# Machine Learning for Probabilistic Power Systems Reliability Management

#### Louis Wehenkel

joint work with L. Duchesne and E. Karangelos

Lyngby : 23.11.2018



**Montefiore Institute** 

Organisation of the talk

#### PART I

Probabilistic Reliability Management: Stakes and Sub-problems

• PART II Machine Learning for Reliability Assessment

PART III

Machine Learning for Reliability Control

Probabilistic Reliability Management: Stakes and Sub-problems  ${\color{black}\bullet}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}}{\color{black}\circ}{\color{black}\circ}\\{\colorblack}\circ}{\color{black}\circ}{\color{black}\circ}{\color{bla$ 

# Part I

# Probabilistic Reliability Management: Stakes and Sub-problems

- Reliability Management
- Reliability Assessment vs Reliability Control

# Electric power system reliability

#### • Requirement:

• At sub-second temporal resolution, balance generation/storage/consumption, under network constraints, in spite of various threats

#### • Threats faced:

- Variations of generation and demand, weather conditions
- Component failures, human errors, adversarial attacks

#### Problems to avoid:

- Component overloads, voltage or frequency deviations
- Cascading overloads, instabilities, blackouts

#### Opportunities:

- Optimisation and control of flows closer to real-time
- Preventive maintenance and planning of operation
- Adaptation of the grid structure to market needs

Probabilistic Reliability Management: Stakes and Sub-problems  $_{\texttt{OOOOOO}}$ 

#### Reliability management contexts

Taking decisions in order to ensure the reliability of the system while minimizing socio-economic costs



Probabilistic Reliability Management: Stakes and Sub-problems  $_{00000}$ 

#### The currently used N-1 Reliability Criterion (since 50 years)

"The power system should at any time be able to seamlessly withstand the spontaneous disconnection of any single component (*e.g.* line, transformer, *etc.*)."

- But N-1 can be over-conservative: e.g., limiting use of cheap renewables.
- ... can be under-conservative:
  e.g., adverse weather/major sport events, etc..
- ... can be risk averse: seeking to avoid even "minor" (sometimes tolerable) consequences.
- and N-1 can be risk taking! incetivizes corrective control while neglecting its possible failure.

#### Need to move towards Probabilistic Reliability Criteria

"To enable the optimization of the overall expected socio-economic performance."

- New models need to be developed
- More complex decision making problems need to solved

#### Two $\neq$ types of reliability management sub-tasks

#### • Reliability assessment (ex ante):

Determine the expected level of reliability for a given future period of time and for a certain geographical area  $\rightarrow$  large-scale stochastic simulation problem

#### • Reliability control:

Determine an optimal set of decisions to take in order to ensure a desired level of reliability over a given time period and for a certain geographical area

 $\rightarrow$  large-scale multi-stage stochastic optimisation problem

NB: Both tasks need a suitable physical model of the system and suitable uncertainty models of the exogenous factors acting on it over the considered time period and geographical area.

Machine Learning for Reliability Assessment

# Part II

Machine Learning for Reliability Assessment

#### Reliability assessment:

Determine the expected level of reliability for a given future period of time and for a certain geographical area:

- Real-time mode (minutes)
- Short-term look-ahead mode (hours, days)
- Longer-term look-ahead problems (months, years)

#### Reliability Assessment in Real-Time Mode (Objectives)

Every 5 minutes, based on the real-time situation  $x_{rt}$ , assess risk induced by contingencies that could occur over the next hour.

- Remarks:
  - Real-time situation: defined by exogenous and endogenous info
  - Contingencies: big set of external and/or internal threats
  - Contingency response: PF, OPF, time-domain simulation...

# Reliability Assessment in Real-Time Mode (Objectives)

Every 5 minutes, based on the real-time situation  $x_{rt}$ , assess risk induced by contingencies that could occur over the next hour.

- Based on data and models (we stress dependence on  $x_{rt}$ ):
  - $C(x_{rt}), \pi_c(x_{rt}, c)$ : set of contingencies and their probabilities
  - $f_{cr}(x_{rt}, c)$ : measure of the severity of contingency c in state  $x_{rt}$

- Remarks:
  - Real-time situation: defined by exogenous and endogenous info
  - $\bullet\,$  Contingencies: big set of external and/or internal threats
  - Contingency response: PF, OPF, time-domain simulation...

