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Some applications

Steal-mill control
Wide area control of power systems
Computer vision based quality control
Proteomics biomarker identification

Steal-mill control (ULg, PEPITe, ARCELOR)

Problem

◮ Pre-setting of steel-mill controller
◮ Improve friction force model

Approach

◮ Collect data from process
measurements

◮ Determine error of physical model
◮ Automatically learn blackbox

model of prediction error
◮ Combine physical and blackbox

model to predict friction forces
◮ Adaptive pre-setting reduces

waste
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Wide area control of power systems (ULg, PEPITe, Hydro-Québec)

Problem

◮ Improve emergency control scheme

◮ Churchill-Falls power plant

◮ Reduce probability of blackout

Approach

◮ 10,000 real-time snapshots sampled
(several years)

◮ Massive time-domain simulations
◮ Automatically learn decision rules to

determine optimal amount of
generation and load to trip

◮ Implement rules in real-time
◮ New rules enhance security
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Vision based quality control (EC Project FINDER)

Problem

◮ Car light reflector manufacturing
◮ Quality control of aesthetic defects

Approach

◮ Robotics (handling of reflectors)
◮ Computer vision (defect detection)
◮ Extraction of images of defects

(10000 × 300)
◮ Expert classification into 15 classes
◮ Build classifiers by automatic learning
◮ Integration into automatic QC system
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Some applications

Steal-mill control
Wide area control of power systems
Computer vision based quality control
Proteomics biomarker identification

Medical diagnosis (CBIG/GIGA collaboration)

Problem

◮ Diagnosis of Rhumatoid
Arthritis and other
inflammatory diseases

Approach [GFd+04]

◮ Proteomic analysis of
serum samples

◮ Automatic learning to

◮ identify biomarkers
(protein fragments)
specific of disease

◮ derive classifier for
medical diagnosis
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Supervised learning algorithm (Batch Mode)

◮ Inputs: learning sample ls of (x , y) observations (ls ∈ (X × Y )∗)

◮ Output: a model f ls
A ∈ FA ⊂ Y X (decision tree, MLP, ...)
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NB. x = (a1, . . . , an)
◮ Objectives:

◮ maximise accuracy on independent observations
◮ interpretability, scalability
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Induction of single decision/regression trees (Reminder)

◮ Algorithm development (1960-1995)

◮ Top-down growing of trees by recursive partitioning
◮ local optimisation of split score (square-error, entropy)

◮ Bottom-up pruning to prevent over-fitting
◮ global optimisation of complexity vs accuracy (B/V tradeoff)

◮ Characterization
◮ Highly scalable algorithm
◮ Interpretable models (rules)
◮ Robustness: irrelevant variables, scaling, outliers
◮ Expected accuracy often low (because of high variance)

◮ Many variants and extensions
◮ ID3, CART, C4.5, C5 . . .
◮ oblique, fuzzy, hybrid . . .
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Bias/variance decomposition (of average error)

Accuracy of models produced by an algorithm in a given context

◮ Assume problem (inputs X , outputs Y , relation P(X , Y ))

and sampling scheme (e.g. fixed size LS ∼ PN(X , Y )).

◮ Take model error function (e.g. Errf ,Y ≡ EX ,Y {(f (X ) − Y )2})

and evaluate expected error of algo A (i.e. ErrA,Y ≡ ELS{Errf LS
A

,Y })

We have ErrA,Y − ErrB,Y = Bias2
A + VarA

where
◮ B is the best possible model (here, B(x) ≡ EY |x{Y })
◮ Bias2

A = Errf A,B (f A(x) ≡ ELS{f LS
A (x))}

◮ VarA = ErrA,f A
(dependence of model on sample)
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Ensembles of trees (How?/Why?)

◮ Perturb and Combine paradigm (1990-2005)

◮ Build several (M) trees (e.g. M = 100, by randomization)

◮ Combine trees by voting, averaging. . . (i.e. aggregation)

◮ Characterization
◮ Can preserve scalability (+ trivially parallel)

◮ Does not preserve interpretability
◮ Can preserve robustness (irrelevant variables, scaling, outliers)

◮ Can improve accuracy significantly

◮ Many generic variants (Bagging, Stacking, Boosting, . . . )

◮ Non-generic variants (Random Forests, Random Subspace, . . . )
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Variance reduction by randomization and averaging

Denote by f ls,ε
A randomized version of A (where ε ∼ U[0, 1))

