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Abstract— This paper addresses the problem of low-rank entries is possible thanks to the low-rank property which
distance matrix completion. This problem amounts to recove  models the redundancy between the available data.
the missing entries of a distance matrix when the dimensionfo A closely related problem is multidimensional scaling

the data embedding space is possibly unknown but small com- - o . .
pared to the number of considered data points. The focus is on (MDS) for which all pairwise distances are available up

high-dimensionaj prob|ems_ We recast the considered probm front. A Solution to th|S problem iS the CIaSSical mult|d|me
into an optimization problem over the set of low-rank positve  sional scaling algorithm (CMDS), which relies on singular
semidefinite matrices and propose two efficient algorithmsdr  value decomposition to find a globally optimum embedding
low-rank distance matrix completion. In addition, we propose — f fixad-rank. The CMDS algorithm minimizes the total
a strategy to determine the dimension of the embedding space . .
The resulting algorithms scale to high-dimensional problens quad_rat'c error on scalar product_s between datg pointerOth
and monotonically converge to a global solution of the prom. ~ algorithms have focused on variant cost functions, see the
Finally, numerical experiments illustrate the good performance  paper [9] for a survey in this area.
of the proposed algorithms on benchmarks. In contrast to the classical multidimensional scaling for-
mulation, the problem of Euclidean distance matrix com-
I. INTRODUCTION pletion involves missing distances. The problem can be
Completing the missing entries of a matrix under low-ranionsidered as a variant of multidimensional scaling proble
constraint is a fundamental and recurrent problem in marith binary weights [9], [10]. The low-rank distance matrix
modern engineering applications (see [1] and referenc€égmpletion problem is known to be NP-hard in general [11],
therein). Recently, the problem has gained much popularif§2], but convex relaxations have been proposed to render
thanks to collaborative filtering applications and the Nwetfl the problem tractable [13], [14]. Typical convex relaxago
challenge [2]. cast the EDM completion problem into a convex optimization
This paper focuses on an important variant of the protproblem on the set of pOSitiVe semidefinite matl’iX, reSgltin
lem, that is, completing the missing entries of a Euclidealt semidefinite programming techniques [15]. This convex
distance matrix (EDM) under low-rank constraint. Typicaformulation is nevertheless a large-scale problem whes
applications include data visualization [3], dimensidtyaie- ~ large.
duction in behavioral sciences and economics [4], molecula Mposing the rank constraint in the problem formulation
conformation problems [5], [6], just to name a few. is an appealing way of reducing the size of the search space.
A Euclidean distance matrilD € R™*" contains the However, it results in a non-convex optimization problem.
(squared) pairwise distances betweedata pointsy; € R”,  Although convergence results are o_nly local, the approach
i = 1,..,n. This matrix is symmetric and has a zeroPerforms wellin practice [16]. Both first-oder [17], [18]cn
diagonal. Its entries are non-negative and satisfy thagtea Second order [6], [19], [10], [20] optimization methods kav
inequality. These properties are readily verified by examgin b€en considered and heuristics for finding a good low-rank

the entries of the distance matrix, initialization have been proposed [20]. o
A difficulty encountered by second order optimization
D;; = |lyi — .Yj||§- algorithms is the intrinsic invariance properties of thaada

) ) ) representation due to rotations. This issue may indeed pre-
The setEDM(n) of n-by-n Euclidean distance matrices,ent second order optimization algorithms to converge.[21]
forms a convex cone which has a well-studied geometry (S&geral authors have resolved this issue at the extra cost
[7], [8], and references therein). One property of a Euelile ot ormalizing the data representation [10] or adding a
_dlstance matrix it is that, it is rank def|_C|ent. The ranklof penalization term to the objective function [19]. In thipea,
is upper bounded by+2 (and the rank is generically+2), e invariance to rotations is lifted in the problem forntide
which in many problems is very small compareditpthe 5 is free of additional computational cost (see Sectifn I

number of data points. S A survey of low-rank distance matrix completion algorithms
Given a set of pairwise distances or dissimilarities betwee; gy pe found in the recent papers [22], [20].

data points_, the goal of low-rank (_Jlistancg matrix com_pretio Although, the problem is not new and is well-studied, a
algorithms is to recover a full Euclidean distance matrotir 4 ctical limitation of most of existing algorithms is thhey
a restrictive set of given distances. Inference on the wwkno 5 ot scale to high-dimensional problems. Moreover, the
_ , o problem of choosing a priori an appropriate dimension for
The authors are with the Department of Electrical Engimgerand

