JavaBayes Version 0.346
Bayesian Networks in Java
User Manual

Fabio Gagliardi Cozman
fgcozman@usp.br
http://www.usp.br/ fgcozman /home.html
Escola Politécnica
University of Sao Paulo

©Fabio Gagliardi Cozman, 1998, 1999, 2000

January 31, 2001

Preface

Bayesian networks have been used as a fundamental tool for the representation and manip-
ulation of beliefs in Artificial Intelligence. There have been implementations of Bayesian
networks in a variety of formats and languages.

JavaBayes is a system that handles Bayesian networks: it calculates marginal probabil-
ities and expectations, produces explanations, performs robustness analysis, and allows the
user to import, create, modify and export networks.

JavaBayes is the first full implementation of Bayesian networks in Java. A Java im-
plementation has several advantages. First, Java is the best bet yet on a truly portable
language; a package written in Java can be exported and run in Unix, Macintosh and Win-
dows platforms without too much hair-splitting. Second, Java has been adopted by browsers
in the Internet; a program or package written in Java can be intimately coupled with World
Wide Web pages and can reach a gigantic audience. Third, and perhaps most important, a
Java package can work as a tool for people that are interested in using reasoning in network-
based applications. Suppose you had to put together a web page and you wanted to use
some simple tool to reason about uncertainty in the domain of interest. A compact imple-
mentation of Bayesian networks in Java would be handy for such a task. Finally, Java is a
good object-oriented language; Java has a set of widgets that allow researchers to quickly
prototype interfaces, and Java has functionality for multi-threaded processing, something
that can be very useful for future parallelization of inference algorithms.

I hope this JavaBayes project is useful to others. It is far from a fully tested product;
there are many possible improvements. I hope others will be interested in helping me test,
modify and improve this. JavaBayes is distributed under the GNU License; I have had fun
coding it and hope others will have fun interacting with it.

Many people have contributed decisively to JavaBayes.

First, thanks to my former advisor, Eric Krotkov, for the encouragement, the suggestions,

and for giving me time to think about new ideas.

JavaBayes uses the inference algorithm presented by Rina Dechter in the Twelfth Annual
Conference on Uncertainty in Artificial Intelligence [6]. I thank Prof. Dechter for pointing me
to a Scheme implementation of this algorithm, which was nicely coded by Nicolas Thiéry. It
has been brought to my attention that this algorithm, which is very similar to the so-called
peeling algorithm, has also been published by Zhang and Poole under the name wvariable
elimination. The original algorithm has been enhanced to obtain calculation of all marginal
probabilities in a network simultaneously (similar to the commonly used joint tree algorithm

[9])-

The graphical user interface is based on the original work by Sreekanth Nagarajan and
Bruce D’Ambrosio at Oregon State University. Even though the current interface does
not contain their code, the appearance of the network editor is based on their system (their
system used the front-end interface to make calls to a server-based inference engine). Thanks
much to Sreekanth Nagarajan and Bruce D’ Ambrosio for making their interface available.

I also appreciate the encouraging comments and suggestions about this project sent by
a number of people in the Internet. Thanks in particular to Chao-Lin Liu and Michael
Wellman by proposing the name JavaBayes and for crucial help with the first version of the
user interface; Chao-Lin Liu gave several other suggestions and wrote the code that detects
cycles in a network. Hadar Ziv suggested a zipped version for PC-based users. Nir Friedman
gave important suggestions concerning the Interchange Format. Akihiro Shinmori detected
and corrected problems with the XML-based format. Wei Zhou detected and provided fixes
for several problems with the generalized variable elimination algorithm. Alex Bronstein
and his group at HP labs offered several suggestions and words of support.

Robert E. Bruce corrected a crucial problem with the code and Alexander Churbanov
found some bugs in the system. I'm also grateful for various suggestions and bug fixes/warnings
by Alan Mehlenbacher, Bozhena Bidyuk, Robert Wilensky, Simon Keizer, Michael Becke,
Jason Townsend.

Good luck with the system; I hope it works well and provides useful assistance and
guidance.

Cheers,

Fabio Cozman

Chapter 1

Introduction

The JavaBayes system is a set of tools for the creation and manipulation of Bayesian net-
works. The system is composed of a graphical editor, a core inference engine and a set of
parsers. The graphical editor allows you to create and modify Bayesian networks in a
friendly interface. The parsers allow you to import Bayesian networks in a variety of for-
mats. The engine is responsible for manipulating the data structures that represent Bayesian
networks. The engine can produce:

e the marginal probability for any variable in a Bayesian network.
e the expectations for univariate functions (for example, the expected value of a variable).

e configurations with maximum a posteriori probability.

Typically, the user assigns values to some variables in a network and asks the poste-
rior marginal probability or expectation of some other variables. The set of variables that
have assigned values is called the evidence. Marginal probabilities and expectations can be
calculated conditional on any number of observations inserted into the network.

Another typical situation is that the user specifies some evidence and asks which are the
values of non-evidence variables that lead to the maximum possible posterior probability for
the evidence. A configuration with such optimal characteristics has been called an explana-
tion for the available evidence. When an optimal configuration is produced, the variables in
the network are estimated in the sense that their “best” values are found, where “best” is
measured in terms of posterior probability. It is possible to specify a group of variables in
the network to be estimated, or to estimate all variables in the network at once.

6 CHAPTER 1. INTRODUCTION

JavaBayes can produce marginal distributions and expectations using two different al-
gorithms: variable elimination and bucket tree elimination. In the first case, inferences are
generated from scratch for each query; in the second case, a data-structure (bucket tree) is
generated once and several queries can be generated directly from the bucket tree. Variable
elimination consumes less memory, but it may take longer if several queries are made to the
same network with the same collection of observations.

A capability of JavaBayes, which sets it apart from other inference engines, is the ability
to conduct robustness analysis on top of inferences. Bayesian robustness analysis is an on-
going research topic, where sets of distributions are associated to variables: the size of these
sets indicates the "uncertainty” in the modeling process. JavaBayes can use models with sets
of distributions to calculate intervals of posterior distributions or intervals of expectations.
The larger these intervals, the less robust are the inferences with respect to the model.

JavaBayes is distributed under the GNU License; if you want to distribute JavaBayes to
someone, you have to package the whole distribution including the GNU license. If you need
to include the Bayesian network engine in some application, you must also make a request;
the engine might be available to you under the Lesser General Public License.

The JavaBayes distribution is available in the Internet; the various Java packages that
compose the system are provided in source and bytecode forms. The Java packages can be
used in other applications or applets (provided that the GNU license is respected) as a tool
for probabilistic reasoning. The complete system, with graphical interface, can be used to
construct and experiment with Bayesian networks, as a teaching and/or development tool.

Note that JavaBayes is distributed as bytecodes that are executable in the standard Java
Virtual Machine as specified by Sun Microsystems Inc. Modification of the source code and
generation of bytecode from modified source code is allowed under the restrictions specified
by the GPL (the GNU license), but compilation of the source files to generate other types of
executables or non-standard bytecode is not covered by the license and is not allowed. This
is emphasized so that JavaBayes is always distributed as a portable, architecture-neutral
system; if you are interested in generating non-portable executables from JavaBayes, then
you must contact me. Generation/commercialization of such executables requires a specific
license which must be negotiated. Again, this is emphasized to avoid the confusion that
would occur if several unauthorized types of compiled code were to be generated from the
source.

This manual is an on-going effort to document the JavaBayes system. There are di-
rections for dowloading the system from the Internet, a brief description of how to run the
system, and a brief description of how to compile the system. From there, some examples are

presented, followed by a step-by-step description of the system. This manual also discusses
the several data formats that are understood and generated by the system, and finishes with
several miscellaneous items. You can also find a description of the inference algorithm used
by JavaBayes in the system’s web site.

There are some other projects that use Java with Bayesian networks:

The Bayes applet produced by Dawid Poole and his group.

e The user interface of the new Hugin system is written in Java.

The Bayesian Net Simulator implemented by Yoichi Motomura.

The discussion of Bayesian networks using Java applets by Joel Martin.

CHAPTER 1. INTRODUCTION

Chapter 2

Downloading JavaBayes

To get JavaBayes, you have two options:

1. You can download the gzip/tar file JavaBayes-0.346.tar.gz. You have to use the gunzip
and tar utilities to obtain all the files.

2. You can download the zip file JavaBayes-0.346.zip. You have to use one of the many
utilities that read the zip format.

You can also download a compressed Postscript version of this manual. Finally, you can
download a compressed javadoc-generated documentation for source code, generated and
generously donated by Alan Mehlenbacher (note that I'm using the jar program for the
javadoc files, as I would like to move to distribution through the jar program in the near
future).

Note that JavaBayes is still coded using the Java 1.0.2 specification in the graphical
user interface. But the current executable code has been produced with new development
environments that are entirely based on Java 1.1. At this point, no check is made to guarantee
that JavaBayes works with Java 1.0.2 browsers; the only valid test for this would be to
actually run the system through Java 1.0.2 browsers. Also note that JavaBayes will be
entirely converted to Java 1.1 at some point, so you should consider using tools that support
Java 1.1.

