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of tree-based and kernel-based methods.

B. Present in this light some extensions of tree-based

methods to learn with non standard data.

Louis Wehenkel Regression tree kernels... (2/70)



Motivation/Overview

Motivation/Overview

A. Highlight some possible connections and combinations

of tree-based and kernel-based methods.

B. Present in this light some extensions of tree-based

methods to learn with non standard data.

Part I: Standard view of tree-based regression
◮ Standard regression tree induction
◮ Ensembles of extremely randomized trees

Part II: Kernel view of tree-based regression
◮ Input space kernel formulation of tree-based models
◮ Supervised learning in kernelized output spaces
◮ Semi-supervised learning and handling censored data

Part III: Handling structured input spaces with tree-based methods
◮ Content-based image retrieval
◮ Image classification, segmentation
◮ Other structured input spaces
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Tree-based regression
Single regression tree induction
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Part I

Standard view of tree-based regression

Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Typical batch-mode supervised regression (Reminder)

◮ From an iid sample ls ∼ (P(x , y))N (inputs, outputs)

extract a model ŷls(x) to predict outputs (regression tree, MLP, ...)
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Typical batch-mode supervised regression (Reminder)

◮ From an iid sample ls ∼ (P(x , y))N (inputs, outputs)

extract a model ŷls(x) to predict outputs (regression tree, MLP, ...)

ls =

x1 x2 y

0.4 0.4 0.2
0.4 0.8 0.0
0.6 0.6 0.5
0.8 0.6 0.8
0.8 0.8 1.0

→ BMSL → ŷlin(x) = αlsx1+βlsx2+γls

Inputs are often high dimensional: e.g. x ∈ Rn, n ≫ 100
Outputs are typically simpler: e.g. for regression y ∈ R
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Typical batch-mode supervised regression (Reminder)

◮ From an iid sample ls ∼ (P(x , y))N (inputs, outputs)

extract a model ŷls(x) to predict outputs (regression tree, MLP, ...)

ls =

x1 x2 y

0.4 0.4 0.2
0.4 0.8 0.0
0.6 0.6 0.5
0.8 0.6 0.8
0.8 0.8 1.0

→ BMSL → ŷlin(x) = αlsx1+βlsx2+γls

Inputs are often high dimensional: e.g. x ∈ Rn, n ≫ 100
Outputs are typically simpler: e.g. for regression y ∈ R

◮ Typical objectives of BMSL algorithm design:
◮ accuracy of predictions, measured by a loss function ℓ(y , ŷ )
◮ interpretability, computational scalability (wrt N and/or n)
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

A regression tree approximator ŷt(x1, x2)

ŷ4=0.8

L5

ŷ5=1

L4

L3L2L1
ŷ2=0 ŷ3=0.5ŷ1=0.2

x1 ≤ 0.7

noyes

yes yes

yes

no no

no

x2 ≤ 0.7

x2 ≤ 0.6

x1 ≤ 0.5
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Geometrical representation of ŷt(x1, x2)
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Single regression trees: learning algorithm

A. Top-down tree growing by greedy recursive partitioning
⇒ Reduce empirical loss as quickly as possible:

◮ Start with complete ls

◮ For an input variable xi ∈ R find optimal threshold to split

◮ Split according to best (input variable,threshold) combination

◮ Carry on with the resulting subsets

◮ ... until empirical loss has been sufficiently reduced

B. Bottom-up tree pruning
⇒ Reduce overfitting to learning sample

◮ Generate sequence of shrinking trees

◮ Evaluate their accuracy on independent sample (or by CV)

◮ Select best tree in sequence
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Node splitting and leaf labeling (when using quadratic loss ℓ)

◮ The best label for a leaf L is the locally optimal constant ŷL in
terms of quadratic loss:

ŷL = argmin
y∈R

∑

i∈s(L)

(y i − y)2 =
1

#s(L)

∑

i∈s(L)

y i

where s(L) denotes the sub-sample reaching L, and #s(L) its cardinality.

