
Advanced optimization methods for power systems

P. Panciatici, M.C. Campi, S. Garatti, S.H. Low, D.K. Molzahn, A.X.
Sun, L. Wehenkel

August 13, 2014

Survey paper
PSCC 2014: Wroclaw

1 / 53



Overview

1 Needs from a grid operator perspective

2 Taxonomy of optimization problems

3 Recent developments in the �eld of optimization

4 Possible synergies with sister �elds

5 Summary

6 References

2 / 53



Context: An increasing complexity

Integration of Renewable energies

Intermittent power: less predictable, less observable, less controllable
Best location faraway from load centers: o� shore wind or dispersed in
distribution grids

Figure: Generation capacity in Europe
(MW): installed per year Figure: Best location of RES in Europe
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Context: An increasing complexity

Low public acceptance of new infrastructures

Not In My Back Yard (NIMBY)

Fear of hypothetical impacts of EMF on health

� Complex and costly solutions

Aging of grid assets

Signi�cant part of the grids' assets is more than 50 years old

� Challenges in asset management and maintenance: Large number of assets
approaching simultaneously the end of their life times.

Supra national electricity markets

Global optimizer, Optimal utilization of assets =⇒ Operation closer to the
grid's limits

� Electrical phenomena don't stop at administrative borders =⇒ Large system
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Context: New "complex" solutions

Hardware solutions:

New conductors (HTLS) for existing overhead power lines.

Special devices: Phase Shifting Transformers, Static Var Compensators

Long distance HVAC underground cables with reactive compensators.

HVDC underground cables in // with AC grid controlled of AC/DC
converters.

Ultimately, HVDC grids: o�shore wind farms and cheap
interconnections.

Software solutions:

Dynamic Ratings: Lines, Cables, Transformers.

Advanced measurement system: PMUs, non conventional PT/CT.

Advanced controls and protection schemes using new ICT capabilities.

5 / 53



Context: Demand Response or Dispersed Storage

A paradigm shift ?

Business models and costs are still questionable.

� Rethinking of operating practices: loads could be not anymore purely
uncontrollable stochastic variables.
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Grid operators manage extremely complex decision making
processes

To ensure the reliability and quality of supply at minimal cost over di�erent
time horizons:

Long term (10-20 years): planning stage
Where to build new power lines? Which technology? Which capacity?

Mid term (2-5 years):
Installation of control devices: substation design, var/reactive support,
PSTs, replacement of conductors, SPS/RAS design.
Asset management and maintenance: which equipment to upgrade, to
replace, to repair and when?

Short term (monthly-weekly):
Outage management, must-run generators, preparation of corrective
actions, de�nition of required margins.

Real Time (two days ahead to real time):
Interaction with energy markets: de�nition of grid capacities;
Selection of substation's topology, settings of SPS/RAS, adjustment of
generating units.
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�Optimal" decisions over these di�erent time horizons

Some are not formalized as optimization problems but based on
knowledge of experts.

Complexity increases =⇒ Decision support tools mandatory to help
experts.

Challenge: Ensuring consistency

Multistage decision making processes considering all the di�erent time
horizons.
Decisions at planning stage requires modeling/simulation of asset
management and operation and the same between asset management
and operation.
Approximations are required and relevant �proxies" must be found.

� Valuable to explicitly formulate them as optimization problems, even if
they are hard to solve exactly.

� Signi�cant progress recently both in computational and in
mathematical respects
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Taxonomy of optimization problems

Modeling the optimization problem from a formal
viewpoint.

Modeling the physics of the power system
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Modeling the optimization problem from a formal viewpoint

Multistage decision making problem under uncertainty.

We can divide these decisions in three classes (analogy with IT systems):

1 Decisions changing the structure of the system (developing the
hardware)

2 Decisions changing policies or control/protection schemes (developing
the software)

3 Decisions modifying the operating points of the system (selecting
input data to run the software on the hardware)
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Expansion Planning: most challenging problem

A very complex optimization problem
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Expansion Planning: Formulation

Formulation as stochastic dynamic programming problem.