Downloading and unpacking the JavaBayes distribution should produce several directo-
ries and files:

10 CHAPTER 2. DOWNLOADING JAVABAYES

A README directory, with miscellaneous information, such as: license, list of changes,
list of bugs.

A Source directory, containing the files with Java source code. This directory contains
the JavaBayes.java file, which defines the main method for JavaBayes, and all the Java
packages that are used by the system.

e A Classes directory, which simply contains the class files that result from the compi-
lation of source files in the Source directory.

e An Examples directory, containing publicly available Bayesian networks in the formats
understood by JavaBayes.

IMPORTANT: If you download JavaBayes, I ask you to notify me with a small email
message. This software is experimental and will be evolving soon as I test it and kill bugs.
I would like to know who has it so that I can send messages indicating patches and new
versions. Even if you do not want to receive messages, send me a message indicating that
you have the software but you do not want any messages. Thanks.

Chapter 3

Running JavaBayes

You can run JavaBayes in two different ways.

First, you can run it as an applet, inside a world-wide-web document using the APPLET
tag in HTML. Note that in this mode, you are restricted by the Java sandbox model, so you
cannot perform a number of operations. For example, you cannot load/save files from the
local file system. Suppose you install the JavaBayes class files in the directory Classes; you
would use the following piece of code in your HTML page to call JavaBayes:

<APPLET
CODEBASE="Classes/"
CODE="JavaBayes.class">
</APPLET>

Second, you can run JavaBayes as an application. After you download JavaBayes, the
easiest thing is to go to the Classes directory and type

java JavaBayes

This should invoke the java runtime interpreter and tell it to load the class JavaBayes. You
should see the JavaBayes windows pop out in a moment. If you have problems at this point,
try checking your Java virtual machine and your classpath.

If you have your CLASSPATH variable set properly, you should be able to run JavaBayes
anywhere just typing

11

12 CHAPTER 3. RUNNING JAVABAYES

java JavaBayes

Basically, the CLASSPATH tells the interpreter where to look for classes, and you can
set it either as a system variable or as a parameter to the java interpreter. Usually the Java
compiler will have a system classpath, and the compiler appends the contents of an environ-
ment variable CLASSPATH to the system classpath. You have to set up CLASSPATH so
that the compiler can read files in the local directory and in the directory that contains the
JavaBayes classes. Here is an example for the variable CLASSPATH:

CLASSPATH=. : /usr/users/your-name-here/Java/JavaBayes/Classes/

Chapter 4
Compiling JavaBayes

In case you change the JavaBayes source code for some reason, note that all compiled classes
should be placed in the Classes directory. You must set a flag in the Java compiler that
directs output to that directory (use the flag -d); otherwise you will end up with class files
mixed with source files. For example, you can go to the Source directory and type:

javac -d ../Classes JavaBayes.java

One thing you do not need to do is to install JavaCC, the parser generator that creates
the parser in JavaBayes. Even though the distribution contains source files for JavaCC,
there is no need to install JavaCC unless you want to modify the grammars for the parsers.
In case you want to check JavaCC, you can obtain information about it with Metamata, the
company that distributes it.

There are some issues that you must keep in mind:
e Unfortunately, most current implementations of Java have some bugs. If you see some
absurd crash, like a complete core dump of the whole Java Virtual Machine, please try

another Java Virtual Machine. Remember that a Java system should never crash no
matter which program it is running.

e Things are likely to break if you don’t have your CLASSPATH variable set properly!

13

14

CHAPTER 4. COMPILING JAVABAYES

Chapter 5

Using JavaBayes

The easiest way to familiarize yourself with JavaBayes and Bayesian networks is to try some
simple examples. In this section, two Bayesian networks are analyzed, the DogProblem
network and the Alarm network. Both are available in the JavaBayes distribution, in the
Examples directory (the DogProblem network is at Examples/DogProgram, and the Alarm
network is at Examples/Alarm).

You should probably follow the discussion below while running the system; you can do
that in one of two ways. You can download the system and run it as an application, or
you can follow the examples inside your browser by running the JavaBayes applet. In the
applet, you can use the full functionality of the system ezcept that you have to comply with
your browser’s policy concerning applets. Running as an applet, JavaBayes does not let you
perform load/save operations in the local file system.

5.1 The DogProblem network

Consider the following popular network in Figure 5.1, introduced by Charniak in his descrip-
tion of Bayesian networks [4].

The network describes a simple situation. Suppose you are going home, and you want to
know what is the probability that the lights are on given the dog is barking and the dog does
not have any bowel problem. If the family is out, often the lights are on. The dog is usually
out in the yard when the family is out and when it has bowel troubles. And if the dog is in
the yard, it probably barks. The Bayesian network for the example is given in Figure 5.1;

15

16 CHAPTER 5. USING JAVABAYES
Or - Ope
(1 d
(On

Figure 5.1: The DogProblem network

ffamily-out

b bowel-problem
[lights-on

d dog-out

h hear-bark

Table 5.1: Abbreviations for the DogProblem variables.

to refer to variables, use the abbreviations in Table 5.1.

The several relationships in the example are captured by probability distributions on the
nodes. So we have Table 5.2, that specifies the probability for the conditional events and
their complements (the complement of a variable is indicated by the superscript c).

The structure defined by the graph in Figure 5.1 and Table 5.2 is a Bayesian network; it
specifies a complete joint probability distribution over all variables in the problem. In short,
a Bayesian network is a mechanism for the specification of joint probability distributions by
graphical means.

More mathematically, a Bayesian network is composed of a directed acyclic graph and
a collection of conditional probability distributions. Every node of the graph is associated
with a variable X;. The arcs in the graph indicate the collection of parents of any variable.
For a variable X;, denote the parents of X; by pa(X;). Every node is also associated with
a conditional probability distribution: the probability of the variable X; conditional on its
parents pa(X;). This probability is denoted by p(X;|pa(X;)); for discrete variables this
probability is represented by a table.

5.1. THE DOGPROBLEM NETWORK 17

Probability of true | Probability of false
p(f) 0.15 0.85
p(b) 0.01 0.99
p(l|f) 0.60 0.40
(1] f°) 0.05 0.95
p(d|f,b) |0.99 0.01
p(d|f,b¢) | 0.90 0.10
p(d|fe,b) | 0.97 0.03
p(d|f¢,b°) | 0.30 0.70
p(hl|d) 0.70 0.30
p(h|d°) 0.01 0.99

Table 5.2: Probability values for the DogProblem network.

The graphical and probabilistic structure of a Bayesian network represents a single joint
probability distribution. This distribution is obtained as follows:

n

p(Xi... X)) =[] p(Xilpa(X3)).

i=1

Note that other interpretations of Bayesian networks exist in the literature [11]); look-
ing at them as representations for joint distributions is just the easiest way to grasp their
meaning.

5.1.1 Loading and saving the DogProblem network

There are three distinct ways to manipulate the DogProblem network in JavaBayes:

1. Load the network from the local disk. To load a network, go to the File menu in
the JavaBayes console and choose the option Open. A dialog then appears, asking you
to select the file to be loaded. You can load files in several formats; in the process
of loading data, the system prints out some messages indicating how the parser is
behaving. Messages from the parsing procedure are printed at standard output at
this point. Note that the Open option only works if you are running JavaBayes as an
application. If you try to load a network in an applet, nothing happens; this is due to
the security restrictions that are enforced within applets.

18 CHAPTER 5. USING JAVABAYES

2. Load the network from the World-Wide-Web. To load a network, go to the File menu
in the Javabayes console and choose the option Open URL. A dialog appears, asking you
to insert the URL (Uniform Resource Locator) that specifies the address of the file in
the World-Wide-Web. Note that the complete URL must be given here; inserting just
the name of the file does not suffice. The Open URL option works both for applications
and applets (but applets have the restriction that the file to be loaded must come from
the same host as the applet itself).

3. Create a network from scratch. This option is considered later.

Once a network is in the system, it can be saved to local disk. To save a network, go to
the File menu in the JavaBayes console and choose either the option Save or the option
Save as.

JavaBayes can load networks in different formats: the BIF format 0.1, the BIF format
0.15, the XMLBIF format 0.2 and the XMLBIF format 0.3. JavaBayes can also save networks
in different formats: the BIF format 0.15, the XMLBIF format 0.3, and the BUGS format.
The idea is that the BIF format 0.15 supercedes the BIF format 0.1, so there is no need to
save anything in version 0.1. On the other hand, XMLBIF format 0.2 is a bit experimental
(based on XML), and quite different from 0.15, so both BIF 0.15 and XMLBIF 0.3 are fully
supported right now. The BUGS format is described in the documentation of the BUGS
system, a complete interface and engine for Bayesian inferences through Gibbs sampling. The
BUGS system offers the most general approach to the calculation of posterior probability
values in probabilistic models; it can be used to process arbitrary networks generated in
JavaBayes.

