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Symbolic machine learning : main feature is of results

Results : parameters used to formulate rules
e Attributes and thresholds selected to formulate rules’

e Probabilities or set membership degrees attached to rules’

= Results are not as interpretable as expected

Questions :
e How much do they depend = parameter variance ?

e Is it possible to reduce parameter variance without losing in accuracy ?
= Experimental study of variance

= Investigation of possible ways to threshold variance



Synthetic problem (Electric power systems transient stability)
6 attributes, 2 classes (stable/unstable), 20,000 random states
Learning samples picked randomly among 10,000 first states
Asymptotic values determined on the whole data base

Experimental study of the discretization variance
(only of the most informative attribute)

Evaluation of bias and standard deviations of thresholds
(other quantities, see paper)

Repeated from small (N=50) to fairly large sample sizes (N=3000)
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Discretization (enumerative brute force) :

Given a classified sample S={oq, . ..
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Fuzzy discretization (two level enumerative brute force)

Search for combination of two thresholds maximizing

v(0; a, ) Evaluate variance of 3, 3 and 3
L0 | . Compare with crisp discretization
os | ‘ slopea
0.0 | | |

Amin é B B Amazx

Normalized fuzzy KS measure
where

NB. Normalization is necessary to yield fuzzy discretization

NB. In our experiment class C' is crisp




ldea :

try to estimate threshold uncertainty from learning sample :

instead of a}, use as threshold
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Estimator of score standard deviation :



() Averaged threshold values

(b) Optimal (non averaged) threshold values
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Conclusion :

Optimal threshold - standard deviation
Optimal threshold + standard deviation

= less effective than fuzzy discretization, but very nice indeed !
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Another approach to soft discretization

ldea
e Compute posterior probabilities of all thresholds, given S

e Average all thresholds according to their posterior probability = transition region

e See paper for details

Principle 4
If a;y, provides I in S of size N
= P(aw|S) < exp (NIF)
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Bayesian transition regions can be obtained as a biproduct
of crisp discretization

Needs further improvements (smoothing)

Main differences with fuzzy discretization
e Interpretation (of course ?)

e Asymptotic behavior (N — o0)
= transition regions stabilize to

= transition regions stabilize to

NB. Fuzzy and Bayesian approaches may also be combined. ..
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Threshold variance of crisp discretization is often very high

= Methods should be improved to reduce variance

Crisp discretization can be improved at low cost

Fuzzy and Bayesian approaches may be used to

e Provide soft thresholds

e Reduce variance

Further work 1s neeeded to

Evaluate effect on

Bayesian thresholds

fuzzy discretization

Consider

of fuzzy and Bayesian approaches
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