◮ The best split locally maximizes the quadratic loss reduction:

ScoreR(split, s) = (#s)var{y |s} − (#sl)var{y |sl} − (#sr )var{y |sr},

where var{y |s} denotes the empirical variance of y computed from s:

(#s)var{y |s} =
∑

i∈s

(y i − 1

#s

∑

i∈s

y i )2 = min
y∈R

∑

i∈s

(y i − y)2.
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Illustration: tree growing=greedy empirical loss reduction

(We show in blue the input variable that is used to split at each node)

x1 x2 y

0.4 0.4 0.2
0.4 0.8 0.0

0.6 0.6 0.5
0.8 0.6 0.8
0.8 0.8 1.0

→

x1 x2 y

0.4 0.4 0.2

0.4 0.8 0.0

var{y}= 0.01

→

ŷ = 0.2

ŷ = 0.0

x1 x2 y

0.6 0.6 0.5

0.8 0.6 0.8
0.8 0.8 1.0

→

ŷ = 0.5

x1 x2 ŷ

0.8 0.6 0.8

0.8 0.8 1.0

→

ŷ = 0.8

ŷ = 1.0

var{y |ls}=0.136 var{y}=0.042 var{y}=0.01 var{y}=0
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Determination of the importance of input variables

◮ For each input variable and each test node where it is used
◮ multiply score by relative subset size (N(node)/N(ls))
◮ cumulate these values
◮ normalize to compute relative total variance reduction brought

by each input variable

◮ E.g. in our illustrative example:
◮ x1: 5/5× 0.107 at root node + 3/5× 0.035 at second test

node = 0.128
◮ x2: 2/5× 0.01 at one node + 2/5× 0.01 at other node = 0.008
◮ x1 brings 94% and x2 brings 6% of variance reduction.

Louis Wehenkel Regression tree kernels... (10/70)



Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Standard regression trees: strengths and weaknesses

◮ Universal approximation/consistency

◮ Robustness to outliers

◮ Robustness to irrelevant attributes

◮ Invariance to scaling of inputs

◮ Good interpretability

◮ Very good computational efficiency and scalability

◮ Very high training variance
◮ The trees depend a lot on the random nature of the ls
◮ This variance increases with the depth of the tree
◮ But, even for pruned trees the training variance remains high
◮ As a result, accuracy of tree based models is typically low
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

The bagging idea for variance reduction

Observation:

◮ Let {lsi}
M
i=1 be M samples of size N drawn from PX ,Y (i.i.d.)

and,

◮ let A(lsi) be a regression model obtained from lsi by some
algo A.

◮ Denote by AM = M−1
∑M

i=1 A(lsi).

Then the following holds true:

MSE{AM} = MSE{E{y |x}} + bias2{A}+M−1variance{A}

I.e., if the variance of A is high compared to its bias, then AM may
be significantly more accurate than A, even for small values of M
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

The bagging idea for variance reduction

But, in practice, we have only a single learning sample of size N...
(Why should we split this ls into subsamples?)

The bagging trick: (Leo Breiman, mid nineties)

◮ Replace sampling from the population by sampling (with
replacement) from the given ls

◮ Bagging=bootstrap+aggregating
◮ → generate M bootstrap copies of ls, {l̂s i}

M
i=1

◮ → build M models A(l̂s i ), i = 1 . . . ,M
◮ → construct model as average prediction M−1

∑M
i=1 A(l̂s i)
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Geometric properties (of Single Trees)
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A single fully developed regression tree.
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Geometric properties (of Tree-Bagging)
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Bagged trees: with M = 100 trees in the ensemble.
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Geometric properties (of Tree-Bagging)
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Bagged trees: with M = 1000 trees in the ensemble.
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Tree-Bagging and Perturb & Combine

Observations:

◮ Bagging reduces variance significantly, but not totally

◮ Because bagging optimizes thresholds and attribute choices
on bootstrap samples, its variance reduction is limited and its
computational cost is high

◮ Bagging increases bias, because bootstrap samples have less
information than original sample (67%)

Idea:

◮ Since bagging works by randomization, why not randomize
tree growing procedure in other ways ?

