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Linear system driven by stochastic process

We consider a linear dynamical system x(t + 1) = Ax(t) + Bu(t), with
x(0) and u(0), u(1),... random variables

we'll use notation
z(t) =Ex(t),  Tu(t) =E(z(t) — 2(t)(x(t) — 2(2)"

and similarly for u(t), >,(t)

taking expectation of x(t + 1) = Az(t) + Bu(t) we have
T(t+1) = Az(t) + Bu(t)

i.e., the means propagate by the same linear dynamical system
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now let's consider the covariance
r(t+1)—z(t+1)=A(x(t) —x(t)) + B(u(t) — u(t))
and so

Yp(t+1) = E(A(z(t) —2() + B(u(t) — a(?)
u(t

)
( (x(t) — 2(t) + B(u(t) —u(t)))"
= AYX,(t)AT 4+ BY,(t)BY + AX,,(t) B 4+ BY,.(t)A"

where
E:cu(t) — Euic(t)T — E(CE(t) - j(t))(u(t) - a(t))T

thus, the covariance X, (t) satisfies another, Lyapunov-like linear dynamical
system, driven by >, and X,
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consider special case Y, (t) =0, i.e., x and u are uncorrelated, so we
have Lyapunov iteration

Ya(t+1) =AY, (t) AT + B, (t)B,

which is stable if and only if A is stable

if A is stable and X, (%) is constant, 3,(t) converges to 3., called the
steady-state covariance, which satisfies Lyapunov equation

>, =AY AT + B, BT

thus, we can calculate the steady-state covariance of x exactly, by solving
a Lyapunov equation

(useful for starting simulations in statistical steady-state)

Question: Can you imagine situations where 3., (¢) #0 7
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Example

we consider x(t + 1) = Ax(t) + w(t), with

0.6 —0.8
1= 57 06 |

where w(t) are IID NV (0,1) : i.e. white (memoryless) noise
eigenvalues of A are 0.6 = 0.755, with magnitude 0.96, so A is stable

we solve Lyapunov equation to find steady-state covariance

o _ [ 1335 —0.03
= | —0.03 11.75

covariance of xz(t) converges to >, no matter its initial value
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two initial state distributions: ¥,(0) = 0, ¥,(0) = 10*1

plot shows 311 () for the two cases
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x1(t) for one realization from each case:
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Graphical representation

Consider x(t + 1) = Ax(t) + w(t), and w(t) is white noise.

= we can represent the process (x(t), w(t)) by the following graph:

Hence, the state process (x(t)) is Markovian: x(t — 7) L x(t + k)|z(t)

NB: The Markov property holds also if w(t) and z(0) are not Gaussian. It
is a consequence of the assumption that the random variables w(t) are
independent of the previous states x(t — j).
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Other consequences

Under the assumption that x(0),w(0),w(1),... are jointly Gaussian,
x(0),x(1),x(2),... are also jointly Gaussian.

Suppose now that the noise process is time-invariant, Gaussian and white.
l.e. it is completely described by ¥,,(t) = X, and w(t) = w.

Suppose, also that 2(0) ~ N (z(0),3,(0)). Then, Z(t + 1) = Az(t) + w
and X, (t+1) = AS, () AT + 2.

Consequently, the process x(t) is stationary if its initial state distribution

satisfies both
z(0) = Az(0)+w

Y.(0) = AS.(0)AT 4+ X, (1)

If A is stable, the process converges over time towards stationarity, even if
its initial state distribution is not 'stationary’.
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Linear Gauss-Markov model

we consider linear dynamical system
z(t+1) = Azx(t) + w(t), y(t) = Cx(t) + v(t)

e x(t) € R" is the state; y(t) € R is the observed output
e w(t) € R" is called process noise or state noise

e v(t) € R is called measurement noise
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Statistical assumptions

e £(0), w(0),w(l),..., and v(0),v(1),... are jointly Gaussian and
independent

o w(t) are IID with Ew(t) =0, Ew(t)w(#t)! =W
o v(t) are IID with Ev(t) =0, Ev(t)v(t)! =V
o EiC(O) = X, E(iC(O) — .CT?())(ZC(O) — ZZ’O)T = 20