Scenario-based approaches =⇒ some level of robustness as proposed by
Rockafellar and Wets in 1991 [1].

Key questions: reliability criteria and how to implement them.

Monetization of "Energy Not Served" or "Loss of Load"

Expected value, no cap on the maximum risk

� Chance constrained or robust optimization could o�er more relevant
solutions

� Dramatic changes in case of generalization of Demand Response as
proposed by Schweppe in 1978 [2]
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Expansion Planning: Complexity

We can identify three di�erent dimensions: spatial, temporal and
stochastic:

Spatial: from large transmission grid to active distribution grids

Temporal: from decades to milliseconds

Stochastic: uncontrollable loads and renewable energies,
contingencies, failures ....

� Di�cult to deal simultaneously with these 3 dimensions

Selection of relevant technological options =⇒ combinatorial
optimization: a "knapsack" problem.
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Modeling of uncertainties

Key factor to �nd optimal decisions.

Neglecting spatial, temporal correlations =⇒ Very sub optimal
decisions.

� Probabilistic methods and risk based approaches:

When probabilistic properties partially known =⇒ generalized semi-in�nite
programming:

minx∈X f (x)
subject to: ∀δ ∈∆ : g(x ,δ)≤ 0,

x : decision variables and δ: uncertainties.
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Modeling of expectations and behaviors of grid users

Long term planning: "perfect" market.

Minimization of the total cost: Capex and Opex.

Shorter term: actual behaviors and imperfect market design =⇒ Agent
based approach

� Very complex problem: �nding "Nash Equilibrium".

N players with payo� function fp and xp strategy for each player p

∃ x∗p ,∀ xp : fp(x
∗
p ,x∗−p)≥ fp(xp ,x∗−p)

x−p: strategies of all other players except p

� Stochastic Behaviors: Potential links with Mean �eld Game Theory

Study of strategic decision making in very large populations of small
interacting individuals
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Multi-objective optimization problems

e.g: Minimize looses while keeping reactive reserves, minimize CO2

emissions and generation costs ...

Currently, min(w1.f1(x)+w2.f2(x)+ ...+wn.fn(x))
But �nding value for wi : di�cult and questionable

� min(f1(x), f2(x), ..., fn(x)) =⇒ Pareto optimal solutions

Figure: Complex optimization ⇒ Meta Heuristics Methods
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Modeling the physics of the power system

Solving optimization problems based on not realistic enough modeling is
useless ⇒ Right balance between realism and complexity.

Currently, static and deterministic modeling using linearizations ⇒
review required
A signi�cant number of controls are discrete:

switch on/o� of breakers, switch on/o� capacitor or reactor banks, tap
changers on transformers, generating units producing with non zero
minimal active power ...

� Naive relaxation (round o� strategy) ⇒ Di�cult to �nd feasible
solutions.

Some local controls and protection schemes are not event-based but
measurement based.
� Conditional corrective actions ⇒ Binary variables as proposed in 1999

by Bemborad and Morari. [3]

Some constraints are related to stability and dynamic behaviors
� Ultimate solution: Modeling using DAEs ⇒ Intractable problem

Modeling via �proxies" = rules learned o� line as proposed in 1994 by
Wehenkel and al. [4]
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Conclusion: Taxonomy of optimization problem

We could see that power system management could
lead to a large diversity of optimization problems.

� The proper formulation of each problem has to be well
thought out before searching for computational
solutions.
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Integer Variables

Treatment of integer variables in optimization problems is a di�cult
task.

Industrial and e�cient solutions for large linear problems (MILP):

Very e�cient presolvers: reducing dramatically the number of
constraints
Parallel implementation but e�ciency is problem depend and requires
tuning
Hot start capabilities speed up sequence of optimization problems

� For non linear problems (MINLP), no very good industrial solutions

B In our case: non linear but moreover non convex when integer variables
are transformed in continuous variables
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Modeling of local controls in optimization problems

min
∑ng

g=1 |pg −p0g |

subject to:
F (P ,θ,φ0)= 0
C (θ,φ0)≤ L0
Pmin ≤P ≤Pmax

−φm ≤φ0 ≤φm

for each contingency: k ∈ Sc
Fk(P ,θk ,φ0)= 0
Ck(θk ,φ0)≤ L1

if (Ipst(θk ,φ0)≤ Imax) then {φk =φ0}
−φm ≤φk ≤φm

Fk(P ,θck ,φk)= 0
Ck(θ

c
k ,φk)≤ L2

F ,Fk ,C ,Ck and Ipst : linear functions.