◮ Many other Perturb & Combine methods have been proposed
along this idea to further improve bagging...
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Ensembles of totally randomized trees

Basic observations:

◮ Variance of trees comes from the greedy split optimization

◮ Much of this variance is due to the choice of thresholds

Ensembles of totally randomized trees:

◮ Develop nodes by selecting random attribute and threshold

◮ Develop tree completely (no pruning) on full ls

◮ Average the predictions of many trees (e.g. M = 100 . . . 1000)

Basic properties of this method:

◮ Ultra-fast tree growing

◮ Tree structures are independent of outputs of ls

◮ If M → ∞ ⇒ piece-wise (multi-)linear interpolation of ls
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Geometric properties (of totally randomized trees)
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Random trees: with M = 100 trees in the ensemble.
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Geometric properties (of totally randomized trees)
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Random trees: with M = 1000 trees in the ensemble.
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Extremely randomized trees

Observations:

◮ Totally randomized trees are not robust w.r.t. irrelevant inputs

◮ Totally randomized trees are not robust w.r.t. noisy outputs

Solutions:

◮ Instead of splitting totally at random
◮ Select a few (say K ) inputs and thresholds at random
◮ Evaluate empirical loss reduction and select the best one

◮ Stop splitting as soon as sample becomes too small (nmin)

Extra-Trees algorithm has two additional parameters:

◮ Attribute selection strength K

◮ Smoothing strength nmin
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Extra-Trees: strengths and weaknesses

◮ Universal approximation/consistency

◮ Robustness to outliers

◮ Robustness to irrelevant attributes

◮ Invariance to scaling of inputs

◮ Loss of interpretability w.r.t. standard trees

◮ Very good computational efficiency and scalability

◮ Very low variance

◮ Very good accuracy

NB: straightforward generalization to discrete inputs and outputs.

NB: straightforward extensions of feature importance measure.
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Tree-based regression
Single regression tree induction
Ensembles of bagged regression trees
Ensembles of totally and extremely randomized trees

Further reading about Extra-Trees

P. Geurts, D. Ernst, and L. Wehenkel.
Extremely randomized trees.
Machine Learning, Volume 36, Number 1, pp. 3-42 - 2006.

P. Geurts, D. deSeny, M. Fillet, M-A. Meuwis, M. Malaise, M-P. Merville, and
L. Wehenkel.
Proteomic mass spectra classification using decision tree based ensemble
methods.
Bioinformatics, Vol. 21, No 14, pp 3138–3145 - 2005.

V.A. Huynh-Thu, L. Wehenkel, and P. Geurts.
Exploiting tree-based variable importances to selectively identify relevant
variables.
JMLR: Workshop and Conference Proceedings, Vol. 4, pp. 60-73 - 2008.
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Part II

Kernel view of regression trees

Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

From tree structures to kernels (Step 1: exploiting a tree structure)

◮ A tree structure partitions X into ℓ

regions corresponding to its leaves.

◮ Let φ(x) = (11(x), . . . , 1ℓ(x))
T be the

vector of characteristic functions of
these regions: φT (x)φ(x ′) defines a
positive kernel over X ×X .

◮ Alternatively, we can simply say
that a tree t induces the kernel
kt(x , x

′) over the input space X ,
defined by kt(x , x

′) = 1 (or 0) if
x and x ′ reach (or not) the same
leaf of t.

◮ NB: kt(x , x ′) is a very discrete kernel:
two inputs are either totally similar or
totally dissimilar according to kt .

15(x)14(x)

13(x)12(x)11(x)

x1 ≤ 0.7

noyes

yes yes

yes

no no

no

x2 ≤ 0.7

x2 ≤ 0.6

x1 ≤ 0.5
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

From tree structures to kernels (Step 2: exploiting a sample (x i )Ni=1)

◮ Define the weighted feature map by (11(x)√
N1

, . . . , 1ℓ(x)√
Nℓ

)T , where

Ni denotes the number of samples which reach the i -th leaf.

