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3 different contexts of  
decision making 

�   Grid (re)design: 
�   New technologies, New needs, More uncertainty 
�   Towards an ‘agile system design’? 

�   Asset management: 
�   Aging infrastructure, can not be ‘rebooted’ nor rebuilt from 

scratch, time budget for maintenance and replacement 
�   Towards a better modeling of  ageing processes and a more 

effective prioritization of  maintenance according to condition and 
criticality of  asset? 

�   Operation and control: 
�   Uncertainty, new dynamics, new control means 
�   Towards probabilistic and/or robust optimization methods, 

exploiting more measurements, and based on better algorithms? 
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How can data, and data 
analytics, help out? 

 

What kind of  research 
efforts are needed? 

Menu 
1. About the types of  models used by engineers 
2. About the open modeling problems in power systems 
3. Some topics for further research 
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1. About the types of  
models 

�   Statistical models from observational data 
�   I.e. representation of  joint or conditional probability 

density over a set of  random variables, induced from 
observational data 

�   E.g. Gaussian processes, Markov chains/fields, etc. 
�   E.g. Logistic models, Random Forests, SVMs  

�   Physical models from first principles 
�   I.e. representation of  deterministic constraints among 

physical quantities about a system 
�   E.g. Algebraic / differential equations / PDE 
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Why do we need models? 
�   To describe testable hypotheses about the real-

world behavior 

�   To understand and communicate knowledge about 
the real-world 

�   To take decisions on how to act in the real-world 
�   To gather further information in order to validate/

invalidate/refine models of  a sub-system 
�   To define control/optimization policies so as to 

modify the behavior of  a sub-system when operating 
in the real-world 
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Our models should enable us to answer  
3 types of  inference questions 

Process Controllerl U Y

§ Observational questions: 
ü What if  we see A?  (What is?) è What is the probability of  
blackout, given that weather conditions are bad? 

§ Action questions: 
ü What if  we do A? (What if?) èWhat would the probability of  
blackout be, if  we decide to curtail some load? 

§ Counterfactual questions: 
ü What if  we had done things differently? (Why?) è Would there 
have been a 2003 blackout, if  MISO & FirstEnergy computers 
had been working correctly?  

Environment 
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Other desirable properties  
of  models 

�   Simplicity: easy to understand, no superfluous parts 

�   Falsifiability: possible to verify through experiments 

�   Tractability: can be exploited efficiently 

�   Modularity: can be combined with other models 

�   Scalability: can be used in the real-world 

�   Stability: can be smoothly updated over time 

�   Transportability: can be used in different contexts 
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2. Some modeling problems 
that need further work 

�   Environment:  
�   Model impact of  weather, climate on generation and grid 

subsystems and on end-users 

�   E.g. from wind/cloud forecast, to joint renewable energy and load 
forecast 

�   Socio-economic factors:  
�   Model behavior, preferences of  end-users, markets, societies 

�   E.g. demand side response, market response 

�   Power system physics:  
�   Understand behavior of  components, refresh/revisit dynamic 

system models 

�   E.g. ageing and failure modes of  devices, dynamics of  distribution 
subsystems 
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Main characteristics of  
these modeling problems 

�   Available data comes as a mixture of  large sets of  
�   Internal vs external data 
�   Pure observational data vs information about physical 

structure 

�   In most cases the aspects to be modeled are coupled 
�   confounding by weather or by other external factors 
�   spatio-temporal correlations among load, generation, faults 

�   Sometimes there is a lack of  appropriate data 
�   Due to the rare nature of  some extreme events 
�   Due to data “censoring”, as a result the past and current 

power system operation and maintenance policies 
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3. Needs for further work 
�   Some specific examples 

�   Wind forecast, cloud forecast : can we do better than current practice? 
What are the fundamental limits of  predictability? 

�   How to build tractable Macro-models of  larger subsystems (e.g. 
markets, overall demand response) from micro-models of  their parts? 

�   Stability and transportability of  models:  
�   How to ensure that generation and load models can be easily 

adapted over time? 
�   How to easily ‘transport’ such models built for one place to 

another place? 

�   Exploit data pooling in a more effective way:  
�   How to combine information about different devices, about 

different areas of  the system to build more accurate models? 
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A. Forecasting problems 
�   NB: they come in different flavors for different prediction 

horizons, but share some main features: 

�   In general, we need forecasting methods that estimate not 
only conditional expectations of  future values, but as well 
their conditional distributions, so as to quantify uncertainty 
(needed for risk assessment, and decision making) 

�   Weather conditions are one of  the main influencing factors, 
and they yield correlations among load, generation, and 
outage rates, both in space and in time 

�   How to build tractable models, from available data? 

�   Ideas: build on sparse or hierarchical models, tree-structured 
graphs, or chordal graphs ? 