Illustrative example: Phase Shifter
Transformer control

Conditional action modeled using a
binary variable

δ.Imax ≤ Ipst(θk ,φ0)≤δ.MI + Imax

−δ.Mφ+φ0 ≤φk ≤δ.Mφ+φ0

δ: a binary variable, MI and Mφ: two
big positive constants
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Powerful general framework for modeling of logical and
integer relations

"Control of systems integrating logic, dynamics, and constraints" by
Bemborad and Morari [3]

� But case by case analysis required; �nding not too big �big M" ....

Another important application: Expansion planning (disjunctive model as
proposed in 2001 by Bahiense and al. [5])

Product between di�erence of phase angles and added incremental
admittance ⇒ Linear Equations
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Mixed Integer Non Linear Programming (MINLP)

� MINLP remains challenging: Ley�er and al. [6] give a general
diagnostic on practical problems

State of the art: Sequential MILPs or round-o� methods ⇒ tuning
required, �nding a feasible solution could be di�cult.

Interesting alternative: Mathematical Programming with Equilibrium
Constraints (MPEC) ⇒ ensure the feasibility

x : binary variable, x ∈ {0,1} ⇐⇒ x ⊥ (x −1)= 0
Implementations using Interior point methods via relaxation or
penalization
Useful to manage very large size problems as shown in two European
Projects: PEGASE [7], iTesla [1]

� Only sub-optimal solutions for non-convex MINLP problems.
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Conclusion: Need for convexi�cation

ACOPF are at the core of all our optimization problems

B Large amount of dedicated tunings and heuristics
required to solve each speci�c practical problem.

Impossible to ensure that an AC feasible solution could
be obtained using an iterative linear method.

� Convexi�cation of ACOPF is a promising generic
method to avoid most of these tunings and heuristics.

In the following, we present two recent promising
convexi�cation methods.
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PART 2: What's new in solution approaches for ACOPF ?

Two promizing ACOPF convexi�cation approaches

Novel results in handling of uncertainties in optimization

Other IT and CS progresses beyond our wishes
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On the essence of the general class of ACOPF problems

Ingredients:

A graph de�ned by a set of n buses and by b ≤ 1
2n(n−1) branches

State is de�ned by vector of complex voltages over the set of buses

Nature of optimization variables, objective function, feasible set:

Optimization variables: injections & branch parameters are inputs;
voltages and currents are 'outputs'
Objective function: smooth in terms of optimization variables (e.g. a
polynomial of a certain degree).
Physical constraints: KLaws, device physics.
Technical constraints: bounds on injections, discrete nature of
parameter choices (e.g. topology, steps of transformers, on-o� status
of generators, load-shedding steps, etc.)

The main (actually only) source of non-convexity is the nature of the
feasible domain:

Power �ow equations are quadratic equality constraints, and integrality
constraints are by essence non convex.
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Lifting and relaxation to build novel ACOPF algorithms

The underlying rationale is based on the YOGA1 iteration:

Let's relax: enlargen original non convex feasible set by a convex one,
as small as possible (i.e. something close to a convex hull).
Let's work: solve the 'relaxed' problem with existing solvers.
Let's contemplate the result:

We get a lower bound on the value of the original problem.
If we are lucky, we get a feasible and hence (globally) optimal solution
to the original problem: BINGO

Most YOGA iterations are based on two successive steps:

Lifting: map the problem into a higher dimensional space, where
additional constraints are added so as to make this a 1-to-1 map.
Relaxation: in the lifted formulation, choose a set of constraints to be
removed, so as to remain close to convex hull, at least in the area
where optimal solutions can be located.

