Introduction aux processus stochastiques Rappel de probabilités

François Schnitzler, Louis Wehenkel

Université de Liège

Février 2010

Informations pratiques

Contact et notes de cours :

- Notes: www.montefiore.ulg.ac.be/~lwh/ProcStoch/
- Répétitions : www.montefiore.ulg.ac.be/~schnitzl/Students.html
- Répétitions : fschnitzler@ulg.ac.be

Organisation du cours :

- Cours théorique plus séances de répétitions
- Travail pratique Mathlab, Examen écrit
- Aujourd'hui : rappel de probabilités (voir "Appendices communs aux cours de méthodes stochastiques")

Sommaire

Concepts

2 Définitions

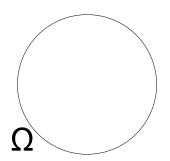
Variable aléatoire

Les probabilités permettent de modéliser des incertitudes

- La théorie des probabilités permet de modéliser les phénomènes faisant intervenir le hasard et de formaliser le raisonnement en présence d'incertitudes
- La statistique consiste à recueillir et analyser des observations de systèmes physiques pour construire ou valider des modèles probabilistes
- Aujourd'hui : rappel de probabilité

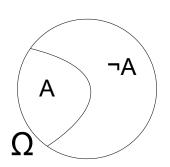
Expérience aléatoire

- Exemple : lancer d'un dé
- Ω = ensemble des résultats possibles



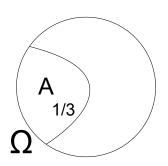
Evénement

- ullet Sous-ensemble "observable" de Ω
- Correspond à une assertion logique vérifiable relative au résultat d'une expérience
- Exemple : le nombre obtenu est supérieur à 2



Probabilité

- Mesure de l'importance de l'événement
- Associe à un événement un nombre qui représente le degré de certitude de sa réalisation



Espace probabilisé

Un triplet $(\Omega, \varepsilon, P(.))$,

- ε est une σ -algèbre
- la loi P(.) vérifie les axiomes de Kolmogorov

Notations:

- Ω : Ensemble des résultats possibles d'une expérience aléatoire
- ω, ω_i ... : Eléments de Ω
- ε : Ensemble de sous-ensembles de Ω (les événements)
- A, B, C... : Eléments de ε
- P(.) : loi (ou mesure) de probabilité, associant à chaque $A \in \varepsilon$ un nombre $\in [0, 1]$

σ -algèbre

Un σ -algèbre ε d'événements défini sur Ω vérifie les propriétés suivantes :

- $\Omega \in \varepsilon$
- $A \in \varepsilon \Rightarrow \neg A \in \varepsilon$
- $\forall A_1, A_2, ... \in \varepsilon$ (en nombre fini ou dénombrable) : $\bigcup_i A_i \in \varepsilon$

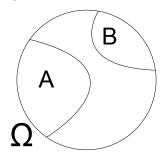
Dans ce cas, (Ω, ε) est appelé "espace mesurable".

Système complet d'événements

NB : Deux événements A et B incompatibles sont deux événements tels que $A \cap B = \Phi$.

 $A_i, ..., A_n$ forment un système complet d'événements si :

- $\forall i, j \neq i, A_i$ est incompatible avec A_i
- $\bigcup_{i}^{n} A_{i} = \Omega$





Axiomes de Kolmogorov

- P(A) ∈ [0, 1], ∀A ∈ ε
- $P(\Omega) = 1$
- $\forall A_1, A_2, ... \in \varepsilon$ incompatibles : $P(\bigcup_i A_i) = \sum P(A_i)$

Conséquences:

- $P(\emptyset) = 0$
- $P(\neg A) = 1 P(A)$
- $A \subset B \Rightarrow P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(\bigcup_i A_i) \leq \sum_i P(A_i)$

Axiomes de Kolmogorov

- P(A) ∈ [0, 1], ∀A ∈ ε
- $P(\Omega) = 1$
- $\forall A_1, A_2, ... \in \varepsilon$ incompatibles : $P(\bigcup_i A_i) = \sum P(A_i)$

Conséquences:

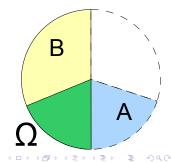
- $P(\emptyset) = 0$
- $P(\neg A) = 1 P(A)$
- $A \subset B \Rightarrow P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(\bigcup_i A_i) \leq \sum_i P(A_i)$

Définitions

Probabilité conditionnelle

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 (si $P(B) > 0$)

- Notation : P(A|B) = probabilité que $\omega \in A$ étant donné que $\omega \in B$
- Incertitude sur la réalisation de A, en supposant que B est vrai
- Revient à restreindre l'univers à B
- P(.|B) définit une loi de probabilité (conditionnelle) sur (Ω, ε)

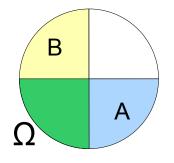


Définitions

Evénements indépendants

$$A \perp B \Leftrightarrow P(A \cap B) = P(A)P(B)$$

- Notation : A⊥B
- $A \perp B \Leftrightarrow B \perp A$
- Si P(B) > 0, $A \perp B \Leftrightarrow P(A|B) = P(A)$
- (NB : Si P(B) = 0, alors $\forall A$ on a $A \perp B$)