◮ Denote by k lst : X × X → Q the resulting kernel.

◮ Note that k lst is less discrete than kt : two inputs that fall
together in a “small” leaf are more similar than two inputs
falling together in a “big” leaf.

◮ With k lst , the predictions defined by a tree t induced from a
sample (ls =

(

(x1, y1), . . . , (xN , yN)
)

) can be computed by:

ŷt(x) =
N
∑

i=1

y ik lst (x
i , x).
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Kernel defined by an ensemble of trees

◮ Kernel defined by a tree ensemble T = {t1, t2, . . . , tM}:

k lsT (x , x
′) = M−1

M
∑

j=1

k lstj (x , x
′)

◮ Model defined by a tree ensemble T :

ŷT (x) = M−1
M
∑

j=1

ŷtj (x) = M−1
M
∑

j=1

N
∑

i=1

y ik lstj (x
i , x)

=
N
∑

i=1

y iM−1
M
∑

j=1

k lstj (x
i , x) =

N
∑

i=1

y ik lsT (x
i , x)

◮ k lsT (x , x
′) essentially counts the number of trees in which x

and x ′ reach the same leaf; in this process the leaves are
down-weighted by their number of learning samples.
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Completing/understanding protein-protein interactions

L1
L4

L5
L9

L17

L12

L2

L6

L10
L19

L13

L13

L16

expr (Spell.)
cdc15 10<0.795

loc
nucleolus

expr (Spell.)
elu 90≥0.185

L1
(25,11.7%)

L2
(16,5.0%)

expr (Eisen)
cdc15 250m≥0.975

expr (Spell.)
alpha 7≥0.35

L3
(14,3.3%)

L4
(28,10.1%)

loc
vacuolar membrane

L5
(8,50.0%)

. . .

expr (Spell.)
cdc28 0≥-0.005

L18
(9,0.0%)

L19
(83,11.3%)
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Supervised learning of kernels: problem formulation

◮ Given a sample of objects (oi)
N
i=1 ∈ ON of which we know the value

of some kernel ky (o, o
′) in the form of a Gram matrix, and for

which we may easily obtain some input features x(o),

◮ we want to compute a good approximation of the target kernel ky
from input space features x .

◮ X ∈ XN denotes the vector of input
space descriptions over the sample.

◮ k i,jy denotes the target kernel values

in our sample and Ky ∈ RN×N the
corresponding Gram matrix.
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Supervised learning of kernels: applications

Supervised learning of a kernel consists of determining, from a sam-
ple of joint observations of x(oi ) and ky (oi , oj ) over some space O,
a function f (x(o), x(o′)) approximating well ky (o, o

′).

Examples
◮ Learning over structured output spaces, where the output space structure is

defined by a kernel (both ky (oi , oj ) and y(oi ) are given for some objects)
(e.g. sequences, images, graphs as outputs)

◮ Graph completion, where the goal is to infer a neighborhood function among
objects in terms of features describing them (only a partial graph is given)
(e.g. predicting protein interactions from their annotations)

◮ Problems where we want to compute a “proxy” of a kernel among objects which
can not be determined exactly (only a subsample of ky (oi , oj ) values is given)
(e.g. measuring similarities among tertiary protein structures, as a function of
their primary structure)
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Rationale of the proposed approach

◮ Suppose that instead of Ky we dispose of “compatible”
output space feature vectors Y , i.e. such that
y(o)T y(o′) = ky (o, o

′).

◮ Then we could grow trees by a LMS approach over Y, to
compute ŷ values, and from these compute the k̂y values.

◮ It turns out that this may actually be done without disposing
of the Y values.
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Outline of the proposed approach

◮ Extend tree induction algorithm to kernelized output spaces,
to exploit the available data (X ,Ky ) so as to regress an output
space feature vector ŷt(x) in line with the target kernel.

◮ From ŷt(x) =
∑

i=1 y
ikt(x

i , x) define the target kernel
approximation by k̂t,y (x , x

′) = ŷTt (x)ŷt(x
′).