Once a network is loaded into JavaBayes, its graph is displayed in the editor window.
After you work with the network, you can clear the current network in the editor, going to
the File menu and choosing the Clear option. Note that if you load a network, any network
that was loaded is cleared.

You can obtain information about the network and its variables using the Edit modes
in the editor window. There are two types of interaction in JavaBayes: interaction with
the editor window and interaction with the console window. The operations described above
(opening, saving, clearing, etc) are all controlled by menus in the console window. Options in
the console window handle files and control the overall behavior of the system. On the other
hand, the editor window controls operations that focus on the creation and manipulation of
a Bayesian network in the system. These operations are controlled by buttons on the top
and bottom of the editor window.

5.1. THE DOGPROBLEM NETWORK 19

5.1.2 Editing the DogProblem network

Once a network is loaded into JavaBayes, interaction with the network occurs in the editor
window, and results appear in the console window. The editor window can be in a number
of modes. The buttons in the editor window control which mode is active. Each mode of the
editor window interprets mouse clicks in a particular way. The modes are: Create, Move,
Delete, Query, Observe, Edit Variable, and Edit Function.

In several modes, you can use the mouse to draw a rectangular area around a number of
nodes. To do that, click on a point that is not inside a node, and then drag the mouse. The
nodes inside this rectangular area form a group; they can be moved and deleted together.

Note that the button Edit Network does not represent a mode, because it does not
change the meaning of operations in the editor drawing area. The Edit Network button
simply calls a dialog window that allows you to edit the characteristics of the network. Try
the Edit Network with the DogProblem network. You have the option of changing the name
of the network, inserting or modifying properties of the network. You can also specify global
neighborhoods for the network (see the discussion of robustness analysis (Section 7)).

The Edit Variable and Edit Function activate different modes in the editor window.
In the Edit Variable mode, any mouse click over a node produces a dialog that allows you
to edit the characteristics of the node. In the Edit Function mode, any mouse click over
a node produces a dialog that allows you to edit the probability function associated to the
node variable.

Try editing the contents of some nodes in the DogProblem network. Start with the
Edit Variable mode. A dialog appears when you click in a node. This dialog allows
you to edit the name of the variable, the properties of the variable, the properties of the
probability distribution associated with the node, and select the type of variable and the
type of distribution associated with the node:

e A property is a string containing information that is deemed relevant to the variable.
Any arbitrary string can be a property. Usually, the first word of the string is the
property name and the remainder of the string is the actual property value, but this
is not mandatory.

e A variable can be explanatory or not. The concept of explanation used in JavaBayes is
simple, but it requires some understanding of Bayesian statistics. The idea is that some
evidence is entered into the network, and the best explanation is the configuration of
variables that maximizes the probability of the evidence. You may be interested in a

20 CHAPTER 5. USING JAVABAYES

configuration that includes all variables in the network, or you may be interested in a
configuration that is limited to some variables. In the first case, you want a complete
explanation. In the second case, you want an explanation for the explanatory variables
only. The idea is that some variables are special; when you request an explanation, the
system finds the configuration of explanatory variables that maximizes the probability
of the evidence. Note that explanations are produced when the menu Inference mode
(under the Options menu in the editor window) is properly used; details are provided
later.

e A variable can be associated to a single conditional probability distribution or to a
convex set of conditional probability distributions (a credal set). Models that employ
convex sets of distributions are useful to represent imprecise or incomplete beliefs; they
are commonly used to analyze the robustness of probabilistic models to perturbations
and parameter variations [1]. You can indicate that a particular variable is associated
with a credal set. Note that each vertex is a probability table; you can specify all
probability densities in the Edit Function dialog.

It is possible to define and modify properties for the network (in the Edit Network
dialog), and properties for the variable and the distribution in a network node (in the Edit
Variable dialog).

After you familiarize yourself with the Edit Variable dialog, try editing the probability
values that are associated with every variable in the network. There are two ways to edit
probability values.

First, you can switch the editor window to Edit Function mode; in this mode, you
obtain a dialog for the probability values of any node that gets a mouse click. When you are
reading the tables that display conditional distributions, note that the parents are always
laid in the horizontal; make sure you understand the meaning of the entries before entering
values.

The second way to visualize or edit the probability values is to swith the editor window
to Edit Variable, click on a node, and then click on the Edit Function button in the Edit
Variable dialog.

Note an important point concerning the editing dialogs. When you edit aspects of the
network in the editing dialogs, the changes do not affect the network until you press the
Apply button. If you dismiss the dialog, the changes are lost. Changes are effective after
you press Apply (and cannot be undone after that); after you press Apply, you can dismiss
the dialog and the changes are retained.

5.1. THE DOGPROBLEM NETWORK 21

Note the following: in the Edit Variable dialog, there is a button that calls the Edit
Function dialog. Changes in the type of the variable are only effective after you press Apply;
only changing the type of the variable and calling the Edit Function dialog will generate
an Edit Function dialog that follows the currently applied type.

5.1.3 Modifying the DogProblem network

JavaBayes contains a number of modes that allow you to modify a network in a graphical
manner. The Create, Move and Delete modes are quite easy to understand: you can create
arcs and nodes, move nodes, delete arcs and nodes.

Once in Create mode, click on any point not occupied by a node, and a node will appear.
Nodes receive default names and are associated to default (uniform) distributions when they
are created; you have to use the Edit Variable and Edit Function dialogs to edit them.
If you click on a node and drag the mouse, an arrow will be created, stemming from the node
where you first clicked. If you drag the mouse until a second node, an arc will be created
between the nodes. The second node is a child of the first node; the first node is a parent
of the second node. The system does not allow you to create cyclic structures, nor it allows
you to create an arrow to a node from itself.

You can delete nodes and arcs in Delete mode. To delete a node or an arc, just click on
it. If a group of nodes has been created, then clicking on any node in the group causes the
whole group to be deleted.

You can mode nodes in Move node. To move a node, just click on it and drag it. You
cannot move arcs, as the position of an arc is solely defined by the position of the nodes the
arc is associating. If a group of nodes has been created, then clicking and draggin any node
in the group causes the whole group to be moved.

5.1.4 Querying the DogProblem network

JavaBayes allows you to process the information in a Bayesian network in a variety of ways.
Consider the following operations on the DogProblem network.

Suppose you want to calculate posterior probabilities for some variables in the DogProb-
lem network. For example, you can calculate p(l|h, b°), the posterior probability of [given A
and b° (light-on given hear-bark and not bowel-problem). The Artificial Intelligence commu-
nity usually calls this the “belief” in [given the “evidence” h and b°. Obtaining the belief

22 CHAPTER 5. USING JAVABAYES

given the evidence is usually called “belief updating”. To do that, you have to set hear-bark
as true and bowel-problem as false; that’s the evidence.

Variables are set when the editor window is in Observe mode. To set variables for a
variable, click on the variable. A dialog will appear, giving you the opportunity to insert
observations. If you want to indicate that a variable was observed, click on the observed
value. If you want to indicate that a variable was not observed, then make sure the checkbox
on the top of the dialog indicates no observation. Note that if you use the checkbox to indicate
that an observation was made (without actually clicking on any specific value), the system
will automatically take the first value in the list as the observed value.

After you insert the evidence, you can query the variable light-on by switching the editor
window to Query mode. Click the mouse on the variable light-on; JavaBayes produces:

Posterior distribution:

probability ("light-on") {//1 variable(s) and 2 values
table 0.236519 0.763481 ;

}

JavaBayes allows you to calculate several probabilistic quantities involved in problems
like this. There are essentially four types of calculations that are possible in JavaBayes.
You can query any variable for its posterior probability distribution. Or you can query any
variable for its posterior expectation. A query is obtained by clicking on the variable of
interest. Alternatively, you may obtain explanation for a set of variables or for all variables
in the network. An explanation is a configuration of variables that maximizes the probability
of the evidence; you get an explanation by clicking on any variable.

Regarding expectations, JavaBayes handles only univariate utility functions; a particular
case is the expected value for a variable, and this is what you can obtain in the graphical
interface. Suppose you declare a variable like this:

variable "LowLLapse" { //4 values
type discrete[4] { "CloseToDryAd" "Steep" '"ModerateOrLe" '"Stable" };
property "position = (857, 440)" ;

In this case, the expectation is calculated assuming the following values:

5.1. THE DOGPROBLEM NETWORK 23

CloseToDryAd 0
Steep 1
ModerateOrLe 2
Stable 3

If you want different values, then you could do something like this:

variable "LowLLapse" { //4 values
type discrete[4] { "-4.20" "1.0" "14.22" "100.0" };
property "position = (857, 440)" ;

To obtain an explanation, JavaBayes finds the configuration for a set of “explanatory”
variables such that the posterior probability of the evidence is maximized. Maximization of
probabilities is usually called maximum a posteriori estimation; a particular case that has
received great attention in the literature is the most probable explanation problem (called
MPE), where all variables are explanatory variables. JavaBayes lets the user choose which
one of these two problems is to be solved. If the user wants to estimate some variables, then
the user must indicate which variables are explanatory in the Edit Variable dialog.