1
YOGA: acronym for Your Optimization with a Gentle Attitude
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A tiny naive illustrative example: in equations

An originally non-convex problem in dimension 1:

min
x∈R

{
x2−x

}
s.t.

[
x2−4≥ 0

]
is �rst lifted into an equivalent 2-dimensional problem:

min
(y1,y2)∈R2

{
y2−y1

}
s.t.

[
y2−4≥ 0 and y2 = (y1)

2
]

and then relaxed by replacing in R2 the set de�ned by the constraint
y2 = (y1)

2 by its convex hull, de�ned by the constraint y2 ≥ (y1)
2:

min
(y1,y2)∈R2

{
y2−y1

}
s.t.

[
y2−4≥ 0 and y2≥(y1)2

]
which hence yields a convex program, in the form of a relaxation of
the original optimization problem.
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A tiny illustrative example: graphically

min
x∈R

{
x2−x ≡ x(x −1)

}
s.t.

[
x2−4≥ 0≡ (x +2)(x −2)≥ 0

]

Solution: x∗ = 2. Optimal value f ∗ is (2)2−2= 2.
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A tiny illustrative example: graphically lifted and relaxed

min
(y1,y2)∈R2

{
y2−y1

}
s.t.

[
y2−4≥ 0 and y2 ≥ (y1)

2
]

Solution: (y1 = 2,y2 = 4). It satis�es the non convex constraint y2 = (y1)
2.

!!! BINGO !!!
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How to apply 'lifting + relaxation' to ACOPF ?

Lifting + relaxation (≡ YOGA) is a powerful general approach to
construct algorithms for solving di�cult optimization problems.

For ACOPF, the questions are

How to lift and relax in a computationally e�cient way ?
Under which conditions does a certain 'lifting + relaxation' scheme
provide the global optimum ?

We will introduce two recently proposed 'lifting & relaxing' approaches
to ACOPF:

View ACOPF as a Quadratically Constrained Quadratic Programming
problem (QCQP)

The SDP relaxation (see citations in the paper...)

View ACOPF as a Polynomially Constrained Polynomial Programming
problem (PCPP)

The MOMENT relaxation (see citations in the paper...)
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ACOPF viewed as a QCQP

The ACOPF can often be rewritten as a Quadratically Constrained
Quadratic Program (QCQP) in the form:

min
x∈Cn

xHC0x (1a)

subject to xHClx ≤ bl , l = 1, . . . ,L, (1b)

where x ∈Cn, and for l = 0, . . . ,L, bl ∈R and Cl ∈Sn.

B If Cl , l = 0, . . . ,L, are all positive semide�nite then (1) is convex. But,
ACOPF is non-convex, because of (e.g.):

1 Power �ow equations. Quadratic equality constraints rewrite as:[
xHCpf x = bpf

]
≡

[
xHCpf x ≤ bpf and xH(−Cpf )x ≤−bpf

]
2 Integratility constraints for binary variables. They rewrite as:

[xi ∈ {−1,1}]≡
[
(xi )

2 = 1
]
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SDP relaxation of a QCQP (1)

De�ning X =: xxH , and using xHClx = tr Clxx
H =: tr ClX we can lift

the QCQP (1) as the following equivalent problem where the
optimization is now over Hermitian matrices:

min
X∈Sn

tr C0X (2a)

subject to tr ClX ≤ bl , l = 1, . . . ,L (2b)

X º 0 (2c)

rank X = 1 (2d)

The key observation is that the objective function and the constraints
are linear in X in (2a)�(2b) and that the constraint X º 0 in (2c) is
convex (since Sn+ is a convex cone).

The rank constraint in (2d) ensures that ∃x ∈Cn :X = xxH . It is the
only nonconvex constraint of problem (2).
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SDP relaxation of a QCQP (2)

� Relaxing the rank constraint results in a semide�nite program (SDP):

min
X∈Sn

tr C0X (3a)

subject to tr ClX ≤ bl , l = 1, . . . ,L (3b)

X º 0. (3c)

SDP is a convex relaxation of QCQP that can be e�ciently computed.