M averaged models: f ls,ǫ
A,T = M−1

∑M
i=1 f ls,ǫi

A (in the limit f ls
A,∞)

var     ELS ε|LS ε|LSE     varLS
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bias

Randomization
Original algorithm

variance2

Randomized algorithm

Averaged algorithm
Averaging

Can reduce Variance strongly, without increasing too much Bias.
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Extra-Trees: overall learning algorithm

T1 T3 T4 T5T2

◮ Ensemble of trees T1, T2, . . . ,TM (generated independently)

◮ Random splitting (choice of attribute and cut-point)

◮ Trees are fully developed (perfect fit on ls)

◮ Ultra-fast (
√

nN log N)

(Presentation based on [Geu02, GEW04])
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Extra-Trees: node splitting algorithm (for numerical attributes)

Given a node of a tree and a sample S corresponding to it

◮ Select K attributes (i.e. input vars) {a1, . . . , aK} at random;

◮ For each ai (draw a split at random)
◮ Let aS

i,min and aS
i,max be the min and max values of ai in S ;

◮ Draw a cut-point ai,c uniformly in ]aS
i,min, a

S
i,max];

◮ Let ti = [ai < ai,c ].

◮ Return a split ti = arg maxti Score(ti , S).

NB: the node becomes a LEAF

◮ if |S | < nmin;

◮ if all attributes are constant in S ;

◮ if the output is constant in S ;
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Extra-Trees: prediction algorithm

◮ Aggregation (majority vote or averaging)

T2T1 T3 T4 T5

C1 C2 CM
0 0 0 00 00 14 0

C2

?
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Bias/variance tradeoff (of Extra-Trees models with M = 100)
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Parameters (of the Extra-Trees learning algorithm)

Averaging strength M
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Kernel interpretation of trees (assuming fully developed trees)

◮ Kernel defined by a single tree T :

KT (x , x ′) = 1 (or 0) if x and x ′ belong (or not) to same leaf

◮ Model defined by a single tree T : (ls =
(

(x1
, y1), . . . , (xN

, yN)
)

)

fT (x) =
N

∑

i=1

y iKT (x i
, x)

◮ Kernel defined by a tree ensemble T = {T1, T2, . . . ,TM}:

KT (x , x ′) = M−1
M

∑

j=1

KTj
(x , x ′)

◮ Model defined by a tree ensemble T :

fT (x) = M−1
M

∑

j=1

fTj
(x) =

N
∑

i=1

y iKT (x i
, x)
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Geometric properties (of Single Trees)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

True function
Learning sample

ST

A single fully developed CART tree.
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Geometric properties (of Tree Bagging models)
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With M = 100 trees in the ensemble.
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Totally randomized trees (variant of Extra-Trees with K = 1)

◮ Select splits (attribute and cut-point) totally at random

⇒ Tree structures independent of sample output values {y i}

⇒ Kernel tuned only on sample distribution in the input space

⇒ Can use the same ensemble of trees for different y -variables

⇒ Ultra-fast “non-supervised” learning algorithm

NB. If K > 1: kernel depends more strongly on {y i} (CPU ∝ K)

NB. Extra-Trees fit “weakly” the ls (Strength ∝ K)
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Parameters (of the Extra-Trees learning algorithm)

Attribute selection strength K (w.r.t. symmetries, irrelevant attributes)
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Some theoretical properties of Extra-Tree models

Interpolation: ∀(xi , y i ) ∈ ls : fT (x i ) = y i (if nmin = 2)

Boundedness: ∀x ∈ X : fT (x) 6 maxls y i (convexity w.r.t. y i )

Smoothness: continuous & pw smooth (in the limit M → ∞)

Convergence: (w.r.t. M → ∞)

∀x ∈ X : fTi
(x): sequence of discrete finite iid rv.

∀x ∈ X : M−1
∑M

i=1 fTi
(x)

a.s.−→f∞(x). (SLLN)

Consistency conjecture: (distribution free; i.i.d. sampling; N, M → ∞)

If nmin and M ∝
√

N, then f N
T (·) i .s.s.−→ B(·).

NB. nmin → ∞ ⇒ regularisation of i/o map
M → ∞ ⇒ cancelling of randomization variance
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Generic pixel-based image classification

Challenge:

Create a robust image classification algorithm by the sole
use of supervised learning on the low-level pixel-based
representation of the images.

Question:

How to inject invariance (translation, scale, orientation)
in a generic way into a supervised learning algorithm ?

NB: work used mainly on Extra-Trees, but other supervised
learners could also be used (e.g. SVMs, KNN. . . ).