Computer Science, University of Liege, Montefiore Ing&tuSart-Tilman, the dat‘? embedding is still a_n open r_es_earCh qu_eSt|0n'
4000 Liege, Belgium (e-mailgib.mishra, g.meyer, r.sepulch@ulg.ac.be). In this paper, the focus is on efficient algorithms that



scale to high-dimensional problems. Following a number In this paper, we consider the case where the global
of previous contributions in the literature, we recast theolutionX* of (2) is low-rank that is,

problem into an optimization problem over the set of low- N

rank (fixed-rank) positive semidefinite matrices. We adopt rank(X") =7 <n. ®)

the g.eomen:ic framework of Optimization over Riemanniarltollowing [24], we solve a sequence of nonconvex problems
matrix manifolds [23] and exploit recent results on low-of increasing dimension until the actual value of the rank
rank optimization for positive semidefinite matrices [2#]. s reached. Each nonconvex problem consists in solving the

particular, an efficient strategy for estimating the dimens  fo|lowing rank-constrained optimization problem
of the embedding space is proposed. The resulting algosithm

have linear complexity in the problem size and in the number min [|[H® (#(X) — D)%, st rank(X)=p. (4)

of available distances. Using the strategy for estimating

the optimal embedding dimension, the proposed algorithms By screening values frop = 1 to p = r, the results
converge monotonically to the global (low-rank) solutidn oPresented in [24] guarantee a monotonic convergence to a

the problem. solution of the original problem (2). The proposed strategy
The paper is organized as follow. Section Il presents tHf@r finding the actual rank is detailed in Section IV-C.
problem of interest and its different formulations. Seutit Problem (4) is solved efficiently by exploiting a low-rank

describes the chosen optimization framework and introsluc@arametrization of the search space. The proposed approach
the main geometrical objects required by our algorithm§!'n9?5 on the fe}ctthatany rapkpositive semidefinite matrix
Section IV is devoted to the design of efficient algorithm&dmits a factorization
for low-rank distance matrix completion. Finally, Sectigh X = vy”?
presents some numerical simulations. ’

whereY € RY*7 ={Y e R™*? : det(YTY) # 0}.

Il. LOW-RANK DISTANCE MATRIX COMPLETION To exploit this factorization, we adopt the geometric
Given a set of dissimilaritiesf)ij > 0 betweenn data framework of optimization on Riemannian manifolds [23].
points, distance matrix completion algorithms solve Basic concepts and notations are introduced in the next

section. See the book [23] for further details on optimiati

. ) (12
DeBDM(n) IH® (D - D), () on matrix manifolds and for a state-of-the-art in this area.
whereH is a symmetric matrix with binary entries and the 1. MANIFOLD-BASED OPTIMIZATION

operator® denotes elementwise multiplication. T is the

) oo SRS e An intrinsic property of the factorizatioX = YY7 is
set of given entrieg:, j) in D such thati < j, then

that it is invariant with respect to the transformation

H,, =Hj = Lo (i,j)_e b, Y — YQ,
0 otherwise.
whereQ € O(p) = {Q e RP*? : QTQ =QQT =1}.
The number of elements in the sét is denoted byd. This invariance property renders the minima of a cost

Although, d is at most equal ton(n — 1)/2, in most function f(YY7) not isolated. This issue is not harmful for
applications, it is of ordeO(nr), wherer is the optimal first order-methods such as gradient descent algorithms but
embedding dimension. Dissimilarities potentially diffesm  greatly affects the convergence properties of secondrorde
distances in that they are not required to satisfy trianglmethods [23], [21].
inequality. For instance, this takes into account the faatt  To circumvent this issue, we reformulate the problem of
observation noise could mak# different from a valid EDM. interest as an optimization problem on the quotient madifol

A convenient alternative formulation of (1) is to cast this A xp
problem into an optimization problem on the set of positive M= Sy (p,n) =R /O(p), (5)

semidefinite matrices [13]. The reformulation is given by which represents the set of equivalence classes

min [HO (x(X) - D), @ Y] ={YQ: Qe Op)} 6)
wherex is a mapping from the set of positive semidefiniteThe setS, (p,n) is the set of ranky symmetric positive
matrices to the set of Euclidean distance matrices semidefinite matrices of size, that is,

#(X) = Diag(X)1” + 1Diag(X)” — 2X. Si(p,n) ={X eR™" : X =X"T >0, rank(X) = p}.

