References



next up previous
Next: About this document Up: Machine learningneural networks Previous: Conclusion

References

1
Wehenkel, L, Pavella, M, Euxibie, E, and Heilbronn, B `Decision tree based transient stability assessment - a case study', IEEE Trans. on Power Syst. Vol PWRS-9 No 1, pp 459-469, 1994

2
Jacquemart, Y, Wehenkel, L, and Van Cutsem, T `Analyse de la sécurité de tension par la méthode des arbres de décision. Présentation du modéle de réseau et de la génération de situations de conduite', Tech. report, University of Liège - Belgium, Dec. 1993

3
Michie, D, Spiegelhalter, D J, and Taylor, C C, editors Machine learning, neural and statistical classification, Ellis Horwood, 1994

4
Weiss, S M and Kulikowski, C A Computer systems that learn Morgan Kaufmann, USA, 1991

5
Quinlan, J R `Learning efficient classification procedures and their application to chess endgames', In Michalski, R S, Carbonell, J, and Mitchell, T, editors, Machine Learning : An artificial intelligence approach , chapter 15, pp 463-482 Morgan Kaufman, 1983

6
Wehenkel, L, Van Cutsem, T, and Ribbens-Pavella, M `An artificial intelligence framework for on-line transient stability assessment of power systems', IEEE Trans. on Power Syst. Vol PWRS-4, pp 789-800, 1989

7
Wehenkel, L, Van Cutsem, T, and Ribbens-Pavella, M `Artificial intelligence applied to on-line transient stability assessment of electric power systems (short paper)', In Proc. of the 25th IEEE Conf. on Decision and Control (CDC), pp 649-650, Dec. 1986

8
Wehenkel, L and Pavella, M `Decision tree approach to power system security assessment', Int. J. of Elec. Power and Energy Syst. Vol 15 No 1, pp 13-36, 1993

9
Van Cutsem, T, Wehenkel, L, Pavella, M, Heilbronn, B, and Goubin, M `Decision tree approaches for voltage security assessment', IEE Proceedings - Part C Vol 140 No 3, pp 189-198, May 1993

10
Rovnyak, S, Kretsinger, S, Thorp, J, and Brown, D `Decision trees for real-time transient stability prediction' IEEE PES Summer Meeting, Paper # 93 SM 530-6-PWRS, 1993

11
Hatziargyriou, N D, Contaxis, G C, and Sideris, N C `A decision tree method applied to on-line steady-state security assessment', IEEE PES Summer Meeting, Paper # 93 SM 527-2 PWRS, 1993

12
Hertz, J, Krogh, A, and Palmer, R G Introduction to the theory of neural computation, Addison Wesley, 1991

13
Zurada, J M Introduction to artificial neural systems, West Publishing, 1990

14
Werbos, P J Beyond regression : new tools for prediction and analysis in the behavioral sciences, PhD thesis, Harvard University, 1974

15
Rumelhart, D E, Hinton, G E, and Williams, R J `Learning representations by back-propagating errors', Nature Vol 323, pp 533-536, 1986

16
Fombellida, M and Destiné, J `Méthodes heuristiques et méthodes d'optimisation non contraintes pour l'apprentissage des perceptrons multicouches', In Procs. of NEURO-NIMES 92, Fifth International Conference on Neural Networks and their Applications, 1992

17
Sobajic, D J and Pao, Y H `Artificial neural-net based dynamic security assessment for electric power systems', IEEE Trans. on Power Syst. Vol PWRS-4 No 4, pp 220-228, Feb. 1989

18
Fischl, R, Kam, M, Chow, J-C, and Ricciardi, S `Screening power system contingencies using back propagation trained multi-perceptrons', In Procs. of the IEEE Int. Symposium on Circuits and Systems, pp 486-494, 1989

19
Aggoune, M, El-Sharkawi, M, Park, D C, Damborg, M, and Marks II, R J, `Preliminary results on using artificial neural networks for security assessment', In Procs. of the Power Industry Computer Application Conference, pp 252-258, 1989

20
Niebur, D and Germond, A `Power system static security assessment using the Kohonen neural network classifier', In Procs. of the IEEE Power Industry Computer Application Conference, pp 270-277, May 1991

21
DyLiacco, T E Control of Power Systems via the Multi-Level Concept, PhD thesis, Rep. SRC-68-19, Sys. Res. Center, Case Western Reserve Univ., 1968

22
Peças Lopes, J A, Fernandes, F M, and Matos, M A `Fast evaluation of voltage collapse risk using pattern recognition techniques', In Proc. of IEEE-NTUA Joint Int. Power Conf. Athens Power Tech, pp 357-361, Sept. 1993

23
Wehenkel, L and Akella, V B `A hybrid decision tree - neural network approach for power system dynamic security assessment', In Proc. of the 4th Int. Symp. on Expert Systems Application to Power Systems, Melbourne, Australia, pp 285-291, Jan. 1993

24
Wehenkel, L Machine learning approaches to power system security assessment, Thèse d'Agrégation de l'Enseignement Supérieur, University of Liège - Belgium, May 1994

25
Van Cutsem, T, Wehenkel, L, Pavella, M, Heilbronn, B, and Goubin, M `Decision trees for detecting emergency voltage conditions', In Proc. of the 2nd Int. NSF Workshop on Bulk Power System Voltage Phenomena - Voltage Stability and Security, Deep Creek Lake, Ma, pp 229-240, Aug. 1991

26
Harmand, Y, Trotignon, M, Lesigne, J F, Tesseron, J M, Lemaître, C, and Bourgin, F `Analyse d'un cas d'écroulement en tension et proposition d'une philosophie de parades fondées sur des horizons temporels différents', In CIGRE Report 38/39-02, Paris, Aug. 1990

27
Van Cutsem, T `Analysis of emergency voltage situations', In Proc. of the 11th Power Systems Computation Conference, pp 323-330, Aug-Sept 1993

28
Van Cutsem, T, Jacquemart, Y, Marquet, J N, and Pruvot, P `A comprehensive analysis of mid-term voltage stability', IEEE PES Summer Meeting, Paper # SM94-056 PWRS, 1994

29
Friedman, J H and Stuetzle, W `Projection pursuit regression', Jour. of the Am. Stat. Ass. Vol 76 No 376, pp 817-823, Dec. 1981

30
Towell, G G and Shavlik, J W `Extracting refined rules from knowledge-based neural networks', Machine Learning Vol 13, pp 71-101, 1993

31
Breiman, L, Friedman, J H, Olshen, R A, and Stone, C J Classification and Regression Trees, Wadsworth International (California), 1984

32
Wehenkel, L `Contingency severity assessment for voltage security using non-parametric regression techniques', submitted for publication, 1994.




Wed Jan 18 20:24:41 MET 1995