(Presentation based on [MGPW04, MGPW05])
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Examples

◮ Hand written digit recognition (0, 1, 2, ..., 9)

◮ Face classification (Jim, Jane, John, ...)
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Examples

◮ Texture classification (Metal, Bricks, Flowers, Seeds, ...)
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Examples

◮ Object recognition (Cup X, Bottle Y, Fruit Z, ...)
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Naive solution (global learning and prediction)

◮ Learning sample of N pre-classified images,

ls = {(ai
, c i ), i = 1, . . . ,N}

ai : vector of pixel values of the entire image
c i : image class

◮ Prediction: same approach
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Segment & Combine (training to classify sub-windows)
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Learning sample of Nw sub-windows (size w × w , pre-classified),

ls = {(ai
, c i ), i = 1, . . . ,Nw}

ai : vector of pixel-values of the sub-window
c i : class of mother image (from which the window was extracted)
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Segment & Combine (classify image by voting on sub-windows)

C1 C2 CM

C1 C2 CM

C1 C2 CM
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Datasets and protocols

Datasets # images # base attributes # classes Nw w

MNIST 70000 784 (28 ∗ 28 ∗ 1) 10 360,000 24

ORL 400 10304 (92 ∗ 112 ∗ 1) 40 120,000 20

COIL-100 7200 3072 (32 ∗ 32 ∗ 3) 100 120,000 16

OUTEX 864 49152 (128 ∗ 128 ∗ 3) 54 120,000 4

◮ MNIST: LS = 60000 images ; TS = 10000 images

◮ ORL: Stratified cross-validation: 10 random splits LS = 360; TS = 40

◮ COIL-100: LS = 1800 images ; TS = 5400 images (54 images per object)

◮ OUTEX: LS = 432 images (8 images per texture) ; TS = 432 images (8 images per texture)
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A few results: accuracy
DBs Extra-Trees Extra-Trees State-of-the-art

Naive Segment & Combine

MNIST 3.26% 2.63% 0.5% [DKN04]

ORL 4.56% ± 1.43 1.66% ± 1.08 2.0% [Rav04]

COIL-100 1.96% 0.37% 0.1% [OM02]

OUTEX 65.05% 2.78% 0.2% [MPV02]

24 × 24:

20 × 20:

16 × 16:

4 × 4 :
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A few results: CPU times

◮ Learning stage: depends on parameters
MNIST: 6h, ORL: 37s, COIL-100: 1h, OUTEX: 11m

◮ Prediction: depends on parameters and sub-window sampling
◮ Exhaustive (all sub-windows)
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MNIST: 2msec, ORL: 354msec
COIL-100: 14msec, OUTEX: 800msec

◮ Random subset of sub-windows
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MNIST: 1msec, ORL: 10msec
COIL-100: 5msec, OUTEX: 33msec
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Sub-windows of randomized size (robustness w.r.t. scale)

◮ Extraction of sub-windows of random size

◮ Rescaling to standard size
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. . . and randomized orientation (more robustness)

◮ Extraction of sub-windows of random size
◮ + Random rotation
◮ Rescaling to standard size

C1 C2 C3

C1 C1 C1 C1 C1 C2 C2 C2 C2 C2 C3 C3 C3 C3 C3
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Attribute importance measures (global approach)

Compute (Shannon) information quantity brought by each pixel in
each tree, and average over the ensemble of trees.

ORL (faces) MNIST (all digits) MNIST (0 vs 8)
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Optimal control problem (stochastic, discrete-time, infinite horizon)

xt+1 = f (xt , ut , wt) (stochastic dynamics, wt ∼ Pw (wt |xt , ut))

rt = r(xt , ut , wt) (real valued reward signal bounded over X × U × W )

γ (discount factor ∈ [0, 1))

µ(·) : X → U (closed-loop, stationary control policy)

Jµ

h (x) = E
{

∑h−1
t=0 γtr(xt , µ(xt), wt)|x0 = x

}

(finite horizon return)

Jµ

∞(x) = limh→∞ Jµ

h (x) (infinite horizon return)

Optimal infinite horizon control policy
µ∗
∞(·) that maximises Jµ

∞(x) for all x .

(Presentation based on [EGW03, EGW05])
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Batch mode reinforcement learning problem

Suppose that instead of system model (f (·, ·, ·), r(·, ·, ·), Pw (·|·, ·)),
the only information we have is a (finite) sample F of four-tuples:

F = {(xt i , ut i , rt i , xt i+1), i = 1, . . . ,N}.
Each four-tuple corresponds to a system transition.

