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Context, Motivations, and Background

The nature of Electric Power Systems

Schematic view of a generic Electric Power System
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Mission: Deliver electricity from producers to consumers, while
ensuring high reliability of supply at the lowest possible cost
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Context, Motivations, and Background

The European Electric Power System

A network of ≈ 30,000 branches /
20,000 nodes at EH voltage levels
(225-400kV)

About 30 Transmission System
Operators (TSOs)

Coupled energy markets

Quickly increasing penetration of
renewable generation

Ageing physical infrastructure

Increasing uncertainties and faster
dynamics

Cost: 20-30% of electricity bill
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Context, Motivations, and Background

Electric power system reliability

Requirement:
At sub-second temporal resolution, balance
generation/storage/consumption, under network constraints, in
spite of various threats

Threats faced:
Variations of generation and demand, weather conditions
Component failures, human errors, adversarial attacks

Problems to avoid:
Component overloads, voltage or frequency deviations
Cascading overloads, instabilities, blackouts

Opportunities:
Optimisation and control of flows closer to real-time
Preventive maintenance and planning of operation
Adaptation of the grid structure to market needs
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Context, Motivations, and Background

Reliability management (objective)

Taking decisions in order to ensure the reliability of the system
while minimizing socio-economic costs

Reliability management

System operationsAsset managementGrid development

Operation planning Real-time operation

Long-term Mid-term Short-term Real-time
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Context, Motivations, and Background

Organisation of the talk

PART I
Traditional Approach to Reliability Control in Operation

PART II
Probabilistic Problem Formulations

PART III
From Operation to Maintenance and Design
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Traditional Approach to Reliability Control in Operation

Part I

Traditional Approach to

Reliability Control in Operation

Decomposition of the overall problem

Layer-wise models and control strategies

... introduced soon after the US Northeast blackout of 1965
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Traditional Approach to Reliability Control in Operation

Decomposition into 4 concurrent control layers

24h-48h period
Past Future

Present

Preventive control

Corrective control

Emergency control

Operation planning

Horizon of several hours to days

Horizon of 1 to 2 hours

Horizon of 5 to 10 minutes

Enable reliable operation with minimal impact on economy

Take strategic decisions (maintenance, startups, ...), prepare operation
Many uncertainties: weather conditions, market clearing

Take preventive decisions (switching, rescheduling,...)

Operate at optimal cost under reliability constraints

Cover contingencies, prepare/adjust corrective control plans

Maintain system intact

Apply (prepared) corrective actions
Cover failures, unexpected reactions

Automatic application of heroic actions to avoid blackout
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Traditional Approach to Reliability Control in Operation

Models and current control strategies

Emergency control layer
fast response of automatic control and protection devices
behavior predicted by deterministic time-domain simulation

Corrective control layer
if necessary, steer the system back into stable conditions
OPF problem (big MINLP)

Preventive control layer
ensure security with respect to all N-1 contingencies
SCOPF problem (much bigger MINLP)

Operation planning layer
enable secure next-day operation around most likely forecast
Multi-step SCOPF problem (even much bigger MINLP)
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Probabilistic Problem Formulations

Part II

Probabilistic Problem Formulations

Motivations for probabilistic approaches

Real-time sub-problem

Operation-planning sub-problem
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Probabilistic Problem Formulations

Motivations for probabilistic approaches

What about
The variable probabilities of N-1 contingencies, and those of
N-2, N-3, . . . contingencies ?
Acknowledging uncertain corrective and emergency control
responses ?
Taking into account the probability of large deviations from
forecasts ?
Handling infeasibility of the N-1 (or any other) security
criterion ?