# Reliability Assessment in Real-Time Mode (Objectives)

Every 5 minutes, based on the real-time situation  $x_{rt}$ , assess risk induced by contingencies that could occur over the next hour.

- Based on data and models (we stress dependence on  $x_{rt}$ ):
  - $C(x_{rt}), \pi_c(x_{rt}, c)$ : set of contingencies and their probabilities
  - $f_{cr}(x_{rt}, c)$ : measure of the severity of contingency c in state  $x_{rt}$
- We want to asses the expected impact of possible contingencies:
  - $\mathbb{E}{f_{cr}|x_{rt}} = \sum_{c \in C(x_{rt})} \pi_c(x_{rt}, c) f_{rt}(x_{rt}, c)$ 
    - (e.g. expected cost of service interruptions)
  - $\mathbb{P}\{f_{cr} > \eta | x_{rt}\} = \sum_{c \in C(x_{rt})} \pi_c(x_{rt}, c) \mathbf{1}(f_{cr}(x_{rt}, c) > \eta)$ (e.g. probability of large service interruptions)
- Remarks:
  - Real-time situation: defined by exogenous and endogenous info
  - Contingencies: big set of external and/or internal threats
  - Contingency response: PF, OPF, time-domain simulation...

# Machine Learning for power systems (in general)



- Practical facts:
  - The evaluation of the contingency response function  $f_{cr}(x_{rt}, c)$  is generally expensive in CPU time.
  - Still, this function will be evaluated as often as possible by TSO, yielding growing datasets  $D = \{(x_{rt}^i, c^i), f_{cr}(x_{rt}^i, c^i)\}_{i=1}^{\cdots}$

- Practical facts:
  - The evaluation of the contingency response function  $f_{cr}(x_{rt}, c)$  is generally expensive in CPU time.
  - Still, this function will be evaluated as often as possible by TSO, yielding growing datasets  $D = \{(x_{rt}^i, c^i), f_{cr}(x_{rt}^i, c^i)\}_{i=1}^{\cdots}$
- Supervised Machine Learning Paradigm:
  - From a sample D of input-output pairs  $\{(z^i, y^i)\}_{i=1}^n$ , we can learn a function  $h(\cdot)$  such that |h(z) y| is small on average.

- Practical facts:
  - The evaluation of the contingency response function  $f_{cr}(x_{rt}, c)$  is generally expensive in CPU time.
  - Still, this function will be evaluated as often as possible by TSO, yielding growing datasets  $D = \{(x_{rt}^i, c^i), f_{cr}(x_{rt}^i, c^i)\}_{i=1}^{\cdots}$
- Supervised Machine Learning Paradigm:
  - From a sample D of input-output pairs  $\{(z^i, y^i)\}_{i=1}^n$ , we can learn a function  $h(\cdot)$  such that |h(z) y| is small on average.
- Application to Real-Time Reliability Assessment:
  - Learn a "regression proxy":  $h_{regr}(x_{rt}, c) \approx f_{cr}(x_{rt}, c)$
  - Learn a "classifier proxy":  $h_{class}(x_{rt}, c) \approx 1(f_{cr}(x_{rt}, c) \geq \eta)$

- Practical facts:
  - The evaluation of the contingency response function  $f_{cr}(x_{rt}, c)$  is generally expensive in CPU time.
  - Still, this function will be evaluated as often as possible by TSO, yielding growing datasets  $D = \{(x_{rt}^i, c^i), f_{cr}(x_{rt}^i, c^i)\}_{i=1}^{\cdots}$
- Supervised Machine Learning Paradigm:
  - From a sample D of input-output pairs  $\{(z^i, y^i)\}_{i=1}^n$ , we can learn a function  $h(\cdot)$  such that |h(z) y| is small on average.
- Application to Real-Time Reliability Assessment:
  - Learn a "regression proxy":  $h_{regr}(x_{rt}, c) \approx f_{cr}(x_{rt}, c)$
  - Learn a "classifier proxy":  $h_{class}(x_{rt}, c) \approx 1(f_{cr}(x_{rt}, c) \geq \eta)$
- The underlying assumptions are as follows:
  - *h*-proxies are much faster to evaluate than  $f_{cr}(x_{rt}, c)$
  - It is possible to learn accurate enough *h*-proxies