13 



B. Load/demand modeling 
�   Better dynamic models (response to voltage/frequency variations 

over seconds, minutes): needed for stability analysis 

�   Better forecasts (over hours to years, cf  preceding slide): needed 
for planning and operation 

�   Better estimation of  value of  lost load (i.e. end-user utility 
functions): needed to formulate probabilistic reliability 
management criteria 

�   What kind of  models are needed to enable demand side 
response ? 

�   Ideas: consider the possibilities of  novel data acquisition 
channels, together with optimal experiment design; active 
learning and reinforcement learning approaches might offer 
solutions. DSO – TSO collaboration is necessary to progress. 
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C. Problems of  scarce data 
�   I will develop two examples 

�   The estimation of  remaining life-time of  transmission 
system assets 

�   The estimation of  joint probabilities of  multiple faults 

�   Both are in principle required in order to develop 
risk-based reliability management strategies 

�   NB: they are currently under investigation, in the 
context of  the European FP7 project GARPUR  
�   See http://www.garpur-project.eu  
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Remaining lifetime 
assessment (1) 

�   Reliability centered maintenance needs to quantify both asset 
health condition and its criticality for system reliability 
�   Health condition of  a given device depends on the history of  

stress (climate based, flow based, on/of  cycles) and on past 
maintenance operations 

�   EHV equipment come in technology groups, but individual 
elements may have quite different ‘life-styles’. 

�   In EHV systems, past maintenance policies have basically led 
to very few, if  any, equipment being in its ‘terminal’ state. 
They did not really take ‘life-style’ of  criticality into account, 
but are rather based on technical sheets from manufacturers. 

�   So, this means that better models should allow one to reduce 
maintenance budget at fixed reliability level, but we have a 
problem with data censoring. 
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Remaining lifetime 
assessment (2) 

�   To solve this problem requires a combination of  
physical models of  degradation processes, of  
additional experimental data, and of  ad hoc 
statistical estimation techniques. 

�   Furthermore, data sharing and experience sharing 
among TSOs should be encouraged. 

�   NB: The same problem also exists in distribution 
systems, but it seems that observations of  real 
failures is less rare in these latter systems. Maybe 
we can transport some models from there to 
transmission systems? 
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Probabilities of  N-k events 
�   Needed to develop probabilistic reliability assessment 

and management techniques. 

�   Two aspects to consider: 
�   Model the impact of  weather conditions and equipment 

health-state, on the probability of  single outages 

�   Find out under which conditions individual events may be 
treated as independent (conditionally on the weather and 
the health-states), and if  not how to quantify then the joint 
probabilities of  multiple events. 

�   NB: it may be needed to consider jointly 2, 3 or even 
more events, to assess correctly the actual threats. 
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D. Using Machine Learning 
to build ‘proxies’ 
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Notion of  ‘proxy’ 
�   Suppose that we are able to quite well model in detail real-

time operation : typically this would be in the form of  some 
(maybe stochastic) SCOPF formulation + some algorithmic 
solution heuristics. 

�   When taking day-ahead decisions, we will need to ‘simulate’ 
next-day real-time operation over many possible scenarios and 
over many different time-steps. 

�   This means that day ahead decision making carries the 
complexity of  real-time decision making raised by several 
orders of  magnitude. 

�   When moving to asset management and further to system 
planning, we talk about optimization horizons of  one to 
several years: obviously, complexity is again raised by several 
orders of  magnitude. 
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Notion of  ‘proxy’ 
�   A ‘proxy’ for real-time operation, is a function taking 

as input a representation of  the information state 
used in real-time operation, and computing as 
output an estimate of  the result of  the real-time 
decision making process. 

�   In principle, such ‘proxies’ could be built by using 
state-of-the-art machine learning algos, combined 
with Monte-Carlo simulation and optimization tools. 

�   If  a good proxy is obtained, it can be used in day 
ahead in place of  the cumbersome detailed real-
time decision making model. 
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Backwards propagation 
�   Similarly, a proxy for day-ahead decision making 

maybe built for use in the longer horizons (asset 
management, system planning). 

�   Such a ‘day-ahead proxy’ would also integrate the 
effects modeled by the real-time proxy. 

�   Etc… 
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Further benefits 
�   TSOs could share such ‘proxies’, so as to allow 

each-other to take into account the needed 
information from other areas when taking decisions 
�   Leads so some kind of  horizontal coordination 

approach 

�   TSOs and DSOs could as well share such ‘proxies’ 
�   could lead to some kind of  vertical coordination 

�   NB: such ideas are currently under investigation, in 
the context of  the European FP7 project iTesla 
�   See http://www.itesla-project.eu  
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Concluding comments 
�   We highlighted the need to have causal models, i.e. 

beyond what can be provided by pure statistics. To 
construct such models needs to hybridize physics and 
statistics in the proper way. 

�   We want to stress the need to integrate modeling, 
simulation and control into a single overarching activity. 
In this context, causal models may help to guide the 
exploration exploitation tradeoff. 

�   Machine learning may be used to build tractable 
‘proxies’ of  subsystems and of  subtasks; these latter 
may be reused in many different contexts. How to do 
this in the best way requires further research. 

24 



Some further readings 
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