◮ Exploiting the fact that (y i)T y j = k
i ,j
y , express

k̂t,y (x , x
′) = ŷTt (x)ŷt(x

′) =
N
∑

i=1

N
∑

j=1

kt(x
i , x)k i ,jy kt(x

′, x j ),

to get a model that depends only on the data (X ,Ky ).
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Regression tree induction in kernelized output spaces

◮ We first adapt the calculation of output space square loss so
as to use only the output space kernel values

◮ We have:

var{y |s} = 1
#s

∑

i∈s(y
i − 1

#s

∑

i∈s y
i )2

= #s−1 ∑

i∈s k
i ,i
y −#s−2 ∑

i∈s

∑

j∈s k
i ,j
y .

◮ Using this formula, one can grow tree structures to greedily
reduce square loss in the output-feature space while only using
the given kernel values

◮ (May also serve for pruning and getting variable importances)

◮ NB: If we would like to label leaf nodes in order to make predictions over Y , we
would need to solve locally the pre-image problem, but we do not need to do
this for making output space kernel predictions.
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Exploiting the kernel view of tree-based methods
Input space kernel induced by an ensemble of trees
Supervised learning of (output space) kernels
(Semi-supervised learning and censored data)

Kernel regression trees: nature of the approximator

◮ Over the sample k̂
k,l
t,y =

∑N
i=1

∑N
j=1 kt(x

i , xk)k i ,jy kt(x
l , x j ), or

in matrix form K̂t,y = KtKyKt .

◮ If the sample is sorted according to leaf indices, we have

Kt =













A1 0 · · · 0

0 A2 · · ·
...

...
...

. . . 0
0 · · · 0 Aℓ













K̂t,y =











B1,1 B1,2 · · · B1,ℓ

B2,1 B2,2 · · · B2,ℓ
...

...
. . .

...
Bℓ,1 Bℓ,2 · · · Bℓ,ℓ











where the blocks Ai and Bi ,j are constant matrices defined
respectively for each leaf and for each pair of leaves.

◮ In other words, Ai = αi1 ∈ RNi×Ni and Bi ,j = βi ,j1 ∈ RNi×Nj .
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Exploiting the kernel view of tree-based methods
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Kernel regression trees: nature of the approximator

◮ The standard tree kernel uses αi = N−1
i , and hence we have

βi ,j = N−1
i N−1

j

∑

i∈Li

∑

j∈Lj
k i ,jy .

In other words, k̂t,y (o, o
′) is computed by propagating o and

o′ in the tree and then averaging the values of ky over the
pairs of subsamples at the reached leaves.

◮ Frobenius norm optimality of this approximation: we have

K̂t,y = argmax
Q∝t

N
∑

i=1

N
∑

j=1

([Ky ]i ,j − [Q]i ,j)
2.

where we denote by {Q ∝ t} the set of Gram matrices
depending only on the partition induced by t.
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Kernel regression trees: effect of splitting nodes

◮ Splitting a leaf in the tree, replaces the corresponding line and
column of blocks in K̂t,y by two lines and two columns of
smaller blocks.

◮ Splitting a leaf hence decreases Frobenius norm monotonically.

◮ Fully grown trees yield N × N blocks of size 1, and hence a
Frobenius norm of zero.

∗ Comment about optimal splitting rules:
◮ The classical optimal splitting rule seeks to reduce variance in

the output feature space, which may be evaluated from the
sole information of the diagonal block corresponding to the
node being split.

◮ The above reasoning suggests to adapt the optimal splitting
rule when approximating kernels in terms of Frobenius norm
(at the price of higher computational complexity).
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Extending to ensembles of trees

We are currently studying two averaging schemes, to extend to
ensembles of randomized trees

◮ Averaging of the individual kernel approximations:

kT ,y (o, o
′) = M−1

M
∑

k=1

k̂tk ,y (o, o
′).