� A strategy for solving QCQP (1) is therefore to solve SDP (3) for an
optimal X opt and check its rank.

� If rank X opt = 1 then X opt is optimal for (2) as well and an optimal
solution xopt of QCQP (1) can be recovered from X opt through
spectral decomposition X opt = xopt(xopt)H .

� If rank X opt > 1 then, in general, no feasible solution of QCQP can be
directly obtained from X opt but the optimal objective value of SDP
provides a lower bound on that of QCQP. If the SDP (3) is infeasible,
then it is a certi�cate that the original QCQP (1) is infeasible.
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SDP relaxation of ACOPF: discussion

Under restrictive conditions one can show that the SDP relaxation is
exact for ACOPF (e.g. for radial networks), but in general it is not
exact.

However, the relaxed solution provides a lower bound on optimality,
which may be usefully exploited in practice.

Also, given any solution provided by any alternative algorithm for
ACOPF, one can use the SDP relaxation to provide su�cient
conditions of global optimality (but non necessary ones).

� QCQP is a special case of polynomial optimization.

� Polynomial optimization is more general and lends itself to the
application of the moment relaxation approach (see next slides).
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ACOPF viewed as a PCPP

Any thinkable ACOPF problem can be rewritten as a Polynomially
Constrained Polynomial Program in the following form:

min
x∈Rn

f0 (x) (4a)

subject to fl (x)≥ 0, l = 1, . . . ,L, (4b)

where ∀l = 0, . . . ,L : fl (x)=
∑
α∈Nn cl ,α x

α, and xα ≡∏n
i=1 x

αi

i .

Examples of polynomial feasible domains in 3 dimensions
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Moment approach: general principle

The generic optimization problem:

min
x∈Rn

f0 (x) (5a)

subject to fl (x)≥ 0, l = 1, . . . ,L, (5b)

can be rewritten as:
min

µ∈M (K)+

∫
K
f0 dµ (6a)

subject to

∫
K
dµ= 1, (6b)

where K is the feasible space de�ned by the constraints (5b) and
M (K)+ is the space of �nite (positive) Borel measures µ on K.

Indeed (intuitively),
for any positive µ on K such that (6b) holds, we have that∫
K f0 dµ≥ f ∗, where f ∗ is the optimal value of problem (5);
at the same time, if x∗ is a solution of (5), then the Dirac measure
µ∗ ≡ δx∗(x) is a solution of (6).
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Moment relaxation (for polynomial optimization)

The formulation (6) generically represents the optimization problem
(5) as a linear (and therefore convex), but in�nite-dimensional
optimization problem. We can further reformulate (6) as

min
y

∑
α∈Nn

c0,α yα (7a)

s.t. y0 = 1 (7b)

yα =
∫
K
xαdµ, α ∈Nn, for some µ ∈M (K)+ . (7c)

where now any measure µ ∈M (K)+ is represented by its
(in�nite-dimensional) vector of moments y = [yα]α∈Nn .

Formulation (7) is as well linear in y and in�nite-dimensional. But it
can be relaxed into a �nite dimensional convex optimization problem,
by keeping only a �nite number of convex conditions over y implied by
the constraints (7c), leading to a so-called moment relaxation.
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Moment relaxation (Lasserre hierarchy)

For some γ ∈N, de�ne the vector of monomials up to degree γ:

χγ =
[
1 x1 . . . xn x2

1
x1x2 . . . x2n . . . x

γ
n

]ᵀ
.

Write the moment matrix Ly (χγχ
ᵀ
γ), where term by term a polynomial

in x is replaced by a corresponding linear combination of moments
(i.e. Ly (

∑
i βix

αi )→∑
i βiyαi ).

Similarly, write the matrices Ly
(
fl (x)χγ−βl

χᵀ
γ−βl

)
, l = 1, . . . ,L, where

the polynomial fl (x) has degree 2βl or 2βl −1.