#### Example: Voltage stability / French system (circa 1993)



#### Example: Database generation by Monte-Carlo simulation



#### Prediction of contingency severity

#### Severity regression tree : loss of a line circuit



# ML for RT reliability assessment (practically)

- How often to apply ML to refresh the proxies
  - On the fly in real-time
  - Ahead in time
- How to gather the datasets used for learning the proxies
  - Passively, by exploiting data generated by EMS platforms
  - Actively, by using Monte-Carlo approaches
- How to use the tool-box of available ML techniques
  - Interpretability
  - Computational performances (learning and prediction)
  - Accuracy
- How to use the learnt proxies  $h_{r,c}$ 
  - Stand-alone mode
  - Together with "exact" simulator of  $f_{cr}$

#### Software framework



#### Further readings and developments

- Literature of the late 1990'ies
  - Wehenkel, Louis. "Contingency severity assessment for voltage security using non-parametric regression techniques." IEEE Transactions on Power Systems 11.1 (1996): 101-111.
  - Wehenkel, Louis A. Automatic learning techniques in power systems. Springer Science & Business Media, 2012 (first published in 1998)
- More recent machine learning methods
  - Random forests and kernel based methods
  - Gaussian processes
  - Probabilistic graphical models
  - Deep neural networks
- iTESLA European FP7 project: Machine Learning for Dynamic Security Assessment
- GARPUR European FP7 project: Probabilistic reliability management

#### Reliability Assessment in Look-ahead Mode (Ideally)

Every day (or every few hours), based on probability model  $\mathbb{P}\{x_{rt}^{t_0\cdots t_f}\}$  of trajectories of situations that could show up next day (next hours), evaluate the risk induced by these situations.

#### Reliability Assessment in Look-ahead Mode (Ideally)

Every day (or every few hours), based on probability model  $\mathbb{P}\{x_{rt}^{t_0\cdots t_f}\}$  of trajectories of situations that could show up next day (next hours), evaluate the risk induced by these situations.

- Data and model:
  - $x_{rt}^t = (\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t), c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t)))$ , where  $\xi_{rt}^t$  is exogenous (weather, demand, market ...), while the endogenous parts are results of the real-time reliability management process

- Remarks:
  - Exogenous uncertainties \$\xi\_t^{t\_0\cdots t\_f}\$ are modelled as spatio-temporal stochastic processes conditioned on available information in look-ahead mode
  - Policy  $u_{rt}^t(\xi_{rt}^t)$  models how the real-time operator will behave in real-time
  - Function c<sub>rt</sub>(\$<sup>t</sup><sub>rt</sub>, u<sup>t</sup><sub>rt</sub>(\$<sup>t</sup><sub>rt</sub>)) expresses the resulting cost per time step of real-time reliability management

#### Reliability Assessment in Look-ahead Mode (Ideally)

Every day (or every few hours), based on probability model  $\mathbb{P}\{x_{rt}^{t_0\cdots t_f}\}$  of trajectories of situations that could show up next day (next hours), evaluate the risk induced by these situations.

- Data and model:
  - $x_{rt}^t = (\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t), c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t)))$ , where  $\xi_{rt}^t$  is exogenous (weather, demand, market ...), while the endogenous parts are results of the real-time reliability management process
- We want to assess expected outcome of real-time operation:
  - $\mathbb{E}\left\{\sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t))\right\}$
  - $\mathbb{P}\left\{\sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t)) \geq M\right\}$
- Remarks:
  - Exogenous uncertainties ξ<sup>to<sub>1</sub>···t<sub>f</sub></sup> are modelled as spatio-temporal stochastic processes conditioned on available information in look-ahead mode
  - Policy  $u_{rt}^t(\xi_{rt}^t)$  models how the real-time operator will behave in real-time
  - Function c<sub>rt</sub>(\$<sup>t</sup><sub>rt</sub>, u<sup>t</sup><sub>rt</sub>(\$<sup>t</sup><sub>rt</sub>)) expresses the resulting cost per time step of real-time reliability management

#### Opportunities for Machine Learning (in Look-ahead mode)

Look-ahead mode probabilistic reliability assessment could be solved by Monte-Carlo simulation. Various possibilities exist to make such a process more effective and practical.