◮ Convoluting kT (o, o′) = M−1
∑M

k=1 ktk (o, o
′) with the ky :

kT ,y (o, o
′) =

N
∑

i=1

N
∑

j=1

kT (oi , o)ky (oi , oj)kT (o
′, oj ).

NB: these ideas may be extended to gradient boosting of trees.
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Summary

◮ Tree induction methods define a local averaging scheme to
infer an approximation of a kernel given a Gram matrix of this
kernel together with an input space feature representation.

◮ Splitting nodes may use an efficient proxy based on variance
reduction in an induced output space in the context of
Frobenius norm kernel loss. Other loss functions may be used.

◮ The main specificity of the tree based approach is that the
kernel over the input space is directly inferred from the
available data set (X ,Ky ). In this context, feature selection
and importance evaluation abilities may be of interest.

◮ Computational complexity is in the order of nN2 logN where
n is the dimension of the input space and N the sample size.
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Semi-supervised learning and censored data

◮ Censored data: for some i/o pairs the value of y(o) is
upper/lower bounded, but otherwise unknown

◮ Semi-supervised learning: for some i/o pairs the value of y(o)
is missing

◮ Handle these two problems by regularizing tree-based
predictions by using convex optimization
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Generic formulation

◮ Denote by Y ∈ RN the vector of sample outputs, by Z ∈ RP the

vector of all leaf labels of an ensemble T , by KT ∈ RN×N its gram

matrix, by LT ∈ {0,M−1}N×P its partitioning matrix, by ν ∈ RN a

vector of slack variables, and by Ω(·, ·, ·) : RN × RP × RN → R:

◮ Consider the following optimization problem:

minΩ(∆Y ,∆Z , ν) s.t.
| KT Y + KT ∆Y + LT ∆Z − Y |≤ ν

(∆Y ,∆Z , ν) ∈ C ⊂ RN+P+N

◮ This problem allows to compute adjustments ∆Y to the sample

output values and/or ∆Z to the labels associated to leaves, while

minimizing the regularization term Ω and respecting some

additional constraints C . We impose that Ω and C are convex.
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Supervised learning with censored data

Problem formulation

◮ In addition to a sample ls = (X ,Y ), with precise output
values, we dispose of a sample lsc = (Xc ,Yc) where output
information is censored, e.g. specified in terms of intervals in
the form [y i , y i ].

◮ We want to exploit both ls and lsc to infer a tree based
predictor.

Strategy

◮ First use the standard sample ls to infer an ensemble of tree
structures and corresponding kernel K .

◮ Second, use convex regularization framework, to refit labels Y
and Z while taking into account the information in lsc .
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Example: formulation for survival data

◮ In survival data, the incomplete information corresponds to
cases which left the study before “dying”, hence their output
(survival time) is only given in the form of a vector of lower
bounds Y c .

◮ We propose the following regularization scheme:

min C1‖∆Y ‖+ C2‖∆Z‖+ C3‖ν‖+ C4‖νc‖

s.t. −ν ≤ KY + K∆Y + L∆Z − Y ≤ ν

−νc ≤ KcY + Kc∆Y + Lc∆Z − Y c

◮ This formulation aims at refitting the model, so as to satisfy
constraints imposed by the censored data (in a soft way
controlled by the regularization term C4‖νc‖).
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Semi-supervised learning

Problem formulation

◮ In addition to a sample lsl = (Xl ,Yl), with precise output
labels, we dispose of an unlabeled sample lsu = (Xu) where
output information is unknown.

◮ We want to exploit both lsl and lsu to infer a tree based
predictor.

Strategy

◮ First use the standard sample lsl to infer an ensemble of tree
structures and compute the corresponding gram matrix K ′

(using the complete set of inputs X ′ = (Xl ,Xu)).

◮ Second, use convex regularization framework, to find Yu while
taking into account the information in lsl and lsu.
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Example: formulation for manifold regularization

◮ In manifold regularization, we exploit a graph L expressing
proximities among objects, and we want objects that are close
according to the graph to yield similar predictions.