(it's not hard to extend to case where w(t), v(t) are not zero mean)
we'll denote X (t) = (z(0),...,x(t)), etc.

since X (t) and Y (¢) are linear functions of x(0), W (t), and V (t), we
conclude they are all jointly Gaussian (i.e., the process x, w, v, y is
Gaussian)
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Statistical properties

e sensor noise v independent of x

e w(t) is independent of x(0),...,x(¢t) and y(0),...,y(t)

e Markov property: the process x is Markov, 1i.e.,
z(t)|z(0),...,x(t —1) =z(t)|z(t — 1)

roughly speaking: if you know x(t — 1), then knowledge of
x(t —2),...,2(0) doesn’t give any more information about xz(?)

NB: the process y is Hidden Markov.
Can you prove this ?

Draw factor graph of x(0),w(0),y(0),v(0),...,2z(t),w(t),y(t),v(t).
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Mean and covariance of Gauss-Markov process

mean satisfies Z(t + 1) = Az(t), (0) = Zq, so Z(t) = A’z

covariance satisfies

St +1) =AY, () AT + W

if A is stable, 3, (%) converges to steady-state covariance >, which
satisfies Lyapunov equation

Y, =AY AT + W

The Kalman filter 7-13



Conditioning on observed output

we use the notation

z(tls) = E(z(t)[y(0),...y(s)),
Stls E(z(t) — &(t]s))((t) — 2(t]s))"

e the random variable z(t)|y(0), ..., y(s) is Gaussian, with mean z(t|s)
and covariance X,

e I(t|s) is the minimum mean-square error estimate of x(t), based on
y(0), ..., y(s)

e X, is the covariance of the error of the estimate Z(t|s)
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State estimation

we focus on two state estimation problems:

e finding z(t|t), i.e., estimating the current state, based on the current
and past observed outputs

e finding Z(t + 1|t), i.e., predicting the next state, based on the current
and past observed outputs

since z(t), Y (t) are jointly Gaussian, we can use the standard formula to
find z(¢|t) (and similarly for Z(t 4 1t))

2(t]t) = Z(t) + Sayy () Sy (n (Y () = Y (1))

the inverse in the formula, Z;%t), is size pt X pt, which grows with ¢

the Kalman filter is a clever method for computing Z(t|t) and Z(t 4 1|t)
recursively
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Measurement update
let’s find £(¢|t) and X, in terms of Z(¢|t — 1) and X4
start with y(t) = Cx(t) + v(t), and condition on Y (¢t — 1):
y )Yt —1)=Cx@)|[Y(t—-1)4+v@)|Y(t—1)=Cx(t)|[Y(t—1) 4+ v(t)

since v(t) and Y (¢ — 1) are independent

so x(t)|Y (t — 1) and y(¢)|Y (t — 1) are jointly Gaussian with mean and
covariance

Zi‘(t|t - 1) Et|t—1 Et|t_1CT
C.C%(ﬂt - 1) ’ Czt|t_1 Czﬂt_lCT —|— V
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now use standard formula to get mean and covariance of

(@)Y (£ = 1) [(y(@)]Y(t - 1)),

which is exactly the same as x(%)|Y (¢):

A A —1 A
Hilt) = @l — 1)+ SiprCT (OB + V) ™ (9le) - Cilele — 1)
—1
it = Lgle—1 — Et|t—1CT (C’Et|t_1CT -+ V) CXijp—1

this gives us Z(t[t) and ¥, in terms of Z(¢|t — 1) and ¥4,

this is called the measurement update since it gives our updated estimate
of x(t) based on the measurement y(t) becoming available
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Time update

now let's increment time, using x(t + 1) = Ax(t) + w(t)

condition on Y (t) to get

z(t+1)|Y(t) = Az@t)|]Y(t)+w(t)|Y(t)

since w(t) is independent of Y (¢)

therefore we have and

T(t+11t) = Az(t|t)
2ipr1le = A2t|tAT—|—W

The Kalman filter
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Kalman filter