The order-γ moment relaxation in the Lasserre hierarchy is then

min
y

Ly (f0 (x)) (8a)

s.t. y0 = 1 (8b)

Ly
(
χγχ

ᵀ
γ

)º 0 (8c)

Ly
(
fl (x)χγ−βl

χᵀ
γ−βl

)
º 0, l = 1, . . . ,L. (8d)
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Moment relaxation (discussion)

In the same way as in the SDP relaxation, satisfaction of a rank
condition is su�cient for exactness of the moment relaxation:

rank
(
Ly

(
χ
1
χᵀ
1

))= 1. (9)

When condition (9) is satis�ed, the globally optimal decision variables
are obtained from a spectral decomposition of the matrix Ly

(
χ
1
χᵀ
1

)
.

If not, the solution provides a lower bound on the value of the original
problem. Increasing the order γ tightens this relaxation, at the price of
a rapidly growing computational burden.

Assuming that the optimization problem is a QCQP, the order-1
moment relaxation in the Lasserre hierarchy is essentially equivalent to
the SDP relaxation discussed previously.

Hence, the moment relaxation approach provides a possibility to �nd
globally optimal solutions for a broader class of ACOPF, and in
particular when the SDP relaxation does not work out.
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Wrap up about ACOPF convexi�cation

! The two presented approaches already provide signi�cant progress in
understanding the nature and solving exactly ACOPF problems of
moderate size (few hundred to few thousand nodes).

! They can be further developed by exploiting peculiarities of ACOPF
problems (wrt generic QCQPs and PCPPs), in particular the sparsity
structure induced by the network topology, both

theoretically (e.g. by studying the space of chordal graphs, beyond the
space of tree-structured topologies) and
practically by leveraging HPC infrastructures on top of sparse
formulations.

 Please see full paper for further explanations and references to the
relevant bibliography.

� They can be leveraged to SCOPF and to optimization under
uncertainty (see subsequent slides).
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Optimization under Uncertainties: Motivation/Outline

In many practical applications, some parameters (or even structures)
of the optimization problem to be solved are not known exactly.

In such circumstances, we would like to �nd a good solution that is
also acceptable even in the worst case conditions, over a given
uncertainty set.

We will look at two complementary frameworks for stating and solving
such problems, namely

Chance Constrained Optimization (CCO)
Robust Optimization (RO)

... and highlight some recent results of interest in these two �elds.

We will see that both approaches can and should bene�t from the
ACOPF convexi�cation ideas presented earlier in this paper.
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Chance Constrained Optimization (CCO)

Generic CCO problem formulation:

choose x∗ ∈Rd to minimize f (x) subject to x ∈X ,δ ∈∆ and
P{δ : x ∈Xδ} ≥ 1−ε.

Example application in ACOPF under uncertainty:

x are decisions to be taken ahead in time (say the day ahead).
∆ represents uncertainties still present when a decision has to be taken
(say future power injections).
f (x) is a performance measure, eg. f (x)= EP′(δ)f

′(x ,δ) (say an
expected cost or the cost under nominal conditions).
The sets Xδ represent feasibility constraints to be satis�ed, as a
function of the uncertainty δ ∈∆ (say security constraints over the next
period of time).
The CCO problem then amounts to �nd a decision x∗ such that with
high probability all feasibility constraints are satis�ed by x∗, and x∗ is
optimal in terms of the objective function.
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Recent results in CCO (1): scenario sampling

Scenario approach: (valid if f (x), X , and Xδ,∀δ ∈∆ are convex in x):

Collect N samples δ(1),δ(2), . . . ,δ(N), independent and identically
distributed according to the probability measure P.
Solve the (�nite-dimensional) problem:

SPN : minx∈X f (x)

s.t. x ∈Xδ(i) , i ∈ {1, . . . ,N}.

A solution x∗N of SPN satis�es, with probability 1−β all constrains in ∆
but at most an ε-fraction, i.e. P{x∗N ∉Xδ} ≤ ε, provided that

N ≥ 2

ε

(
ln
1

β
+d

)
that is, the obtained solution is chance constrained feasible with high
con�dence 1−β (d is the dimension of the space containing x).
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Recent results in CCO (2): scenario sampling and discarding

The scenario approach formulated above may yield conservative
results, specially if N is very large.