- Better models of  $\mathbb{P}\{\xi_{rt}^{t_0\cdots t_f} | \text{info available in look-ahead mode}\}$ 
  - from observational datasets, from TSO and DSO
  - using unsupervised learning, e.g. convolutional GANs ?
- Learning about real-time operation strategy  $u_{rt}^t(\xi_{rt}^t)$  and/or  $c_{rt}(\xi_{rt}^t)$ 
  - from observational datasets collected by SCADA and EMS
  - from simulations
- Reducing the number of required Monte-Carlo samples to estimate
  - $\mathbb{E}\left\{\sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t))\right\}$ (Variance reduction via control variates, and/or importance sampling) •  $\mathbb{P}\left\{\sum_{t=t_0}^{t_f} c_{rt}(\xi_{rt}^t, u_{rt}^t(\xi_{rt}^t)) \ge M\right\}$ (Rare event simulation via importance sampling)

# Example: Machine Learning for Day-ahead reliability assessment

Based on ongoing work at ULiège.

For further details, please see

- Machine Learning of Real-time Power Systems Reliability Management Response, L. Duchesne et. al, IEEE PowerTech 2017
- Using Machine Learning to Enable Probabilistic Reliability Assessment in Operation Planning, L. Duchesne et. al, PSCC 2018

#### Day-ahead learning of RT operator response (PowerTech 2017)



- 4000 samples of uncertainty realizations  $\xi_{rt}$  along next day (load, wind, outages)
- Real-time operation simulated by N-1 DC-SCOPF per time-step and trajectory
- Inputs: DA decisions per time-step,  $\xi_{rt}$  per trajectory and time-step
- Outputs: the different terms of the cost function  $c_{rt}$ , including risk  $\mathbb{E}\{f_{rt}|\xi_{rt}, u_{rt}\}$  of service-interruptions upon contingencies, per trajectory and per time-step.

#### Some Machine Learning results (PowerTech 2017)





Load shedding cost



Wind curtailment cost



Risk



#### Some Machine Learning results (PowerTech 2017)



#### Some Machine Learning results (PowerTech 2017)



Machine Learning for Reliability Assessment

#### Synthesis (PowerTech 2017)

- Machine learning can be used day-ahead to build "proxies"  $\hat{c}_{rt}$  of the different terms of  $c_{rt}$  incurred in real-time reliability management.
- Computationally, evaluating  $\hat{c}_{rt}$  is about 10000 times faster than the "exact" evaluation of  $c_{rt}$  via SCOPF and contingency simulation
- Random forests and Neural networks are promizing and complementary tools in this context
- Some terms of  $\hat{c}_{rt}$  are more difficult to learn than others, in particular the expected risk induced by contingencies
- Open questions for further work:
  - Leverage deep learning to improve accuracy of proxies  $\hat{c}_{rt}$
  - Use of machine learning to model the RT decision policy  $u_{rt}$
  - Use of learnt proxies  $\hat{c}_{rt}$  for day-ahead reliability assessment

#### Use of ML-proxies for DA reliability assessment (PSCC 2018)

Problem tackled:

- Given two computer programs
  - a generative model allowing us to sample possible next day trajectories according to  $\mathbb{P}\{\xi_{rt}^{t_0\cdots t_f}|\text{day ahead info}\}$
  - and a SCOPF solver allowing us to compute operating costs  $C_{rt}(\xi_{rt}) = \sum_{t=1}^{24} c_{rt}(\xi_{rt}^t)$  along any trajectory
- Compute an estimate of  $\mathbb{E}\{C_{rt}|\text{day ahead info}\}$

Crude Monte Carlo (CMC) approach:

- Sample *n* trajectories  $\xi_{rt}^i \sim \mathbb{P}\{\xi_{rt}^{t_0 \cdots t_f} | \text{day ahead info}\}$
- Compute  $\bar{C}_{rt} = \frac{1}{n} \sum_{i=1}^{n} C_{rt}(\xi_{rt}^{i}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{24} c_{rt}(\xi_{rt}^{t,i})$
- Needs large sample size *n* (a few thousand) to be accurate enough
- Requires 24 × *n* SCOPF computations