measurement and time updates together give a recursive solution
start with prior mean and covariance, (0| — 1) = Zg, 2(0] — 1) = X

apply the measurement update

A N —1 A
HHlt) = (= 1) + Sy CT (CSgerCT 4 V) ™ (y(t) — Gt — 1)
—1
it = Lgle—1 — Et|t—1CT (Czﬂt—lCT - V) CXie—1

to get £(0(0) and X¢o; then apply time update
Zi'(t —|— 1‘1;) — A.C%(ﬂt), Et—|—1|t — AEWAT —|— W

to get £(1]0) and X4

now, repeat measurement and time updates . ..
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Riccati recursion

to lighten notation, we'll use &(t) = &(t|t — 1) and ¥, = Yitt—1

we can express measurement and time updates for 3] as
Sep1 = AN AT + W — As,.cT (03,07 + V)T lon, AT

which is a Riccati recursion, with initial condition XAIO = 2

e >, can be computed before any observations are made

e thus, we can calculate the estimation error covariance before we get any

observed data

The Kalman filter
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Observer form

we can express KF as

Ft+1) = Ai(t)+ AS.CT(CE.CT + V)~ Hy(t) — Ci(t))
= Az(l) + L(y(t) — 9(t))

where L; = AX,CT(CS.CT 4+ V)~ is the observer gain, and §(t) is
y(tjt —1)

(t) is our output prediction, i.e., our estimate of y(t) based on
(0),...,y(t—1)

e ¢(t) =y(t) — y(t) is our output prediction error

e AZ(t) is our prediction of x(¢ + 1) based on y(0),...,y(t — 1)

e our estimate of z(¢ + 1) is the prediction based on y(0),...,y(t — 1),
plus a linear function of the output prediction error
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Kalman filter block diagram

v(t)
w(tz B x(t) ~@ :

y(t)
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Steady-state Kalman filter

as in LQR, Riccati recursion for i]t converges to steady-state value f]
provided (C, A) is observable and (A, W) is controllable

) gives steady-state error covariance for estimating x(t + 1) given
y(0),....y(t)

note that state prediction error covariance converges, even if system is
unstable

A

> satisfies ARE
¥ = ASAT + W — AxcT(csct +v)~ o AT

(which can be solved directly)
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steady-state filter is a time-invariant observer:
p(t+1) = Az(t) + L(y(t) —g(t)),  §(t) = Cz(t)

where L = AXCT(CLCT 4+ V)1

A

define state estimation error Z(t) = x(t) — Z(t), so

and

Ft+1) = at+1)—a(t+1)

The Kalman filter
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thus, the estimation error propagates according to a linear system, with

closed-loop dynamics A — LC, driven by the process w(t) — LCv(t), which
is 1|ID zero mean and covariance W + LV LY

provided A, W is controllable and C, A is observable, A — LC' is stable
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Example

system Is
z(t+1) = Azx(t) + w(t), y(t) = Cx(t) + v(t)

with () € R®, y(t) € R
we'll take Ez(0) = 0, Ex(0)z(0)! =3¢ =5%I; W = (1.5)%I, V =1

eigenvalues of A:
0.9973 £+ 0.07307, 0.9995 + 0.03247, 0.9941 £+ 0.1081y

(which have magnitude one)

goal: predict y(t 4+ 1) based on y(0),...,y(t)
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first let's find variance of y(t) versus ¢, using Lyapunov recursion

Ey(t)? = C2,(t)CT+V, Na(t4+1) = AX, () AT+ W, ¥.(0) = 3
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now, let's plot the prediction error variance versus t,
Ee(t)” = E(g(t) — y(t)? = C3CT + V,
where f]t satisfies Riccati recursion

Sepr = A AT + W — A, cTes.cT +v)Ttes AT, B =3

20.5

I I I I I I I I I
20 40 60 80 100 120 140 160 180 200

t

prediction error variance converges to steady-state value 18.7
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now let's try the Kalman filter on a realization y(t)

top plot shows y(%); bottom plot shows e(¢) (on different vertical scale)
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