Large amounts of renewable and dispersed generation, indeed
lead to faster changing and less predictable flows

Deterministic approaches disregard information about
probabilities of threats and failure mechanisms

State-of-the-art computing and data driven methods could
enable more informed decision making
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Probabilistic Problem Formulations

Real-time sub-problem: preventive and corrective control
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Probabilistic Problem Formulations

Real-time sub-problem: preventive and corrective control

24h-48h period

Past Future

Present

Preventive control

Corrective control

Emergency control

Operation planning

Horizon of several hours to days

Horizon of 1 to 2 hours

Horizon of 5 to 10 minutes

Enable secure operation with minimal impact on economy

Take strategic decisions (maintenance, startups, ...), prepare operation
Many uncertainties: weather conditions, market clearing

Take preventive decisions (switching, rescheduling,...)

Operate at optimal cost under security constraints

Cover contingencies, prepare/adjust corrective control plans

Maintain system intact

Apply (prepared) corrective actions
Cover failures, unexpected reactions

Automatic application of heroic actions to avoid blackout
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Probabilistic Problem Formulations

Pictorial view of real-time reliability control

Preventive control:
Given RT situation s
- choose up(s) and

st. constraints

Contingency 1

Contingency N

apply uc (s, c1)

apply uc (s, cN )

- prepare uc (s, c), ∀c ∈ C(s)

Corrective control

Outcome

(ctrl failure)

(contingency wise)

OK

NOK

Contingency 2

apply uc (s, c2)

15



Probabilistic Problem Formulations

Two-stage stochastic programming formalization

In compact form, the real-time preventive/corrective control problem amounts to

min

fp (up) + . . .

 (1)

s.t. up ∈ Up (2)

(3)

(4)

where

Up , the set of allowed preventive control decisions

fp(up), the cost of preventive controls (first-stage cost)

C , the set of possible contingencies c, πc their probabilities

Uc (up), the set of allowed corrective controls uc (c)

fc (uc ), the cost of corrective controls (second stage cost)

B, the set of possible behaviors b in emergency control, πb their probabilities

fe(up , c, uc (c), b), the cost of service interruptions for a scenario (terminal cost)

(NB: we hide the fact that all quantities may depend on the real-time situation s.)
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Probabilistic Problem Formulations

Two-stage stochastic programming formalization

In compact form, the real-time preventive/corrective control problem amounts to

min

fp (up) +
∑
c∈C

πc (c)

fc (uc (c)) +
∑
b∈B

πb (b|uc (c)) fe (up , c, uc (c), b)

 (1)

s.t. up ∈ Up (2)

∀c : uc (c) ∈ Uc (up) (3)

Pc,b{fe(up , c, uc (c), b) ≤ δ} ≥ 1− ε (4)
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Probabilistic Problem Formulations

Discussion of the real-time problem nature

Size of the problem (e.g. for the TSO of Belgium or France)

#C in the order of 106 (considering all N − 2 contingencies)
Up and Uc high-dimensional integer/continuous spaces (dim ≥ 103)
All in all, in the order of 109 decision variables

The main additional difficulty comes from function fe
it translates the emergency control outcome along a scenario (in the form
of an estimate of the cost of service interruptions).
the physical behavior of the power system leads to a high dimensional set
of non linear (i.e. non convex) power flow equations.

The chance constraint P{fe ≤ δ} ≥ 1− ε
It models the target reliability level sought by the TSO
It can be expressed by using auxiliary binary variables (given the finite
number of scenarios).

NB: outcome of solving the real-time control problem

Optimal preventive control u∗p and corrective control strategy u∗c (c).
If not feasible needs relaxation (see the end of this talk)
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Probabilistic Problem Formulations

Solution strategies (recent results)

1 Progressively growing of the set of contingencies
Simulate contingency responses and rank them by order of impact
Then, solve optimization problem on top impact subset
Iterate, by growing the set greedily until chance constraint is satisfied.

2 Simplified modeling of the emergency control layer
Replace by a set of constraints to ensure that no severe service
interruption would occur under successful operation of corrective control
Use simplified (optimistic/pessimistic) models to (upper/lower) bound
cost of service interruption in case of corrective control failure

3 Putting both together, makes solution reachable:
GARPUR FP7 project deliverables
See http:www.garpur-project.eu/deliverables D2.2, D6.2, D9.1
E. Karangelos and L. Wehenkel. IEEE Trans. on PS, 2019.