5.1.5 Some other miscellaneous operations in JavaBayes

You can decide what to show in the console window after an inference is performed. By
default, JavaBayes displays a short message indicating the final values of interest in any
query. JavaBayes can also display the whole network that is used in processing a query. It
is also possible to check the full bucket tree generated in processing a query (the bucket tree
is the basic data structure used internally in JavaBayes). The bucket tree works best as
a debugging tool; for a large network, it may be an overwhelming amount of information.
Note that to actually display the information you want, you have to perform a query in the
network.

The console area does not scroll indefinitely; the size of the scrolling buffer is controlled
by the Java distribution you have, not by JavaBayes. Because Java displays only a limited
number of lines, information may be lost (and note that the maximum number of lines that
is actually displayed is not accessible by the program). To clear the text in the JavaBayes
console and send the contents of the console to a file, try the Dump console option in the
File menu. This option asks for a filename, dumps all the contents of the console window

24 CHAPTER 5. USING JAVABAYES

into the indicated file, and clears the console window. This option is also appropriate if you
are interested in logging your actions or inferences during a JavaBayes session.

5.2 The Alarm network

Now that the small DogNetwork has been explored, you can try several other networks that
are available in the JavaBayes distribution. There are some other small networks, like the
Asia and the Cancer networks, and some relatively large networks, like the Alarm and the
Hailfinder networks.

The Alarm network is well-known as it is relatively old and has been used in a large
number of studies about inferences and about learning. The network was created to model
situations that arise in medicine [5]; it contains lots of symptons, illnesses, exams, and other
medical terms. Even though you can experiment with all example networks, the Alarm
network is particularly nice as it is relatively large, but not too much; it is relatively sparse,
but not too much; and it is based on real situations that have real meaning.

First, go to the File menu and pick the Open item. Now select the file containing the
Alarm network; you will see the network appear in the editor window. If you have a large
computer screen, you may be able to see the entire network; if you cannot see the entire
network in a single screen, you have to use the scrollbars to view the network in pieces.

Try inserting some evidence randomly in the network, and then query some variables (first
use the Observe mode, then swith to Query mode). You will realize that inference with the
Alarm network is slower than inference with the DogProblem network, but not substantially
so. JavaBayes starts any query by selecting only those variables that are necessary for the
calculation of posterior probabilities; in a relatively sparse network like the Alarm network,
it is usually the case that only a fraction of the network is used in any given query.

Try different inference algorithms, and check if you can feel the difference in speed. In
actually, both algorithms process single inferences quickly, so it is almost impossible to feel
any difference between them.

To familiarize yourself with the network, check the Edit network, Edit variable and
Edit function dialogs, and select some variables as explanatory. Then query the network
for posterior probabilities, posterior expectations, best explanation for the complete network
and best explanation for the explanatory variables. See if you can grasp the meaning of
explanations. Note that nodes turn orange when they are used as explanatory variables.
So if you ask for a complete explanation, all nodes (except evidence nodes) turn orange.

5.2. THE ALARM NETWORK 25

And if you ask for an explanation only for explanatory variables, then only the explanatory
variables turn orange.

Try viewing the network and the buckets in the console window, by setting the corre-
sponding options in the Options menu. After a few inferences, the console window will be
full; try dumping its contents into a file.

At this point, you probably have understood almost everything in JavaBayes, and you
are ready to use the system for your own networks.

26

CHAPTER 5. USING JAVABAYES

Chapter 6

Loading and saving data in JavaBayes

Data can be locally loaded/saved when you use JavaBayes as an application. Note that
applets cannot load/save data (they are forbidden by the browsers)!

Applications and applets can read Bayesian networks through the Internet; this opens
the possibility that JavaBayes be used to help process and organize the huge amounts of
data and knowledge in the Internet.

This section contains a detailed description of the formats that can be manipulated by
JavaBayes. If you have no interest on this kind of information (if you are not reading/writing
files for JavaBayes), you can skip this section entirely.

6.1 All the formats

There are three different formats, and all three are supported by JavaBayes in the sense that
JavaBayes can read files written on them.

The Bayesian Interchange Format version 0.1 (BIF 0.1) is a simple format, that has been
succesfully used to represent a variety of networks. But BIF 0.1 had certain problems, and
has been replaced by BIF version 0.15. BIF 0.15 is a more mature format and should work
for most applications.

XMLBIF 0.3 is an experimental format, based on the new XML specification. The best
way to understand it is to read about BIF 0.15, then read something about XML, then read

27

28 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

the description of XMLBIF 0.3.

Because BIF 0.15 supercedes BIF0.1, JavaBayes does not save files in BIF 0.1 anymore.
You can choose between XMLBIF 0.3 and BIF 0.15 in the Options menu.

Note that no format supports Noisy functions (since JavaBayes does not support those
functions yet). The BIF formats also use the general concept of a property; implementations
of the BIF format can use specific properties. JavaBayes handles some properties, such as
observed, erplanation and credal-set, which are explained later on.

For files, any extension is possible, but the extension bif is recommended for BIF 0.15,
and the extension zml is tentatively used for XMLBIF 0.3.

6.2 Representing probability values

It is important to understand how the JavaBayes formats handle the specification of proba-
bility values. All distributions are specified as arrays of real numbers, and the meaning of the
numbers depends on the definition of the distribution. Note that the same representation is
used in internal arrays to store and manipulate probability values.

The distribution p(f) in the example above can be specified as follows:
0.15,0.85
Let’s consider a more complicated example. The function p(d|f, b) is given by
0.99,0.90, 0.97, 0.30, 0.01, 0.10, 0.03, 0.70

The logic is simple: proceed as if you were filling a table, where the indices of the table vary
from the right to left (in the example above, it is like binary counting because all variables
have only two values).

A more complicated example would be a function p(A|B,C) where A has 3 values, B
has 2 values and C' has 4 values. The function is represented as:

p A1|B1C3 p(A

Al |BZCZ

()n(

()p(p(A1|B2C3)p(A| BoCy
p(A2|B1C1)p(A2| B1Co

()p(

()p(Ai)
()p(Ax)
p(A2|Bng)p(A2|BlC4)
p(A2|B>C3)p(A2)

~— ~—r S~

6.3. BIF VERSION 0.15 29

p(A3 |B1C1)P(A3 |BICQ)p(A3 \3103)10(143 |B1C4)
p(A3|B2C1)p(A3 |3202)p(A3 |BZC3)I7(A3 |BQC4)-

IMPORTANT: Notice that there is some redundancy in the values, because all prob-
ability functions must add up to one. Right now the BayesianNetworks package does not
attempt to fill blanks or ensure consistency; the user has to provide the data in the correct
format (it has to have the correct number of values, has to add to one, etc).

6.3 BIF version 0.15

White spaces, tabs and newlines are ignored; the C/C++ style of comments is adopted. The

“” character is also ignored when it occurs between tokens.

The basic unit of information is a block: a piece of text which starts with a keyword
and ends with the end of an attribute list (to be explained later). Arbitrary characters are
allowed between blocks. This allows the user to insert arbitrarily long comments outside the
blocks. It also allows user-specific blocks and commands to be placed outside the standard
blocks.

Other than blocks, the BIF 0.15 refers to three entities: words, non-negative integers and
non-negative reals.

A word is a contiguous sequence of characters, with the restriction that the first character
be a letter. Characters are letters plus numbers plus the underline symbol (_) plus the dash
symbol (-).

A non-negative number is a sequence of numeric characters, containing a decimal point
or an exponent or both.

6.3.1 Blocks

A block is a unit of information. The general format of a block is:

block-type block-name {
attribute-name attribute-value;
attribute-name attribute-value;

30 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

attribute—name attribute-value;

}

with as many attributes as necessary. The closing semicolon is mandatory after each at-
tribute.

There are three possible blocks: network, variable and probability blocks.

e A network block defines the name of the network and lists the properties. Example:

network "Robot-Planning" {
property version 1.1;
property author Nobody;
X

e Variable blocks define the variables in a network. Example:

variable Leg {
type discrete[2] { long, short };
property temporary yes;

3

e Probability blocks specify the (conditional) probability tables (CPTs) for these vari-
ables, and hence the topology of the network. The block indicates the variables of the
probability distribution right after the keyword probability. Example:

probability ("Leg" | "Arm") {
table 0.1 0.9 0.9 0.1;
}

The blocks must be placed in the following order:

e A network declaration block (one, must be first).

e A series of variable declaration blocks and probability definition blocks, possibly inter-
mixed.

6.3. BIF VERSION 0.15 31

6.3.2 Attributes

Several attributes are defined at this point: property, type, table, default and entry attributes
(the entry attribute is not associated with any keyword).