◮ To this end, we may immediately transpose the following
regularization scheme towards ensembles of trees:

min ‖ν‖22 + C (Y ′ +∆Y ′)TK ′LK ′(Y ′ +∆Y ′)

s.t. −ν ≤
(

K ′
l ,l |K

′
l ,u

)

(Y ′ +∆Y ′)− Yl ≤ ν,

∆Yl
= 0;Yu = 0.

◮ This classical(M. Belkin et al, JMLR, 2006) formulation aims at
computing labels for the unlabelled objects, so that nearby
objects yield similar output predictions and so that the known
outputs are not too much different from their sample values.
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Summary

◮ We have proposed a combination of primal/dual formulations
to regularize tree-based models by exploiting convex (in
practice linear or quadratic) optimization solvers

◮ The proposed formulation puts supervised, semi-supervised
and censored problems in a same framework, and allows to
exploit various ideas proposed in these contexts to tree-based
methods.

◮ Further possibilities
◮ Combination of semi-supervised and censored data
◮ Exploiting prior knowledge (symmetries, constraints among

multiple outputs, monotonicity relations etc.)

◮ Our first experiments show promising results on various
applications.
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Further reading about kernel view of regression trees

P. Geurts, L. Wehenkel, and F. d’Alché-Buc.
Kernelizing the output of tree-based methods.
In Proceedings of the 23rd International Conference on Machine Learning, pp.
345-352 - 2006.

P. Geurts, L. Wehenkel, and F. d’Alché-Buc.
Gradient boosting for kernelized output spaces.
In Proceedings of the 24th International Conference on Machine Learning, pp.
289-296 - 2007.

B. Cornélusse, P. Geurts and L. Wehenkel.
Tree-based ensemble model regularization by convex optimization.
In NIPS-09 workshop on Optimization for Machine Learning, 2009.

P. Geurts et al.
Kernel regression with tree-based methods.
Technical report, to be submitted, 2011.
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Content-based image retrieval

◮ Goal
◮ Given a database of unlabeled reference images {Iq}, build a

model able to retrieve the reference images most similar to a
new query image Ir based only on visual content.
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Content-Based Image Retrieval

◮ Goal
◮ Given a database of unlabeled reference images {Iq}, build a

model able to retrieve the reference images most similar to a
new query image Ir based only on visual content.
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Outline of the Segment & Combine approach

Define kernel among images Iq and Ir by

kI (Iq , Ir ) =
1

#S(Iq)#S(Ir )

∑

(s,s′)∈S(Iq)×S(Ir )

kS (s, s
′)

where S(·) is a subwindow extractor and kS (·, ·) a subwindow kernel.

◮ To extract subwindows from an image
◮ pick a fixed number of them of random location and shape.

◮ To learn the kernel kS (·, ·)
◮ use a dataset of subwindows extracted from reference images
◮ represent them by a vector of constant dimension (e.g. pixels)
◮ build a tree ensemble on this representation

◮ Use the trees ensemble
◮ as a subwindow indexing scheme, in order to efficiently compute kI (Iq , Ir )

for a given query image and ∀Ir , and collect the top ranked ones.
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Step 1: Extraction of random reference image subwindows
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Step2: Indexing structure (one tree)

With a single tree, the kernel among a
query image and a reference image is
only determined by the counts of the
number of their subwindows reaching
common leafs (modulo the total number
of reference image subwindows reaching
that leaf).

Thus, to remember the relevant informa-
tion about the subwindows of the refer-
ence images needed to compute the im-
age kernel, we need only to maintain at
each leaf a sparse list of the number of
the subwindows of each reference image
reaching that leaf.
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Step2: Indexing structure (an ensemble of trees)

◮ Parameters
◮ M : the number of totally randomized trees
◮ nmin: the minimum node size, stop-splitting of a node if

size(node) < nmin

◮ Complexity
◮ O(MN log2(N)) in the total number of subwindows

(independent of the dimensionality of the feature space)
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Step 3: Image retrieval given query image

◮ Decompose the query image Iq into its subwindows by S(·).