Still cumbersome computations (see next slide)
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Probabilistic Problem Formulations

Illustrative CPU times

(Computing env.: 2 core Intel 2.9 GHz/16GB RAM; IPOPT/JULIA)

Test Case:

System: IEEE 3-area RTS (73 buses/120 branches/111 contingencies)
Physical model: AC power flow model; no dynamics;

One-shot SCOPF without chance-constraint (for reference):
180,000 vars, 140.000 eq. constraints, 30,000 ineq. constraints
1200 sec. CPU time

Proposed iterative probabilististic approach (epsilon 5e-3 → 5e-6):

Number of SIMUL/OPTIM iterations: 1 → 11
Overall CPU time for sequential impl.: 220 → 2500 sec.

Proportion of CPU-time devoted to OPTIM only:

With a sequential Cont.SIMUL: 6% - 11% (measured)
With a parallel Cont.SIMUL: 83% - 93% (extrapolated)

Under the assumption that the Cont. SIMUL part can be reduced
by trivial parallel computations over the set of contingencies, the
OPTIM part is clearly the challenge for large scale systems.
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Probabilistic Problem Formulations

Operation planning sub-problem: preparing operation
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Probabilistic Problem Formulations

Operation planning sub-problem

24h-48h period
Past Future

Present

Preventive control

Corrective control

Emergency control

Operation planning

Horizon of several hours to days

Horizon of 1 to 2 hours

Horizon of 5 to 10 minutes

Enable reliable operation with minimal impact on economy

Take strategic decisions (maintenance, startups, ...), prepare operation
Many uncertainties: weather conditions, market clearing

Take preventive decisions (switching, rescheduling,...)

Operate at optimal cost under reliability constraints

Cover contingencies, prepare/adjust corrective control plans

Maintain system intact

Apply (prepared) corrective actions
Cover failures, unexpected reactions

Automatic application of heroic actions to avoid blackout
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Probabilistic Problem Formulations

Pictorial view of operation planning

Operational planning:

Given So ,Uo

- choose uo (So ) ∈ Uo

st. P{f ∗rt <∞} ≥ 1− η

System Impact

OK

NOK

Scenario 1

Scenario 2

Scenario K

Compute up(s2)

RT preventive ctrl

(scenario wise)

Compute up(s1)

Compute up(sK )

RT corrective ctrl

Cont. 1

Cont. N

uc (s1, c1)

uc (s1, cN )

(contingency wise)

uc (sK , cN )
Cont. N
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Probabilistic Problem Formulations

Preparing real-time operation

Ensure (with high enough probability) feasibility of reliable real-time
operation

Horizon of several hours to days

Day(s)-ahead:

predict weather, demand, market over the next day(s)
prepare some strategic actions

Intra-day:

use incoming information to revise strategic actions, and
launch them only at the latest possible moment

Minimize deviation from market clearing: only act if feasibility of
reliable real-time operation is in danger

Take into account preventive and corrective real-time control
strategies and their possible failures over the next horizon
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Probabilistic Problem Formulations

Solution strategies (work in progress)

Choose uo optimizing economics and ensuring feasibility of reliable
operation over possible future scenarios for 24 or 48 time steps.

Rationale:

Economics: driven by the immediate cost of uo and the implied cost of urt
over the likely next day scenario(s).
Reliability: driven by the capability to operate during the next day for
expectable worst-case scenarios and contingencies.

Modeling strategy:

Real-time operation modelled ‘as an automaton’ along next day horizon
according to previous explanations.
Problem is hence a ‘single stage stochastic programming problem’
However the real-time reaction to day ahead decisions is modelled by a
sequence of complex optimization problems.