The attribute property can appear in all types of blocks. A property is just a string of

arbitrary text to be associated with a block. Examples of properties:

property '"size 12";
property 'mame Trial number ten";

Any text is valid in the string following keyword property. The idea is to store information
that is specific to a particular system or network in the properties. Any number of property
attributes can appear in a block.

The type attribute is specific to variable blocks. The property type lists the values of a
discrete variable:

type discrete[number-of-values] { list-of-values };

The number-of-values token is a non-negative integer which indicates how many different
values this variable may assume (the size of the list-of-values). The list-of-values is a sequence
of words, each one the name of a variable value.

There are attributes that are specific to probability blocks (these attributes are discussed
in the next section):

e table lists a sequence of non-negative real numbers.
o default lists a sequence of non-negative real numbers.

e the entry attribute, which is not associated with any keyword.

6.3.3 The JavaBayes properties

JavaBayes uses a number of properties to load and save information about Bayesian net-
works:

32

CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

e The observed property for a variable. Suppose you have the following block:

variable "light-on" {//2 values
type discrete[2] { "true" "false" };
property '"position = (218, 195)" ;
}

and you want to indicate that variable light-on is observed with value true (i.e., light-on
= true is the evidence). You do this with the observed property:

variable "light-on" {//2 values
property "observed true";
type discrete[2] { "true" "false" };
property '"position = (218, 195)" ;
}

You can set as many variables as you want as observed; the syntax is simple:
property observed [observed-value];
e The explanation property for a variable. Suppose you have the following block:

variable "light-on" {//2 values
type discrete[2] { "true" "false" };
property "position = (218, 195)" ;
}

and you want to indicate that variable light-on is to be estimated. You can set light-on
as a erplanation variable, i.e., a variable which will be estimated. The meaning of a
explanatory variable is that you would like to know which value for the variable would
produce the highest probability or expectation. It is not necessarily true that you can
operate on the variable and change it at will; it is just that you want to know which
value would be best in the face of evidence. You do set explanatory variables with the
explanation property:

variable light-on{//2 values

property "explanation";
type discrete[2] { "true" "false" };
property ‘"position = (218, 195)" ;

6.3. BIF VERSION 0.15 33

If you request JavaBayes to produce the “best” configuration for the explanation vari-
ables, JavaBayes will only process the variables that are marked through an explana-
tion property. You can set as many variables as you want as explanation variables; the
syntax is simple:

property '"explanation";

There are also properties that are related to robustness analysis in JavaBayes. Since
robustness analysis is still an ongoing research project, the support for it is minimal. If
you want to use robustness analysis now, please send me email. The properties related to
robustness analysis always start with the keyword credal-set; if you are defining your own
properties, please do not use this keyword.

6.3.4 Probability Blocks

Probability blocks are used to define the actual network topology and conditional probability
tables.

An example of a standard probability block is:

probability("GasGauge" | "Gas", "BatteryPower") {
("yes", "high") 0.999 0.001;
("yes", "low") 0.850 0.150;
("yes", "medium") 0.000 1.000;
("no", "high") 0.000 1.000;
("no", "low") 0.000 1.000;
("no", "medium") 0.000 1.000;

As explained before, the symbol ,” is ignored between tokens so it does not affect the list
of variables given after the keyword probability. The variables however must be enclosed by
parenthesis.

The example above uses the entry attribute, which is different from the other attributes
in that it has no keyword. It simply starts with an opening parenthesis, and has a list of
values for all the conditioning variables. After the closing parenthesis, a list of probability
values for the first variable is given (the user must provide numbers that add to 1, but this
is not mandatory).

34 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

The probability vectors can be listed in any order, since the names in parentheses uniquely
identify the parent instantiation.

In addition to the entry attribute, the BIF 0.15 supports the concept of a default entry.
So the above CPT could have been specified equivalently as:

probability("GasGauge" | "Gas", "BatteryPower") {
default 0.000 1.000;
("yes", "low") 0.850 0.150;
("no", "medium") 0.000 1.000;

Note that each number is a separate token, so we can use “,” between numbers.

Another way to define a probability distribution is through the table attribute. The
body of such attribute is a sequence of non-negative real numbers, in the counting order of
the declared variables (if all variables were binary, we would say binary counting with least
significant digit in the right). So, for the example above, we could simply say:

probability("GasGauge" | "Gas", "BatteryPower") {
table 0.999 0.850 0.0 0.0 0.0 0.0 0.001 0.15 1.0 1.0 1.0 1.0;
}

There are some subtle rules that regulate these declarations.

If multiple default declarations exist, only the last one is valid.

If multiple table declarations exist, only the last one is valid.

A table can contain more elements than the necessary to specify a distribution; the
excess elements are discarded.

A table can contain less elements than the necessary to specify a distribution, which
is then padded with zeros.

Specified entries override conflicting default and table declarations.

6.3. BIF VERSION 0.15 35
6.3.5 Examples

Here are some of the available examples:

e dog-problem.bif, a very simple network based on the discussion at Charniak, E.,
Bayesian Networks without Tears, Al Magazine, 1991.

e elimbel2.bif, a simple network based on the second example in the Elimbel system.

e car-starts.bif, a somewhat large network contributed by Sreekanth Nagarajan, based
on the automobile belief network that David Heckerman and Jack Breese presented in
the March, 1995 issue of Communications of the ACM.

e alarm.bif, the famous Alarm network.
Here is the dog-problem.bif network:

// Bayesian Network in the Interchange Format

// Produced by BayesianNetworks package in JavaBayes
// Output created Sun Nov 02 17:49:49 GMT+00:00 1997
// Bayesian network

network "Dog-Problem" { //5 variables and 5 probability distributions
property 'credal-set constant-density-bounded 1.1" ;
}

variable "light-on" { //2 values

type discrete[2] { '"true" '"false" };

property "position = (218, 195)" ;

}

variable '"bowel-problem" { //2 values

type discrete[2] { "true" ‘'"false" };

property "position = (335, 99)" ;

}

variable ‘"dog-out" { //2 values

type discrete[2] { '"true" ‘'"false" };

property "position = (300, 195)" ;

}

variable ‘'"hear-bark" { //2 values

type discrete[2] { "true" "false" };

property "position = (296, 268)" ;

36 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

}

variable "family-out" { //2 values

type discrete[2] { "true" "false" };

property "position = (257, 99)" ;

}

probability ("light-on" "family-out") { //2 variable(s) and 4 values
table 0.6 0.05 0.4 0.95 ;

}

probability ("bowel-problem") { //1 variable(s) and 2 values

table 0.01 0.99 ;

}

probability ("dog-out" "bowel-problem" "family-out") { //3 variable(s) and 8 val
table 0.99 0.97 0.9 0.3 0.01 0.03 0.1 0.7 ;

}

probability ("hear-bark" "dog-out") { //2 variable(s) and 4 values
table 0.7 0.01 0.3 0.99 ;

}

probability ("family-out") { //1 variable(s) and 2 values

table 0.15 0.85 ;

}

6.4 BIF version 0.1

White spaces, tabs and newlines are ignored; the C/C++ style of comments is adopted.
Two other characters are also ignored when they occur between tokens: “” and “—". These
characters can be used to separate variables in the definition of a probability distribution.

The basic unit of information is a block: a piece of text which starts with a keyword
and ends with the end of an attribute list (to be explained later). Arbitrary characters are
allowed between blocks. This allows the user to insert arbitrarily long comments outside the
blocks. It also allows user-specific blocks and commands to be placed outside the standard
blocks.

Other than blocks, the BIF 0.1 refers to three entities: words, non-negative integers and
non-negative reals.

A word is a contiguous sequence of characters, with the restriction that the first character
be a letter. Characters are letters plus numbers plus the underline symbol (_) plus the dash

6.4. BIF VERSION 0.1 37

symbol (-).

A non-negative number is a sequence of numeric characters, containing a decimal point
or an exponent or both.

6.4.1 Blocks

A block is a unit of information. The general format of a block is:

block-type block-name {
attribute—-name attribute-value;
attribute—-name attribute-value;
attribute—name attribute-value;

with as many attributes as necessary. The closing semicolon is mandatory after each at-
tribute.

There are three possible blocks: network, variable and probability blocks.

e A network block defines the name of the network and lists the properties. Example:

network Robot-Planning {
property version 1.1;
property author Nobody;

e Variable blocks define the variables in a network. Example:

variable Leg {
type discrete[2] { long, short };
property temporary yes,

3

e Probability blocks specify the (conditional) probability tables (CPTs) for these vari-
ables, and hence the topology of the network. The block indicates the variables of the

probability distribution right after the keyword probability. Example:

38 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

probability (Leg | Arm) {
table 0.1 0.9 0.9 0.1;
}

The blocks must be placed in the following order:

e A network declaration block (one, must be first).

e A series of variable declaration blocks and probability definition blocks, possibly inter-
mixed.

6.4.2 Attributes

Several attributes are defined at this point: property, type, table, default and entry attributes
(the entry attribute is not associated with any keyword).