#### Use of ML-proxies for DA reliability assessment (PSCC 2018)

We could (naively) use Machine Learning as follows:

- Machine learning stage:
  - Sample k ≪ n trajectories ξ<sup>i</sup><sub>rt</sub> and use SCOPF to compute the corresponding k × 24 values of c<sub>rt</sub>(ξ<sup>i,t</sup><sub>rt</sub>)
  - Use a supervised learning algorithm to build proxy  $\hat{c}_{rt}(\cdot)$ , much faster to evaluate than SCOPF
- Use CMC with proxy
  - Sample  $n' \gg n$  additional trajectories and use proxy to compute  $\overline{\hat{C}}_{rt} = \frac{1}{n'} \sum_{i=1}^{n'} \sum_{i=1}^{24} \hat{c}_{rt}(\xi_{rt}^{i,t}) \simeq \mathbb{E}\{\hat{C}_{rt}|\text{day ahead info}\}.$
- Unfortunately, this later quantity is in general not equal to  $\mathbb{E}\{C_{rt}|\text{day ahead info}\}$
- Its bias depends both on the problem and on the used machine learning algorithm, and is therefore unpredictable.

#### Use of ML-proxies for DA reliability assessment (PSCC 2018)

Combining Machine Learnt proxies with Control Variate approach:

- First do as in the previous slide:
  - Learn proxy  $\hat{c}_{rt}(\cdot)$  with k trajectories
  - Estimate  $\mathbb{E}{\{\hat{C}_{rt} | \text{day ahead info}\}}$  with large n' trajectories.
- Then estimate  $\mathbb{E}{\hat{C}_{rt}|day}$  ahead info $-\mathbb{E}{C_{rt}|day}$  ahead info $\}$ 
  - Sample k' additional trajectories
  - Compute  $\bar{\Delta} = \frac{1}{k'} \sum_{j=1}^{k'} \left( \hat{C}_{rt}(\xi_{rt}^j) C_{rt}(\xi_{rt}^j) \right)$
  - Estimate  $\mathbb{E}\{C_{rt}|\text{day ahead info}\} \simeq \mathbb{E}\{\hat{C}_{rt}|\text{day ahead info}\} \bar{\Delta}$
- This latter estimate is always unbiased
- For a given budget of (k + k') trajectories solved via SCOPF, it is typically more accurate than CMC with n = k + k' trajectories

#### Case study: 3-area RTS system (PSCC 2018)



NB: modified by including lots of wind power plants

Machine Learning for Reliability Assessment

#### Crude Monte-Carlo approach (PSCC 2018)



- Operating cost for one trajectory: 24 successive DC-SCOPF computations
- Sample n = 2400 trajectories, and estimate expectation by sample average
- Standard error is estimated by  $\sigma/\sqrt{n}$ ,  $\sigma$  being the sample standard deviation

#### Naive use of Machine Learnt proxy (PSCC 2018)



- Proxy of hourly operating cost learnt on k = 850 trajectories, using ANN
- Estimate expectation via much larger sample, by using only the proxy
- Unfortunately, using the proxy we get a biased estimate (by about 1.4 %)

#### Use of ML proxy as a Control Variate (PSCC 2018)



- Proxy learnt on k = 850 trajectories, using resp. ET or ANN
- Estimate on k' up to 1550 additional samples by the control variates approach
- Yields unbiased estimate of reduced std.error (factor 2), for same SCOPF budget

#### Further refinement: Stacked Monte-Carlo (PSCC 2018)



- Yields unbiased estimate of reduced std.error by a factor 4
- Uses SCOPF budget in a more effective way to reduce both bias and variance
- See paper for explanation of the method

# Synthesis (PSCC 2018)

- Machine learning can be used in a sound way to significantly speed up day-ahead reliability assessment under uncertainties
- Computationally, a speed-up of a factor 10-20 with respect to a crude Monte-Carlo approach is certainly reachable
- Further leveraging deep neural networks may help to make the approach even more effective
- Open questions for further work:
  - Adaptation of the proposed framework for estimating probabilities of rare events P {∑<sub>t=t0</sub><sup>t</sup> c<sub>rt</sub>(ξ<sub>rt</sub><sup>t</sup>, u<sub>rt</sub><sup>t</sup>(ξ<sub>rt</sub><sup>t</sup>)) ≥ M}
  - Combination of this approach with appropriate techniques for finding suitable day-ahead decisions



