Discretization of continuous at butes for supervised learning Variance evaluation and variance reduction

Louis WEHENKEL - University of Liège - Belgium

- Motivation
- Experimental setup
- Crisp discretization and its variance
- Fuzzy discretization and its variance
- Variance reduction of crisp thresholds
- Bayesian discretization

- Symbolic machine learning : main feature is interpretability of results
- Results : parameters used to formulate rules
 - Attributes and thresholds selected to formulate rules' conditions
 - Probabilities or set membership degrees attached to rules' conclusions
- Results depend (often too strongly) on the learning sample used
- \Rightarrow Results are not as interpretable as expected
 - Questions :
 - How much do they depend \Rightarrow parameter variance ?
 - Is it possible to reduce parameter variance without losing in accuracy ?
- \Rightarrow Experimental study of threshold variance
- \Rightarrow Investigation of possible ways to reduce threshold variance

Experimental setup

- Synthetic problem (Electric power systems transient stability)
- 6 attributes, 2 classes (stable/unstable), 20,000 random states
- Learning samples picked randomly among 10,000 first states
- Asymptotic values determined on the whole data base
- Experimental study of the discretization variance (only of the most informative attribute)
- Evaluation of bias and standard deviations of thresholds (other quantities, see paper)
- Repeated from small (N=50) to fairly large sample sizes (N=3000)

Example decision tree

Crisp discretization and its variance

Discretization (enumerative brute force) :

Given a classified sample $S = \{o_1, \ldots, o_N\}$

- 1. sort S by increasing order of values of $a(\cdot)$
- 2. for all pairs of values a_i , a_{i+1} compute score of test $T(o) : a(o) < \frac{a_i + a_i + 1}{2}$?
- 3. return threshold corresponding to the maximum score

Information quantity provided by question $T(o) : a(o) < a_{th}$? on classes.

$$\hat{H}_{C} = -\sum_{j} \frac{N_{.j}}{N} \log_2 \frac{N_{.j}}{N} \quad ; \quad \hat{H}_{T} = -\sum_{i} \frac{N_{i.}}{N} \log_2 \frac{N_{i.}}{N} \quad ; \quad \hat{I}_{C}^{T} = -\sum_{i} \sum_{j} \frac{N_{ij}}{N} \log_2 \frac{N_{i.}N_{.j}}{N_{ij}}.$$

Threshold

• Small variance for N > 2000

Variance remains large

Fuzzy discretization and its variance

Variance reduction of crisp thresholds

Idea :

- try to estimate threshold uncertainty from learning sample : $a_{th}^* \in (\underline{a}_{th} \dots \overline{a}_{th})$
- instead of a_{th}^* use $\overline{\underline{a}}_{th}^* = \frac{\underline{a}_{th} + \overline{a}_{th}}{2}$ as threshold

Estimator of score standard deviation :

 $\hat{\sigma}_{C_c^T} = \sqrt{(\frac{\hat{C}_c^T}{NL_c^T})^2 \sum_i \sum_j N_{ij}} (\log_2 N_{ij} + (\frac{\hat{C}_c^T}{2} - 1) \log_2 (N_i \cdot N_{\cdot j}) + (1 - \hat{C}_c^T) \log_2 N^2}$

Conclusion :

50% reduction in threshold variance, with negligible computational overhead

 \Rightarrow less effective than fuzzy discretization, but very nice indeed !

- Another approach to soft discretization
- Idea
 - Compute posterior probabilities of all thresholds, given S
 - Average all thresholds according to their posterior probability \Rightarrow transition region
 - See paper for details

Principle

If a_{th} provides I_T^C in S of size N $\Rightarrow P(a_{th}|S) \propto \exp(NI_T^C)$

Thus,

$$P(T(o)=False|S)=\int_{a_{min}}^{a(o)} P(a_{th}|S)da_{th}$$

$$P(T(o)=False|S)=\frac{\int_{a_{min}}^{a(o)} \exp{(NI_T^C)} da_{th}}{\int_{a_{min}}^{a_{max}} \exp{(NI_T^C)} da_{th}}$$

- Bayesian transition regions can be obtained as a biproduct of crisp discretization
- Needs further improvements (smoothing)
- Main differences with fuzzy discretization
 - Interpretation (of course ?)
 - Asymptotic behavior ($N \to \infty$)
 - \Rightarrow Fuzzy transition regions stabilize to class overlap region
 - \Rightarrow Bayesian transition regions stabilize to crisp threshold

NB. Fuzzy and Bayesian approaches may also be combined...

- Threshold variance of crisp discretization is often very high
- \Rightarrow Methods should be improved to reduce variance
 - Crisp discretization can be improved at low cost
 - Fuzzy and Bayesian approaches may be used to
 - Provide soft thresholds
 - Reduce variance
 - Further work is neeeded to
 - Evaluate effect on machine learning performance
 - Smoothen Bayesian thresholds
 - Improve fuzzy discretization (computational, variance)
 - Consider combinations of fuzzy and Bayesian approaches