The attribute property can appear in all types of blocks. A property is just a string of
arbitrary text to be associated with a block. Examples of properties:

property size 12;
property name "Trial number ten';

Any text is valid between the keyword property and the ending semicolon. The idea is to
store information that is specific to a particular system or network in the properties. Any
number of property attributes can appear in a block.

The type attribute is specific to variable blocks. The property type lists the values of a
discrete variable:

type discrete[number-of-values] { list-of-values };

The number-of-values token is a non-negative integer which indicates how many different
values this variable may assume (the size of the list-of-values). The list-of-values is a sequence
of words, each one the name of a variable value.

There are attributes that are specific to probability blocks (these attributes are discussed
in the next section):

6.4. BIF VERSION 0.1 39

e table lists a sequence of non-negative real numbers.
e default lists a sequence of non-negative real numbers.

e the entry attribute, which is not associated with any keyword.

6.4.3 The JavaBayes properties

JavaBayes uses a number of properties to load and save information about Bayesian net-
works:

e The observed property for a variable. Suppose you have the following block:

variable light-on{//2 values
type discrete[2] { true false };
property position = (218, 195) ;

and you want to indicate that variable light-on is observed with value true (i.e., light-on
= true is the evidence). You do this with the observed property:

variable light-on{//2 values

property observed true;
type discrete[2] { true false };
property position = (218, 195) ;

You can set as many variables as you want as observed; the syntax is simple:
property observed [observed-value 1];

e The explanation property for a variable. Suppose you have the following block:

variable light-on{//2 values
type discrete[2] { true false };
property position = (218, 195) ;

40

CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

and you want to indicate that variable light-on is to be estimated. You can set light-on
as a ezrplanation variable, i.e., a variable which will be estimated. The meaning of a
explanatory variable is that you would like to know which value for the variable would
produce the highest probability or expectation. It is not necessarily true that you can
operate on the variable and change it at will; it is just that you want to know which
value would be best in the face of evidence. You do set explanatory variables with the
explanation property:

variable light-on{//2 values
property explanation;
type discrete[2] { true false };
property position = (218, 195) ;
}

If you request JavaBayes to produce the “best” configuration for the explanation vari-
ables, JavaBayes will only process the variables that are marked through an explana-
tion property. You can set as many variables as you want as explanation variables; the
syntax is simple:

property explanation;

There are also properties that are related to robustness analysis in JavaBayes. Since

robustness analysis is still an ongoing research project, the support for it is minimal. If
you want to use robustness analysis now, please send me email. The properties related to
robustness analysis always start with the keyword credal-set; if you are defining your own
properties, please do not use this keyword.

6.4.4 Probability Blocks

Probability blocks are used to define the actual network topology and conditional probability
tables.

An example of a standard probability block is:

probability(GasGauge | Gas, BatteryPower) {

(yes, high) 0.999 0.001;
(yes, low) 0.850 0.150;
(yes, medium) 0.000 1.000;

6.4. BIF VERSION 0.1 41

(no, high) 0.000 1.000;
(no, low) 0.000 1.000;
(no, medium) 0.000 1.000;

141 7

As explained before, the symbols and “” are ignored between tokens so they do not
affect the list of variables given after the keyword probability. The variables however must
be enclosed by parenthesis.

The example above uses the entry attribute, which is different from the other attributes
in that it has no keyword. It simply starts with an opening parenthesis, and has a list of
values for all the conditioning variables. After the closing parenthesis, a list of probability
values for the first variable is given (the user must provide numbers that add to 1, but this
is not mandatory).

The probability vectors can be listed in any order, since the names in parentheses uniquely
identify the parent instantiation.

In addition to the entry attribute, the BIF 0.1 supports the concept of a default entry.
So the above CPT could have been specified equivalently as:

probability(GasGauge | Gas, BatteryPower) {
default 0.000 1.000;
(yes, low) 0.850 0.150;
(no, medium) 0.000 1.000;

w»

Note that each number is a separate token, so we can use “,” and “—” between numbers;
these symbols are ignored.

Another way to define a probability distribution is through the table attribute. The
body of such attribute is a sequence of non-negative real numbers, in the counting order of
the declared variables (if all variables were binary, we would say binary counting with least
significant digit in the right). So, for the example above, we could simply say:

probability(GasGauge | Gas, BatteryPower) {
table 0.999 0.850 0.0 0.0 0.0 0.0 0.001 0.15 1.0 1.0 1.0 1.0;
}

There are some subtle rules that regulate these declarations.

42 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

If multiple default declarations exist, only the last one is valid.

If multiple table declarations exist, only the last one is valid.

A table can contain more elements than the necessary to specify a distribution; the
excess elements are discarded.

A table can contain less elements than the necessary to specify a distribution, which
is then padded with zeros.

Specified entries override conflicting default and table declarations.

6.4.5 Example

Here is the dog-problem.bif network in BIF0.1:

// Bayesian Network in the Interchange Format
// Produced by BayesianNetworks package in JavaBayes
// Output created Tue Feb 25 12:55:25 1997
// Bayesian network

network Internal-Network{ //5 variables and 5 probability distributions
}

variable light-on{//2 values

type discrete[2] { true false };

property position = (218, 195) ;

}

variable bowel-problem{//2 values

type discrete[2] { true false };

property position = (335, 99) ;

}

variable dog-out{//2 values

type discrete[2] { true false };

property position = (300, 195) ;

}

variable hear-bark{//2 values

type discrete[2] { true false };

property position = (296, 268) ;

}

variable family-out{//2 values

6.5. XMLBIF VERSION 0.3 43

type discrete[2] { true false };

property position = (257, 99) ;

}

probability (light-on family-out) { //2 variable(s) and 4 values
table 0.6 0.05 0.4 0.95 ;

}

probability (bowel-problem) { //1 variable(s) and 2 values

table 0.01 0.99 ;

}

probability (dog-out bowel-problem family-out) { //3 variable(s) and 8 values
table 0.99 0.97 0.9 0.3 0.01 0.03 0.1 0.7 ;

}

probability (hear-bark dog-out) { //2 variable(s) and 4 values
table 0.7 0.01 0.3 0.99 ;

}

probability (family-out) { //1 variable(s) and 2 values

table 0.15 0.85 ;

}

6.5 XMLBIF version 0.3

The XMLBIF format provides a different perspective for the storage and manipulation of
Bayesian networks. Instead of focusing on a readable and simplified description of Bayesian
networks, the XMLBIF format emphasizes ease of distribution through wide area networks.
The XMLBIF format is defined through XML, a dialect of SGML that is used to specify
formats. The advantage of XML is that it has industry-wide support, and many software
developers plan to introduce parsers, search-engines, and browsers for XML. The power
of XML is that it is a standard language for editing formats, and XMLBIF attempts to
use XML to reduce to a minimum the burden of distributing graphical models to a large
audience.

The XMLBIF format is actually quite similar to BIF 0.15, but it is stated in a manner
that is XML-compliant. Note the similarity of XMLBIF to HTML; this happens because
both HTML and XML are dialects of SGML.

White spaces, tabs and newlines are ignored. The XML style of comments and decla-
rations is used to detect text that should be ignored: any character between <! and > is
ignored. Note that XML comments should be enclosed by <! — — and —— >.

44 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

The XMLBIF format is defined by a set of XML-compliant tags. Other than XML tags,
the XMLBIF 0.3 refers to three entities: words, non-negative integers and non-negative reals.

A word is a contiguous sequence of characters, with the restriction that the first character
be a letter. Characters are letters plus numbers plus the underline symbol (-) plus the dash
symbol (-).

A non-negative number is a sequence of numeric characters, containing a decimal point
or an exponent or both.

Note that every XML file starts with the expression <?xml version="1.0"?7 >, indicating
the XML version. Other attributes and directives can be contained within this tag; for
example, the tag <?xml version="1.0" encoding="US-ASCII”? > specifies the file encoding.
This initial tag is followed by any XML definitions and statements that define the D'TD for
the document (the DTD is always optional in XML).

6.5.1 Networks, variables and probabilities

The first tag of a XMLBIF 0.3 file is the <BIF> tag; the last tag is the closing < /BIF>
tag. All the information about the model is contained between these tags. There are three
basic units of information: network, variable and probability densities.

A network is defined by its name, followed by a list of properties (optional), followed by

a list of variables and probability densities. For example, a network may be defined as:

<BIF VERSION="0.3">

<NETWORK>

<NAME>Dog-Problem</NAME>

<PROPERTY>date Sunday, 19 July, 1998</PROPERTY>
<PROPERTY>author John</PROPERTY>

variables and probabilities go here

</NETWORK>
</BIF>

The VERSION attribute in the BIF tag is mandatory.

