")] fiog £(zn)] IS CONStructed.

IT 2000-5, slide 37

Computing the f(x*) recursively

Independent symbolsf (z**1) = f(z") f (z141)

In general :f («*1) = f(zypla) f(a*)

Markov : f(z"*1) = f(wpi1]ar) f(2¥)

m-ary source alphabet :cumulate frequencies of all left subtrees at each stage.

Decoding: works symetrically.

The decoder uses the binary expansion of the number 0.w; In order to select
branches in the tree.

Same computations, leaving on the left all subtrees su¢hfthet) < 0.w;.
At each transition the encoder will produce one source symbo

The decoding process stops aftesymbols

= the decoder needs to be informed of the source message.length

IT 2000-5, slide 38

On-line Algorithm

Stopping criterion is problematic.

Transmission of length vs special end of text symbol “.”

Why on-line ?

Average length

Zero order mode % bits more than the zero-order entropy linddt,, (f1, ..., fim)-
Remarkably flexible

Can easily adapt to any left-to-right oriented probabdisburce model.

Technicalities (...)

Mainly : computing with the very-long dyadic fractions (higrecision real-number
computations)

E.g: text of IMB— a real number with about)® bits precision.

IT 2000-5, slide 39

Data compression with higher order models

Instead of using the model of “monograryis;), one uses the frequencies of multi-
gramsf(s*+1) (for an orderk model).

Models : either provided a priori or determined from the givext, or from a sample
of representative texts.

If model depends on encoded text: overhead (transmit multigram frequencies).
Higher order Huffman encoding

How would you do ? In practice : two possible solutions

1. Code blocs of length + 1 = big Huffman tree.

2. Constructn” small Huffman trees for the conditional distributiofis;.,1|s"),
and take into account the previokssymbols to encode/decode border effects
(initialization)

Which one is better : no general rule.

IT 2000-5, slide 40

Adaptative data compression

These techniques allow us to treat two problems :

1. Non stationary sources : a single code is not good for thadentiext.
2. Don’t need to transmit probabilistic model to decoderljog...)
Very simple generic idea :

Let T = s” be the text to endode/decode.

When coding (and hence also when decodingktitiee symbol we use a probabilistic
model determined from the already seen symbole (pgé&fit).

Model initialized e.g. with a unform distribution, and thepdated sequentially after
each source symbol.

NB: idea is also compatible with higher order source models.

IT 2000-5, slide 41

Implementation details (...)
Huffman

Since the source model changes after each symbol, the eedrtrst be recomputed
= not very practical.

Example : a source with six symbols : intitialization of the tree : usedode the
first symbol.

S1

52

53

S5

56

IT 2000-5, slide 42

NB: we need some conventions to treat multiple possibslitie

After the next symbols have been read :

After readingss

What you should remember :
3 an efficient algorithm to update Huffman trees incrementi@huth-Gallager)
Adaptive arithmetic coding (the adaptive Rolls)

Think about it yourself...

IT 2000-5, slide 43

Dictionary methods for data compression

Basic idea :

Use a dictionary (set of frequently used words)

Parse text using the dictionary :

— encode text as a sequence of addresses in the dictionary

NB: similar (but not identical) to source alphabet parsitheg.

NB: but no (e.g. SPP) hypothesis on the contents of the aiatyo
Solutions: use a “library” of specialized dictionaries

E.g. : one dictionary for English texts, one f6fgX source code...
Problem: maintenance of dictionaries; does not work foraamiom” text

NB: dictionary methods— a generic approach in Al. ..

IT 2000-5, slide 44

“Universal” dictionary methods

Rebuild the dictionary on the fly for each text, incremental the text is read.
— “universal” adaptive methods

=- algorithms invented by Lempel and Ziv (1977-78)

Tow basic methods : LZ77 et LZ78

= numerous implementations (e.g. GNUzip, PKZIP, COMPRESS, G)

Basic principle and a few discussions follow.

IT 2000-5, slide 45

Basic Lempel-Ziv Algorithm
e One starts with an empty dictionary;

e then, at each step one reads symbols as long as current pekfngs to the dic-
tionary;

e the prefix together with the next source symbol form a wordclwhs not yet in
the dictionary=- this new word is inserted in the dictionary

E.g. if T = 1011010100010. . ., this yieldsl, 0, 11, 01, 010, 00, 10,
e The present word is encoded : address of prefix in the diatyoh#ast bit

Let c(n) denote the address (integer) in the dictionary. We haveditafing for our
example text :

source words| A\ 1 0) 11 01 010 00 10

c(n) 0 1 2 3 4 5 6 7
c(n)binaryaddress 000 001 010 011 100 101 110 111
(address, bit)| — (000,1) (000,0) (001,1) (010,1) (100,0) (010,00 (001,0

= encoded text U = 0001, 0000, 0011, 0101, 1000, 0100, 0010.

IT 2000-5, slide 46

Why does this idea allow to compress ?
Because the size of the dictionary grows “slowly” with theesof the source text.
Let c¢(N) be the number of encoded entries for a text of length

= [log¢(N) — 1] + 1 bits for every word

= in average S8e V) hits/symbol

One can show that=> asympoticallylim,, ., dXtesc+l) _ g (S)

n

almost surely for messages of any stationary ergodic source

= “universale” algorithm

IT 2000-5, slide 47

On-line character : problem= address coding

Solution=- use current dictionary size to determine number of bits.

source words| A 1 0) 11 01 010 00 10

c(n) 0 1 2 3 4 5 6 7
c(n)binray address 000 001 010 011 100 101 110 111
[log, c(n)] - 0 1 2 2 3 3 3
(address, bit)] — (,1) (0,0) (0L,1) (10,1) (100,0) (010,0) (001,0)

= U = 1,00,011, 101, 1000, 0100, 0010
Adaptativity : = local dictionary
Variants : dictionary management, address coding (e.g. Huffman)

Relative optimality : = not very competitive in general but very robust (no assump-
tion about source behavior).

The asympotic performances are reached only when the wiggficstarts to become
representative : contains a significant fraction of suffifielong typical messages.
= for very long texts

IT 2000-5, slide 48

Summary of text compression :we have seen the state of the art.
Complementarity of good source models and good coding i#thgas = need both
Codes of fixed (given) word lengths = conceptual tool for AEP

Symbol codes :Huffman

Stream codes :

1. Are not constrained to use at least one bit per source dymbo
= work also for a binary source alphabet

2. Arithmetic coding : a nice probabilistic approach (s@untodeling)
= allow one to exploit a priori knowledge about the real world.

3. Lempel-Ziv : universal method, able to learn “everythiiagout a stationary er-
godic source, at the expense of more data (longer messages).

Data compression~ Automatic learning

IT 2000-5, slide 49