To improve the performance, one can a posteriori discard k constraints
among the initially sampled set of N constraints. In this way, the
solution improves, and a solid theory permits one to still guarantee
chance constrained feasibility.

More precisely, one can show that the solution obtained after
discarding k constraints satis�es

P{x∗N ∉Xδ} ≤ k

N
+O

(p
k lnk

N

)
.

This expression shows that P{x∗N ∉Xδ} rapidly approaches the

empirical chance constraint violation k
N as N increases, so that the

approach bears very little conservatism.
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Recent results in CCO: discussion

CONVEXITY:

The theoretical guarantees are relying on convexity assumptions, which
may not be available readily in ACOPF problems.

⇒ We need to see how to combine ACOPF convexi�cation with CCO.

NO FREE LUNCH CAVEAT:

If we want small ε (say ε= 10−5) and work in high dimension (say
d = 105) we need in the order of N = 2×1010 scenarios.

⇒ We need HPC approaches to handle such problems.

FURTHER RESEARCH is needed to leverage the CCO approach in
practice!

Please see survey paper for references on ongoing works in this
direction.
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Robust Optimization (RO)

The two-stage adaptive robust decision making model can be written
in the following compact form

min
x∈X

{
f (x)+max

d∈D
min

y∈Y (x ,d )
g(x ,d ,y)

}
. (10)

Here, the �rst-stage decision is x in the feasible region X , and the
second-stage decision is y , which adapts to the realization of
uncertainty d in the uncertainty set D and satis�es various operational
constraints in Y (x ,d ) parametrized by the �rst-stage decision x and
d .

Usually, the uncertainty d models load uncertainty and generation
uncertainty in variable resources such as wind and solar power.

The idea can been applied to various unit commitment and operation
planning problems, coupled or not with SCOPF formulations.
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Recent results in RO: discussion

Approach can be worked out in order to reduce conservativeness, in
particular by combining it with ideas from stochastic programming.

The question is how to e�ciently solve this type of problems.

Generally, the solution to solve these problems is to write the KKT
conditions of the low level problems but this is valid only for convex
problems.

In case of non convex low level problems which is the case for ACOPF
or with integer variables, standard approaches could fail to �nd a
solution; MITSOS [2] proposed an algorithm for convex non linear
problems with integer variables
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Wrap up about Optimization under Uncertainties

Both CCO and RO o�er complementary frameworks for dealing with
uncertainties.

RO is closer to current practice (and risk-adverseness) of TSOs
CCO needs assumptions about P, but in some circumstances it is the
only sensible formulation
The scenario approach to CCO may actually be viewed as a
randomisation approach to solve approximately an RO problem (SIC).

Both formulations will bene�t from ACOPF convexi�cation
approaches presented earlier.

Further work is required to develop adequate models of uncertainties
(in particular by taking into account soft correlations and hard physical
constraints among the various dimensions of uncertainty sets).

Further work is required to develop scalable algorithmic solutions
useful in power systems practice.
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Some words about possible synergies with sister �elds

IT: huge progresses in HPC and BIG DATA technologies !

How to leverage HPC to ACOPF applications ?
How to exploit BIG DATA solutions in this context ?

CS: huge progresses in Machine Learning and Randomized
Algorithmics !

How to use ML to build 'proxies' from measurements and simulation
results ?
How to build on RA, to extend various Monte-Carlo types of
approaches ?
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Summary, and pointers to other relevant sessions at
PSCC2014

Summary
During the last years, HUGE progresses have been made in theory and
practice in sister �elds from applied mathematics and computer science
The opportunities for applying them to power systems are as well
HUGE
Collaboration between power system experts and experts from these
sister �elds is the best way to generate signi�cant progress both in
practice and in theory.

Relevant sessions at PSCC 2014
This morning, right after the co�ee break:
INVITED PAPER SESSION PS 16, Advanced Optimization Methods
for Power Systems.
Other sessions:

Today after lunch: PS20 (OPF 1)
Tomorrow after lunch: PS28 (OPF 2)
Friday 12AM: Panel session on Advanced Data-Driven Modelling
Techniques for Power Systems
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Thank you for your attention
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