The objective of batch mode RL is to determine an approximation
µ̂(·) of µ∗

∞(·) from the sole knowledge of F .

(Many one-step episodes: xt i distributed independently)

(One single episode with many steps: xt i+1 = xt i +1)

(In general: several multi-step episodes)
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Q-function iteration to solve Bellman equation

Idea: µ∗
∞(·) ≡ can be obtained as the limit of a sequence of

optimal finite horizon (time-varying) policies.

Define sequence of value-functions Qh and policies µ∗
h(t, x) by:

Q0(x , u) ≡ 0
Qh(x , u) = Ew |x ,u{r(x , u, w)+γmaxu′Qh−1(f (x , u, w), u′)} (∀h ∈ N)

µ∗
h(t, x) = arg maxu Qh−t(x , u) (∀h ∈ N,∀t = 0, . . . , h − 1)

NB: these sequences converge (Qh
sup−→ Q∞ and µ

∗
h (t, x)

Jµ

∞−→ µ
∗
∞(x))

Alternative view: (Bellman equation)

Q∞(x , u) = Ew |x ,u{r(x , u, w) + γmaxu′Q∞(f (x , u, w), u′)}
µ∗
∞(x) = arg maxu Q∞(x , u)
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Fitted Q iteration algorithm

Idea1: replace expectation operator Ew |x ,u by average over sample
Idea2: represent Qh by model to interpolate from samples
Supervised learning (regression): does the two in a single step

◮ Inputs:
◮ a sample F of four-tuples

(

(xt i , ut i , rt i , xt i +1), i = 1, . . . , N
)

◮ a regression algorithm A (A : ls → f ls
A )

◮ Initialisation: Q̂0(x , u) ≡ 0

◮ Iteration: (for h = 1, 2, . . .)

◮ Training set construction: (∀i = 1, . . . N)

x i = (xt i , ut i );
y i = rt i + γ maxu Q̂h−1(xt i+1, u),

◮ Q-function fitting:
Q̂h = A(ls) where ls =

(

(x1, y1), . . . , (xN , yN)
)
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Coupling with tree-based models
Use tree-based regression as supervised learning algorithm

◮ Tree-based methods: boundedness ⇒ ‘non-divergence to ∞’

◮ Kernel independent of h: ‘⇒ convergence’ (when h → ∞)

◮ Tree structures frozen for h > h0 ⇒ ’convergence’

Solves at the same time

◮ System identification (implicitly)

◮ State-space discretization (and curse-of-dimensionality)

◮ Bellman equation (iteratively and approximately)

Generality of the framework

◮ No strong hypothesis on f , r (discrete, continuous, high-dimensional)

◮ Minimum-time problems (define r(x , u, w) = 1Goal (f (x , u, w)))

◮ Stabilization problems (define r(x , u, w) = ||f (x , u, w) − xref ||)
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Academic illustration - Electric power system stabilization

2
C7

G2 G4

6 7 9 10 11 3 G3

L7 L9 C9
4

TCSC
G1 1 5

Figure: Four-machine test system (nonlinear, 60 state variables)

◮ Use of simulator + 1000 random episodes (60s, ∆t =50ms)

◮ 5-dimensional X × U space; F contains 1100,000 four-tuples.

◮ “Reward”: power oscillations and loss of stability (γ = 0.95)

◮ Policy learning by fitted Q-function iteration (h = 100) with
Extra-Trees (M = 50;K = 5; nmin = 2)
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Electric power system stabilization
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Figure: The system responses to 100 ms, self-clearing, short circuit
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Electric power system stabilization
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Figure: 100 ms short circuit cleared by opening line
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Electric power system stabilization
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Figure: Local vs remote signals with/without communication delay
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Closure - Research directions

Extra-Trees
◮ Theoretical analysis of randomized tree based algorithms
◮ Systematic handling of invariances, symmetries
◮ Incremental, non-supervised, semi-supervised learning

Segment and Combine
◮ Time-series and text classification
◮ Image and time-series segmentation
◮ Time-series forecasting

Reinforcement Learning
◮ Characterization w.r.t. model-based methods (e.g. MPC)
◮ Active learning, on-line learning and multi-agent systems
◮ Combination of RL & SC

Applications
◮ Modeling energy markets as adaptive multi-agent systems
◮ Exploitation of genomic and proteomic datasets
◮ Data mining for process control (e.g. learning from operators)
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