Computational strategy:

Discretize uncertainty set in order to build a finite dimensional
optimization problem.
Define suitable ‘fast’ proxies to model real-time operation.
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Probabilistic Problem Formulations

Uncertainty model for operational planning

t+6h

t+3h

t

t+24h

t+12h

A scenario tree for operation planning
over a horizon of 24h, starting at
the current time t, with recourses at
t + 3h, t + 6h, t + 12h, t + 24h.

Each path represents a 24h exogenous
scenario; nodes correspond to planning
decision-making opportunities. The
nominal scenario is highlighted.

Once the tree is ’solved’, only the
planning decision at current t is
launched.

At any subsequent opportunity, a new
tree may be regrown and re-optimized,
based on new information about So .
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Probabilistic Problem Formulations

Ongoing research tracks

1 Use Machine Learning to build proxies of real-time operation

2 Use the learnt proxies in combination with variance reduction
approaches to speed up assessment of day-ahead decisions

3 Use learnt proxies to help discretizing the set of possible scenarios to
be incorporated into the day-ahead decision making problem
formulation.

4 Iterate assessment and optimization, while exploiting massive
parallel computations.

5 See L. Duchesne et al, IEEE PowerTech 2017 and PSCC 2018; E.
Karangelos et al, IREP 2017.
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From System Operation to System Design

Part III

From System Operation to System

Maintenance and Design

Asset management and system development

The general reliability management problem

27



From System Operation to System Design

Asset management and system development vs operation
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From System Operation to System Design

Asset management: Outage scheduling

Day

0 28 56 84 112 140 168

commited

Color_code

6

27

25

2

21

Li
n
e

Outage schedule

When to carry out given maintenance and replacement operations ?

Typically planned on the basis of a yearly horizon

Should model logistic and system operation constraints

Goal is to minimize cost plus impact on operation

Take uncertainties into account via Monte-Carlo simulation
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From System Operation to System Design

Asset management: Maintenance budgeting

Ageing Infrastructure

Need to anticipate

Avoid Investment Wall

How much to invest in maintenance vs replacement to maintain
overall reliability expectations ?

How to spread the maintenance and replacement efforts over time ?

Needs to consider long-term horizons of 20 - 30 years

Should model component ageing, impact of maintenance, feasibility
of outage scheduling and system operation
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From System Operation to System Design

System development

Adapt the grid structure to cope with fu-
ture electricity generation and consump-
tion patterns

Where to build new lines, new
substations, new transformers ?

What kind of technology choice
(capacity, DC vs AC, underground
vs overhead, . . . ) ?

What other companion investments ?

Electricity storage, IT infrastructure, . . .

Goal is to optimize compromize between CAPEX and OPEX
(including future maintenance and operation costs)

Needs to model uncertainties about system needs and future
technological solutions
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From System Operation to System Design

The generic reliability management problem

Formulated as a multi-stage decision making problem over horizon 0 . . .T , under
assumed exogenous uncertainties ξ1...T ∼ (S,P), with candidate policies u0...T−1 ∈ U ,
and known state transitions xt+1 = ft(xt , ut , ξt+1).

(these 4 modelling items depend on the considered reliability management context)

(1) Socio-economic objective function over horizon:
maxu E{

∑T
t=0(Market surplus - TSO costs - Costs of service interruptions)}

... i.e. the fully orthodox social-welfare optimizer viewpoint...

(2) Reliability target over induced system trajectories:
s.t. P{x1...T (ξ, u) ∈ Xa} ≥ 1− ε

(3) Uncertainty discarding principle:
allows to trim (S,P) to (Sc ,Pc ), provided that approximation in (1) ≤ ∆E .

(4) Relaxation principle:
allows to relax ∆E → ∆E + λ if (2)+(3) yield an unfeasible problem.

See http:www.garpur-project.eu/deliverables D2.2.
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From System Operation to System Design

GARPUR RMAC: in pictures
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From System Operation to System Design
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