The functionDiag(-) extracts the diagonal of its argument,This set has a rich Riemannian manifold geometry which
and1 denotes a vector with all entries equal to one. can be exploited for algorithmic purposes [25], [26], [27].

A practical advantage of (2) compared to (1) is that the Problem (4) is now reformulated as an unconstrained
rank of X identifies with the dimension of the embeddingoptimization problem over the set of equivalence classgs (6
space. When no restriction is imposed on the rankXof .
problem (2) is convex and thus presents a global solution. &?& FIYD, )



for the cost function Applying formula (10) to the cost (8) gives us the gradient
F(IY]) = |[HO (:(YY") = D)||3. 8 grad f(Y) = 2&"(HO (x(YY") = D))Y,  (11)

To develop optimization algorithms on the quotient manwherex*(A) is the adjoint operator of defined by
ifold, the space (5) is endowed with the Riemannian metric x*(A) = 2(Diag(A1) — A).

_ T
gy &y ny) = Tr(&yny),  &yiny € Ty M, Combining the gradient (11) with the retraction (9) gives us
which is inherited from the natural metric &>, With  the gradient descent algorithm
this metric, the tangent spadd, M at a given pointY is Y =Y, - 256" (HO (H(YthT) _ f)))Yt; (12)

decomposed into the sum of two complementary spaces,
wheres; > 0 is the gradient step size. We selegtusing

Iy M =VyMe&Hy M. the Armijo criterion [28], that is, a step size, that satisfies

The vertical spac@y M contains the set of directions that (v, — s, gradf(Y,)) < f(Y,) — csallgradf(Ye)|%,

are tangent to the set of equivalence classes (6), that is, _
wherec € (0, 1) is a constant (we choose the value- 0.5).

WM ={YQ: Q" = Qe RV} The asymptotic computational cost of an iteration (12) is
O(dp + np), whered is the number of known entries @.
The memory requirement &(dp+np). The computationally
most demanding step is the computation of the gradient,
HyM = {&y e RV? . (Y = YT ). which requiresO(dp) operations. This low computational
o ) complexity and memory requirement allows us to handle
With such a construction, the directions of interest can bgotentially large data sets. A drawback is however that the
restricted to horizontal directiorts,. Indeed, displacements gradient descent algorithm only guarantees a linear cenver
along vertical directions leave the cost function unchange gence rate. We can achieve a superlinear convergence rate by

The projection of a directio. ¢ R"*? onto the horizontal eans of a Riemannian trust-region algorithm which exgloit
space is given byly, (Z) = Z — Y2, whereQ2 € R”"? is  gacond-order information.

skew-symmetric and satisfies the Sylvester equation

The horizontal spacg{y M contains the directiongy that
are orthogonal to the set of equivalence classes,

B. Trust-region algorithm

T T _~Trp T
Y Y+Y' Y=Y Z-ZY. Trust-region algorithms sequentially solve the problem

Overall, projecting a directio® € R™*? onto the horizontal ) _ 1 _ _

space require)(np® + np + p®) operations (computing EG%LDMJC(Y) + gy (& grad f(Y)) + §9Y(57Hessf(Y)[§])v

matricesY?Y, YZZ, andYQ requiresO(np?) operations, ot (E.6) < o

solving the Sylvester equation is performedp®) opera- ATV A

tions and the projection requiré€¥(np) operations). which amounts to minimize a quadratic model of the cost
To update our search variable, we require a local mappirfgnction on a trust-region radius of size Once a search

from tangent space to the manifold. Such a mapping is calletirection¢ is identified, the search variable is updated as

a retraction. For the manifold of interest, a retraction is Yo = R (E 13

provided by the simple and efficient formula +1 = Ry, (§). (13)

The trust-region radiug vary according to the quality of

Ry(§y) =Y +&v. ©)  the iterate. When a good solution is found within the trust-
which gives a full-rank matrix for generic directigr;. region, then the trust-region is expanded. Converselydf t
iterate is poor then the region is contracted.
IV. ALGORITHMS More technical details on trust-region algorithms on Rie-

In this section, we exploit the concepts presented in th@annian manifolds can be found in [29], [23]. In this paper,
previous section to develop both a gradient descent ahgorit we adapt the generic implementation of the toolbox GenRTR

and a trust-region algorithm to solve (7). to our problem of interest.
) _ Trust-region algorithms require the computation of the
A. Gradient descent algorithm Riemannian Hessiaiiless f(Y)[7] in a given directions.