Résultats fondamentaux

Théorème de Bayes

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Théorème des probabilités totales :

Soit $B_1, B_2, ..., B_n$ un système complet d'événements, alors

$$P(A) = \sum_{i} P(A|B_i)P(B_i)$$

Variable aléatoire

Soit un espace probabilisé $(\Omega, \varepsilon, P(.))$ et (Ω', ε') un espace mesurable, $f: \Omega \to \Omega'$ est une variable aléatoire si $\forall A' \in \varepsilon' : \{\omega \in \Omega : f(\omega) \in A'\} \in \varepsilon$.

 \Rightarrow On dit que f(.) est $(\varepsilon, \varepsilon')$ -mesurable

Espace fini

Dans le cas d'un espace fini :

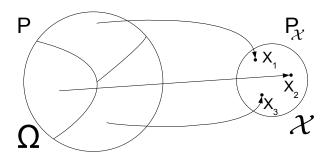
- Nombre fini d'événements élémentaires
- Utilisation du σ -algèbre $\varepsilon = 2^{\Omega}$

De plus,

- toutes les fonctions ont un espace image Ω' fini, et donc sont toutes $(2^{\Omega}, 2^{\Omega'})$ -mesurables
- soit \mathcal{X} une variable aléatoire sur Ω fini. On dit que \mathcal{X} est une variable aléatoire discrète et on dénote par $\{X_i,...,X_n\}$ ses valeurs possibles
- {X_i,..., X_n} représente également les sous-ensembles de Ω, et définit un système complet d'événements

Loi de probabilité sur les variables aléatoires

La variable aléatoire est une fonction mesurable \Rightarrow elle induit donc une mesure de probabilité $P_{\mathcal{X}}$ sur $(\mathcal{X}, \varepsilon')$: $P_{\mathcal{X}}(A') = P(\{\omega \in \Omega : \mathcal{X}(\omega) \in A'\})$



Opérations sur les variables aléatoires

Composition : Si $\mathcal{X}(.)$ est une variable aléatoire sur Ω et $\mathcal{Y}(.)$ sur \mathcal{X} également, alors $\mathcal{Y}(\mathcal{X}(.))$ est également une variable aléatoire sur Ω

Concaténation: Soit $\mathcal{X} = \{X_1, ... X_n\}$ et $\mathcal{Y} = \{Y_1, ... Y_n\}$ défini sur Ω , la concaténation $\mathcal{Z} = \mathcal{X}\mathcal{Y}$ définie sur Ω par $\mathcal{Z}(\omega) = (\mathcal{X}(\omega), \mathcal{Y}(\omega)) \Rightarrow P(\mathcal{Z}) = P(\mathcal{X}, \mathcal{Y})$

Indépendance :
$$(\mathcal{X} \perp \mathcal{Y})$$
 ssi $\forall i \leq n, j \leq m : X_i \perp Y_j \Leftrightarrow P(X_i, Y_j) = P(X_i)P(Y_j) \Leftrightarrow P(X_i) = P(X_i|Y_j) \text{ (avec } P(Y_j) > 0)$

Loi conjointe

Une variable aléatoire est souvent définie par une loi conjointe de variables aléatoires.

	<i>Y</i> ₁	 Y_{j}	 Y_m	
X_1		÷		
:		:		
<i>X_i</i> :		 $p_{i,j}$	 	$p_{i,.}$
÷		:		
X _n		:		
		$p_{.,j}$		

•
$$p_{(i,.)} \equiv P(X_i) \equiv P(\mathcal{X} = X_i)$$

•
$$p_{(..i)} \equiv P(Y_i) \equiv P(\mathcal{Y} = X_i)$$

$$\bullet \ p_{(i,j)} \equiv P(X_i \cap Y_j) \equiv P(X_i, Y_j) \equiv P([\mathcal{X} = X_i] \wedge [\mathcal{Y} = Y_j])$$

Loi conjointe

	<i>Y</i> ₁	 Y_{j}	 Y _m	
X_1		1		
: <i>X_i</i> :				
X_i		 $p_{i,j}$	 	$p_{i,.}$
:				
Xn		:		
		<i>p</i> ., <i>j</i>		

Marginalisation

$$P(\mathcal{Y}) = \sum_{X_i} P(\mathcal{Y}, X_i)$$

Ensembles de variables aléatoires

- En pratique, une variable aléatoire représente un aspect mesurable (observable) élémentaire relatif à une expérience aléatoire
- Les aspects mesurables d'une expérience sont alors représentés par un ensemble de variables aléatoires
- Le raisonnement probabiliste permet d'exploiter les observations des valeurs de certaines variables aléatoires pour inférer les lois conditionnelles d'autres variables aléatoires
- Le but principal de ce cours est d'enseigner des méthodes systématiques permettant de réaliser ces inférences de manière efficace dans des problèmes complexes