◮ Propagate each subwindow in each tree
◮ at a leaf, exploit the counts of subwindows for each reference

image by cumulating this information (modulo the number of
reference subwindows reaching each leaf) to compute the
ensemble kernel between Iq and each reference image Ir .

◮ In the end, all reference images are ranked by decreasing order
of this kernel and the top ranking ones may be retrieved.

◮ NB: the scheme may also be distributed over a set of image
databases which are stored at remote locations, by imposing
that they use a common ensemble of randomized trees to
index the subwindows of their local image repositories.
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IRMA (1/3): X-Ray images (from http://irma-project.org/ )
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IRMA (2/3): Results

◮ Protocol
◮ 9000 unlabeled reference images (approx. 512 × 512)

◮ 1000 labeled test images (57 classes)
◮ Recognition rate of the first ranked image

◮ Results

Dataset ls/ts us näıve NN KDGN07

IRMA 9000/1000 85.4% 29.7% 63.2% 87.4%

(with M = 10 trees, nw = 1000 subwindows per image,
nmin = 2, ie. fully developed trees)
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IRMA (3/3): query −→ top 5 retrieved images

−→

−→

−→
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Summary

◮ The sub-window extraction scheme controls the nature of the
invariances injected into the learning algorithm.

◮ For content based image retrieval, we use totally randomized
tree ensembles.

◮ The approach is very generic, and is able at the same time to
yield state-of-the-art results on a diversity of image retrieval
problems.

◮ The approach may be casted in a distributed context, where
image similarities among distant servers are aligned and may
be computed locally, yielding a highly scalable and distributed
CBR approach.
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Other image analysis applications

◮ Image classification

◮ Image segmentation

◮ Image annotation
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Other kinds of structured inputs

◮ Time-series as inputs

◮ Sequences as inputs

◮ Graphs as inputs
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Essence of the S&C framework

◮ The segmentation and combination schemes may be tailored
to the kind of invariances and degree of locality that are
supposed to be present in a learning problem.

◮ In general, the larger the number of segments that are used
(both at learning and at prediction times), the better the
results.

◮ The involved algorithms are amenable to parallel
computations, and with some modifications they may also be
casted in a data distributed fashion.
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Some references for further reading

R. Marée, P. Geurts, J. Piater, and L. Wehenkel.
Random subwindows for robust image classification.
In Proceedings of the IEEE International Conference on Computer Vision and
Pattern Recognition, Vol. 1, pp. 34-40 - June 2005.

R. Marée, P. Geurts, and L. Wehenkel.
Content-based Image Retrieval by Indexing Random Subwindows with
Randomized Trees
In ACCV 2007 / IPSJ Transactions on Computer Vision and Applications, Vol. 1,
No 1, pp. 46-57 - Jan 2009

R. Marée et al.
Incremental Indexing and distributed image search using shared randomized
vocabularies.
In Proceeding of the 11th ACM International Conference on Multimedia
Information Retrieval, 2010.
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The multiple roles of randomization

◮ Randomization is useful to regularize learning algorithms in
various ways

◮ Randomization is also useful to reduce the computational
complexity of optimization algorithms

◮ Randomization is also a way to enforce invariances in learning
and optimization problems

◮ Looking at all these aspects simultaneously may open new

directions for the design of learning and optimization

algorithms.
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Other related topics

◮ Extensions to boosting

◮ Generic ways of handling missing data

◮ Generic ways of handling invariances

◮ Generic ways of handling complex input and output spaces

◮ Extension to unsupervised learning

◮ Extension to reinforcement learning
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Ongoing works

We work on applications in (mainly)

◮ Image analysis
◮ in particular, exploiting biomedical images

◮ Bioinformatics
◮ in particular, biomarker identification, biological network

inference, exploiting macro-molecule structures

◮ Electric energy systems
◮ in particular, large scale power systems’ security management

and optimal scheduling of energy resources

We work on methods also in

◮ Multi-stage decision problems under uncertainty
◮ reinforcement learning, stochastic programming

◮ Unsupervised learning
◮ with ensembles of tree structured graphical probabilistic models
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