Variables are defined by their names, types and properties:

6.5. XMLBIF VERSION 0.3 45

<VARIABLE TYPE='"chance">
<NAME>1ight-on</NAME>
<OUTCOME>true</0UTCOME>
<0UTCOME>false</0UTCOME>
<PROPERTY>position = (73, 165)</PROPERTY>
</VARIABLE>

Conditional probability densities can be specified in various ways inside the DEFINITION
tag. One example is:

<DEFINITION>

<FOR>hear-bark</FOR>
<GIVEN>dog-out</GIVEN>

<TABLE>0.7 0.01 0.3 0.99 </TABLE>
</DEFINITION>

There is no mandatory order of variable and probability blocks.

A property is just a string of arbitrary text to be associated with a block. Examples of
properties:

<PROPERTY>size 12</PROPERTY>
<PROPERTY>comment Trial number ten</PROPERTY>

Any text is valid in the string inside the PROPERTY opening and closing tags. The idea
is to store information that is specific to a particular system or network in the properties.
Any number of property attributes can appear in a block.

A variable is defined by a NAME tag (with the TYPE attribute), and its possible OUT-
COMES:

<VARIABLE TYPE='"chance'">
<NAME>1light-on</NAME>
<OUTCOME>true</0UTCOME>
<0UTCOME>false</0UTCOME>
<PROPERTY>position = (73, 165)</PROPERTY>
</VARIABLE>

46 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

Currently the content of a TYPE attribute must be the keyword either “chance” or “decision”
or “utility”.

The TABLE tag is specific to the DEFINITION block (note that a definition can be
a probability distribution, a set of decision values or a set of utility values, depending on
the TYPE attributes of the referred variable). DEFINITION blocks are used to define the
actual network topology, by specifying conditional probability tables.

An example of a standard probability block is:

<DEFINITION>

<FOR>GasGauge</FOR>

<GIVEN>BatteryPower</GIVEN>
<GIVEN>GasInTank</GIVEN>

<TABLE>1.0 0.0 0.2 0.0 0.0 1.0 0.8 1.0 </TABLE>
</DEFINITION>

for a variable GasGauge that is defined with TYPE equal to “chance”. The body of the
TABLE tag is a sequence of non-negative real numbers, in the counting order of the declared
variables (if all variables were binary, we would say binary counting with least significant
digit in the right). If multiple table declarations exist, only the last one is valid.

6.5.2 The JavaBayes properties

JavaBayes uses a number of properties to load and save information about Bayesian net-
works:

e The observed property for a variable. Suppose you have the following block:

<VARIABLE TYPE="chance">

<NAME>1light-on</NAME>

<0UTCOME>true</0UTCOME>

<0UTCOME>false</0UTCOME>

<PROPERTY>position = (73, 165)</PROPERTY></VARIABLE>

and you want to indicate that variable light-on is observed with value true (i.e., light-on
= true is the evidence). You do this with the observed property:

6.5. XMLBIF VERSION 0.3 47

<VARIABLE TYPE='"chance">

<NAME>1ight-on</NAME>

<0UTCOME>true</0UTCOME>

<0UTCOME>false</0UTCOME>

<PROPERTY>observed true</PROPERTY>
<PROPERTY>position = (73, 165)</PROPERTY></VARIABLE>

You can set as many variables as you want as observed; the syntax is simple:

<PROPERTY>observed (observed-value)</PROPERTY>

e The ezxplanation property for a variable. Suppose you want to indicate that variable
light-on is to be estimated. You can set light-on as a explanation variable, i.e., a
variable which will be estimated. The meaning of a explanatory variable is that you
would like to know which value for the variable would produce the highest probability
or expectation. It is not necessarily true that you can operate on the variable and
change it at will; it is just that you want to know which value would be best in the
face of evidence. You do set explanatory variables with the explanation property:

<VARIABLE TYPE="chance">

<NAME>1light-on</NAME>

<0UTCOME>true</0UTCOME>

<0UTCOME>false</0QUTCOME>
<PROPERTY>explanation</PROPERTY>

<PROPERTY>position = (73, 165)</PROPERTY></VARIABLE>
</VARIABLE>

If you request JavaBayes to produce the “best” configuration for the explanation vari-
ables, JavaBayes will only process the variables that are marked through an explanation

property.

There are also properties that are related to robustness analysis in JavaBayes. Since
robustness analysis is still an ongoing research project, the support for it is minimal. If
you want to use robustness analysis now, please send me email. The properties related to
robustness analysis always start with the keyword credal-set; if you are defining your own
properties, please do not use this keyword.

48 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES
6.5.3 Examples

Here are some of the available examples:
e dog-problem.xml, a very simple network based on the discussion at Charniak, E.,
Bayesian Networks without Tears, Al Magazine, 1991.
e elimbel2.xml, a simple network based on the second example in the Elimbel system.

e car-starts.xml, a somewhat large network contributed by Sreekanth Nagarajan, based
on the automobile belief network that David Heckerman and Jack Breese presented in
the March, 1995 issue of Communications of the ACM.

alarm.bif, the famous Alarm network.

Here is the dog-problem.xml network:

<?xml version="1.0" encoding="US-ASCII"?7>

<l--

Bayesian network in XMLBIF v0.3 (BayesNet Interchange Format)
Produced by JavaBayes (http://www.cs.cmu.edu/~javabayes/
Output created Wed Aug 12 21:16:40 GMT+01:00 1998

-—>

<!-- DTD for the XMLBIF 0.3 format -->
<!DOCTYPE BIF [
<!ELEMENT BIF (NETWORK)=*>

<!'ATTLIST BIF VERSION CDATA #REQUIRED>
<!ELEMENT NETWORK (NAME, (PROPERTY | VARIABLE | DEFINITION)*)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT VARIABLE (NAME, (OUTCOME | PROPERTY)*) >

<!ATTLIST VARIABLE TYPE (chance|decision|utility) '"chance">
<!ELEMENT OUTCOME (#PCDATA)>
<!ELEMENT DEFINITION (FOR | GIVEN | TABLE | PROPERTY)* >
<!ELEMENT FOR (#PCDATA)>

6.5. XMLBIF VERSION 0.3

<!ELEMENT GIVEN (#PCDATA)>
<|ELEMENT TABLE (#PCDATA)>
<!ELEMENT PROPERTY (#PCDATA)>
1>

<BIF VERSION="0.3">
<NETWORK>
<NAME>Dog-Problem</NAME>

<!-- Variables —-—>

<VARIABLE TYPE='"chance">
<NAME>1ight—0n</NAME>
<0UTCOME>true</0UTCOME>
<0UTCOME>false</0UTCOME>
<PROPERTY>position = (73, 165)</PROPERTY>
</VARIABLE>

<VARIABLE TYPE="chance">
<NAME>bowel-problem</NAME>
<QUTCOME>true</0UTCOME>
<0UTCOME>false</0UTCOME>
<PROPERTY>position = (190, 69)</PROPERTY>
</VARIABLE>

<VARIABLE TYPE='"chance">
<NAME>dog-out</NAME>
<0OUTCOME>true</0UTCOME>
<0UTCOME>false</0UTCOME>
<PROPERTY>position = (155, 165)</PROPERTY>
</VARIABLE>

<VARIABLE TYPE="chance">
<NAME>hear-bark</NAME>
<QUTCOME>true</0UTCOME>
<0UTCOME>false</0UTCOME>
<PROPERTY>position = (154, 241)</PROPERTY>
</VARIABLE>

49

50 CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

<VARIABLE TYPE='"chance">
<NAME>family-out</NAME>
<0UTCOME>true</0UTCOME>
<QUTCOME>false</Q0UTCOME>
<PROPERTY>position = (112, 69)</PROPERTY>
</VARIABLE>

<!-- Probability distributions -->
<DEFINITION>

<FOR>light-on</FOR>
<GIVEN>family-out</GIVEN>
<TABLE>0.6 0.05 0.4 0.95 </TABLE>
</DEFINITION>

<DEFINITION>
<FOR>bowel-problem</FOR>
<TABLE>0.01 0.99 </TABLE>
</DEFINITION>

<DEFINITION>

<FOR>dog-out</FOR>

<GIVEN>bowel-problem</GIVEN>
<GIVEN>family-out</GIVEN>

<TABLE>0.99 0.97 0.9 0.3 0.01 0.03 0.1 0.7 </TABLE>
</DEFINITION>

<DEFINITION>

<FOR>hear-bark</FOR>
<GIVEN>dog-out</GIVEN>

<TABLE>0.7 0.01 0.3 0.99 </TABLE>
</DEFINITION>

<DEFINITION>
<FOR>family-out</FOR>
<TABLE>0.15 0.85 </TABLE>
</DEFINITION>

6.5. XMLBIF VERSION 0.3

</NETWORK>
</BIF>

o1

52

CHAPTER 6. LOADING AND SAVING DATA IN JAVABAYES

Chapter 7

Robustness analysis in JavaBayes

The core inference engine in JavaBayes provides support for robustness analysis of Bayesian
networks. Robustness analysis employs sets of distributions to model perturbations in the
parameters of a probability distribution [1, 2, 14]. Robust Bayesian inference is the calcula-
tion of bounds on posterior values given such perturbations.