• Maintenance optimization and system development contexts



- Maintenance optimization and system development contexts
- Look-ahead horizons: months to years; years to decades



- Maintenance optimization and system development contexts
- Look-ahead horizons: months to years; years to decades
- Complexity multiplied by 8800 hrs  $\times$  30 years



- Maintenance optimization and system development contexts
- Look-ahead horizons: months to years; years to decades
- $\bullet\,$  Complexity multiplied by 8800 hrs  $\times$  30 years
- Uncertainty models even more complex to establish



- Maintenance optimization and system development contexts
- Look-ahead horizons: months to years; years to decades
- $\bullet\,$  Complexity multiplied by 8800 hrs  $\times$  30 years
- Uncertainty models even more complex to establish
- Many opportunities for Machine Learning...

Machine Learning for Reliability Control •00

# Part III

Machine Learning for Reliability Control

#### **Reliability control:**

Determine an optimal decision  $u^*$  to take in order to ensure a desired level of reliability over a given time period:

- Real-time mode
- Short-term look-ahead mode
- Longer-term look-ahead problems

#### Possible Optimal Control Approaches

• Analytical approach: formulate equations and solve them to near-optimality; it is the realm of mathematical optimization; needs lots of approximations to be tractable.

#### Possible Optimal Control Approaches

- Analytical approach: formulate equations and solve them to near-optimality; it is the realm of mathematical optimization; needs lots of approximations to be tractable.
- Brute force "Trial and error" approach: using 'Reliability assessment module' as an oracle: can work well when small number of alternative decisions have to be compared; can exploit further ideas of variance reduction and machine learning.

#### Possible Optimal Control Approaches

- Analytical approach: formulate equations and solve them to near-optimality; it is the realm of mathematical optimization; needs lots of approximations to be tractable.
- Brute force "Trial and error" approach: using 'Reliability assessment module' as an oracle: can work well when small number of alternative decisions have to be compared; can exploit further ideas of variance reduction and machine learning.
- Off-line policy search: create structured space of candidate decision policies, and sample them together with scenarios used to assess by simulation the candidate policies. Interleave policy search steps and proxy-learning steps in a suitable way.

#### Possible Optimal Control Approaches

- Analytical approach: formulate equations and solve them to near-optimality; it is the realm of mathematical optimization; needs lots of approximations to be tractable.
- Brute force "Trial and error" approach: using 'Reliability assessment module' as an oracle: can work well when small number of alternative decisions have to be compared; can exploit further ideas of variance reduction and machine learning.
- Off-line policy search: create structured space of candidate decision policies, and sample them together with scenarios used to assess by simulation the candidate policies. Interleave policy search steps and proxy-learning steps in a suitable way.
- On-line reinforcement learning approach: interleave learning and decision making, while taking advantage of simulators and proxies designed ahead in time.

#### Some further bibliographical pointers



P. Panciatici, G. Bareux and L. Wehenkel

Operating in the fog - Security management under uncertainty IEEE Power & Energy Magazine, 2012, September/October, 40-49



E. Karangelos, P. Panciatici and L. Wehenkel

Whither probabilistic security management for real-time operation of power systems ? *Proc. of IREP Symposium*, Rethymnon 2013



#### E. Karangelos and L. Wehenkel

Probabilistic reliability management approach and criteria for power system real-time operation *Proc. of PSCC*, Genoa 2016



#### E. Karangelos and L. Wehenkel

Probabilistic reliability management approach and criteria for power system short-term operational planning Proc. of IREP Symposium, Porto 2017



L. Duchesne, E. Karangelos, and L. Wehenkel

Machine learning of real-time power systems reliability management response *Proc. of IEEE PowerTech*, Manchester 2017



L. Duchesne, E. Karangelos, and L. Wehenkel

Using machine learning to enable probabilistic reliability assessment in operation planning *Proc. of PSCC*, Dublin 2018



#### E. Karangelos, and L. Wehenkel

Post-contingency corrective control failure: a risk to neglect or a risk to control? *Proc. of PMAPS*, Boise 2018