7.1 Motivation

In the real world we can rarely meet all the assumptions of a Bayesian model. First, we have
to face imperfections in our beliefs, either because we have no time, resources, patience,
or confidence to provide exact probability values. Second, we may deal with a group of
disagreeing experts, each specifying a particular distribution. Third, we may be interested
in abstracting away parts of a model and assessing the effects of this abstraction.

There is some empirical evidence that Bayesian networks are not too sensitive to param-
eters; this is due to the fact that many classic examples of Bayesian networks are sparse
graphs, with probability values that are close to zero or one (for example, noisy functions
have probability values that are only zero or one). When that happens, you’re lucky because
robustness is likely to be present. In other words, if changes in one variable do not affect
many variables, and changes are not large relative to the magnitude of the numbers, then it
is likely that these changes will not produce significant variations in inferences.

Situations where probability values are not very close to zero-one, or where the graph
is heavily inter-connected, are situations where robustness may falter. Another situation is

23

54 CHAPTER 7. ROBUSTNESS ANALYSIS IN JAVABAYES

model building, where some parameter are not entirely specified, and the question is how
much effort should be spent nailing down their values. A serious analysis of a network must
consider the possibility of robustness problems, or at least assess how robust the model is.
That’s the aspect of inference that JavaBayes is trying to address.

Research on Bayesian networks has not fully explored the robustness analysis aspect
of inference, due to the lack of algorithms for inferences with convex sets of distributions.
JavaBayes is the first Bayesian network engine that provides facilities that explicitly account
for perturbations in probabilistic models.

7.2 Algorithms for robust Bayesian analysis

Robust Bayesian inference in multivariate structures such as Bayesian networks is a complex
algorithmic problem. Usually, the objective of robustness analysis is to obtain the interval
that contains all values of a certain quantity of interest, given all possible perturbations in
a probabilistic model. Models that attempt to combine Bayesian networks with probability
intervals have faced great difficulties. Even though particular classes of probability intervals
are amenable to analysis and some brute-force algorithms are possible, there has been no
general model of probability intervals with the same style of efficient propagation used in
Bayesian networks.

JavaBayes contains two classes of algorithms for robustness analysis:

e Local algorithms, where the perturbations in a Bayesian network are associated with
the individual nodes of the network.

e Global algorithms, where perturbations are associated with the whole joint distribution
represented by a Bayesian network.

If you have an application that requires use of robustness analysis, I would be grateful if
you could send me email explaining what the application is and how you used the system.

The algorithms in JavaBayes employ some recent results to reduce the complexity of
robustness analysis. The starting point is the theory of Quasi-Bayesian behavior, proposed
in 1980 by Giron and Rios. This theory builds a complete decision making model based on
convex sets of probability measures.

A complete discussion of all these issues and an exposition of algorithms can be found at
http://www.cs.cmu.edu/~gbayes/Tutorial /.

7.3. GLOBAL NEIGHBORHOODS)

7.3 Global neighborhoods

Consider first the algorithms for global robustness analysis, which are activated through the
Edit Network dialog.

Suppose you set a network to represent a multivariate constant density ratio class. You
can do this in the Fdit Network dialog. If you save the network with the global neighborhood
set (in the BIF 0.15 format), you should see the property:

network Example {
property credal-set constant-density-ratio 1.2;

}

When an inference is requested, the algorithm for global neighborhoods with density
ratio classes will be called. The parameter that defines the class in the example is 1.2. If
this parameter is smaller than zero, the parameter is automatically set to one (so that it has
no effect); if it is smaller than one, then its inverse is used (the parameter has to be larger
than one).

Take another example. Suppose a network is declared with the credal-set epsilon-contaminated
property:

network Example {
property credal-set epsilon-contaminated 0.1;

}

then the algorithm for global neighborhoods with e-contaminated classes will be called, using
0.1 as the definition parameter for the e-contaminated class. If this parameter is smaller than
zero or larger than one, inferences assume the parameter to be zero.

There are four possible global neighborhoods for a network:

network Example {
property credal-set constant-density-ratio 1.1;

}

network Example {
property credal-set epsilon-contaminated 0.1;

96 CHAPTER 7. ROBUSTNESS ANALYSIS IN JAVABAYES

network Example {
property credal-set constant-density-bounded 1.1;

}

network Example {
property credal-set total-variation 0.1;

}

The parameter for the constant density bounded class behaves as the parameter for the con-
stant density ratio class; the parameter for the total variation class behaves as the parameter
for the e-contaminated class.

If any of the credal-set properties above are present, the result is a pair of functions,
the lower and the upper bounds for the posterior marginals.

Consider the example discussed in Section 5.1, taken from [4].

The problem represents several facts about a family with a dog; the dog barks under
some circumstances, and the lights are on under some circumstances. Running this problem
in JavaBayes as a standard Bayesian problem , you get:

Posterior distribution:

probability ("light-on") { //1 variable(s) and 2 values
table 0.23651916875671802 0.763480831243282 ;

}

Now try to perform a robustness analysis by adding say an epsilon-contamination of
0.1. This roughly means that you expect the Bayesian network description to be correct
90 percent of the time, but in 10 percent of the cases you would expect any other joint
distribution to be possible. Notice this is a somewhat radical model of uncertainty as you
are allowing for 0.1 in probability mass to be concentrated in arbitrary sets or events. Add
the following line in the network block:

property credal-set epsilon-contaminated 0.1;

and load the new network description into JavaBayes: You will get the result:

7.3. GLOBAL NEIGHBORHOODS o7

Posterior distribution:

envelope ("light-on") { //1 variable(s) and 2 values
table lower-envelope 0.21286725188104622 0.6871327481189539 ;
table upper-envelope 0.31286725188104625 0.7871327481189538 ;
}

These functions are the lower and upper bounds respectively.

7.3.1 Local neighborhoods

Local perturbations to a network can be inserted as sets of conditional densities associated
with variables in the network. Each variable can be associated to a polytope in the space of
densities.

To associate a variable with a set of densities, you have to insert the vertices of the set
of densities. Go to the Fdit variable window and mark some variable as a Credal set with
extreme points. Insert the number of vertices of the set of distributions. Then edit these
densities in the Edit function window.

You can also insert the vertices of a set of densities directly into the describing a network;
JavaBayes simply asks you to determine which vertice you are referring to. In the example
above, suppose you want to define an interval for the probability of family-out. You can
write a file in the BIF0.15 format with the following declaration:

probability ("family-out") { //1 variable(s) and 2 values
table 0.15 0.85 ;

table 0.25 0.75 ;

}

This defines an interval 0.15 < p(family —out) < 0.25. You can also insert more vertices
if that’s appropriate, but note that for a binary variable that does not add any information.

If you insert the set of densities above, then you get:

Posterior distribution:

envelope ("light-on" "<Transparent:family-out>") { //2 variable(s) and 2 values

table lower-envelope 0.23651916875671802 0.6792901716068643 ;

o8 CHAPTER 7. ROBUSTNESS ANALYSIS IN JAVABAYES

table upper-envelope 0.3207098283931358 0.763480831243282 ;
}

This indicates the lower and upper bounds for the probability of light-on given the evi-
dence, and also indicates which sets of densities affect the result (in this case, the densities
for family-out).

Bibliography

[1] J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, 1985.

[2] J. O. Berger. Robust Bayesian analysis: Sensitivity to the prior. Journal of Statistical
Planning and Inference, 25:303-328, 1990.

[3] J. S. Breese and K. W. Fertig. Decision making with interval influence diagrams. In
P. P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in
Artificial Intelligence 6, pages 467—-478. Elsevier Science, North-Holland, 1991.

[4] E. Charniak. Bayesian networks without tears. Al Magazine, 1991.

[6] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence, 42:393—-405, 1990.

[6] R. Dechter. Bucket elimination: a unifying framework for probabilistic inference.
Twelfth Annual Conference on Uncertainty in Artificial Intelligence, 1996.

[7] M. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.
[8] J. Earman. Bayes or Bust? The MIT Press, Cambridge, MA, 1992.
[9] F. V. Jensen. An Introduction to Bayesian Networks. Springer Verlag, New York, 1996.

[10] U. Kjaerulff. Triangulation of graphs — algorithms giving small total state space.
Technical Report R-90-09, Department of Mathematics and Computer Science, Aalborg
University, Denmark, March 1990.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kauffman, San Mateo, CA, 1988.

[12] J. Pearl. On probability intervals. Int. Journal of Approzimate Reasoning, 2:211-216,
1988.

29

60 BIBLIOGRAPHY

[13] L. A. Wasserman. Prior envelopes based on belief functions. The Annals of Statistics,
18(1):454-464, 1990.

[14] L. Wasserman. Recent methodological advances in robust Bayesian inference. In J. M.
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics
4, pages 483-502. Oxford University Press, 1992.

[15] N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian network infer-
ence. Journal of Artificial Intelligence Research, pages 301-328, 1996.