The gradient of a smooth cost functign M — R is the It is obtained as
unique tangent vectarradf(Y) € Ty M that satisfies Hess £(Y)[i7] £ V, grad f(Y)

gy &y, gradf(Y)) = Df(Y)[gy], Yoy € Ty M. (10) \ypere V;egrad f(Y) is the Riemannian connection of the
The quan“tny(Y)[é’Y] is the directional derivative Of gradient vector field in the direCtiOﬁ. Riemannian con-
in the directionéy, that is, nections generalize the notion of directional derivatifeao

. (Y +téy) — f(Y) 1The software can be downloaded from
Df(Y)[gY] = }1_% t : http://www.math.fsu.edu/ ~cbaker/GenRTR/




vector field to Riemannian manifolds. Given a vector figld and whereVx f(YYT) is the Euclidean gradient of the
on M that assigns to each poif € M a tangent vector convex cost functiorf(X) evaluated alY’ Y’ As we have
(y € Ty M, the directional derivative of atY € M in a B T

direction?; € Hy M is given by grad f(Yo) = Vx f(YoY;) Yo,

Cyttq — Cy

the proposed direction satisfies
—)

V, Gy = Iy <nm (14)
¥ \t—=0 %Tr(ZTDgrad f(Y)[Z]) =vISyv <o.

Applying this formula to the vector fieldrad f(Y) gives us The descent direction is exploited by performing a single

Hess f(Y)[7] = 21y, (5" (H® (k(Y7 T +7YT)))Y line-search step using the Armijo rule. The resulting iera
* Ty Te is then used as the initial condition for the optimization
eI HO k(YY) =D)n). algorithm that will solve the problem of rank+ 1.

The numerical cost of an iteration of the trust-region The procedure stops at the latest wher n. However,
algorithm isO(dp+np+np®+p?). The memory requirement in the setting of interest, problem (2) presents a low-rank
is also O(dp + np). The computational bottleneck is thesolution withr < n. We thus, expect the algorithm to stop
computation of the Hessian. Still, the complexity is lineamuch before reaching = n.
in both the number of available distance and in the problem For the proposed strategy it is important to reach a local
size. With a proper parameter tuning, the proposed trugfinimum of the cost function as long as< r. Although

region algorithm enjoys a superlinear convergence rate. in theory convergence to saddle points cannot be excluded
for gradient descent algorithms, the issue is not harmful

C. Srategy for estimating the optimal embedding dimension  in practice as saddle point are generally unstable from a

The following section is an adaptation of the materiaPUmerical point of view.
presented in [24] to the problem of interest. To identify the V. DISCUSSION
(unknown) rank- of the global solution to (2), we solve a se- . .
guence of nonconvex problems (7) of increasing dimension We propose both a gradient descent and a trust-region

The approximation rank is progressively incremented from ?rli?(og?nm Ifeqtiroiowlzglttaﬁ f'_:_(ﬁg'ﬁnnfelzr;(;;ds:; dl:trairt]gfatrirzji_
p=110p=r Using a warm restart strategy for movingfor the pradientpdescen-t algorithm @&(d ; Versus
from one value ofp to the next, we are able to propose a 9 2, 3 9 . (dp * np)
. . (dp+np+np*+p°) for the trust region algorithm. Although
descent algorithm that converges monotonically to a glob : : .
e gradient descent algorithm has a smaller computational

solution of the original problem (4). : . . . :
. - . . : . cost per iteration, the number of iterations required tahea
This strategy efficiently exploits the previous iteratiais L . .
nvergence is higher than for the trust-region algorithm.

the algorithm as opposed to earlier heuristic methods th&?
g PP We thus recommend the trust-region algorithm when a
use random restart for each value of the rank [30].

: . . high optimization accuracy is required or when the obser-
For a given rank < r, the trust-region or gradient descent ~. S .
. : ST vation noise is small. The gradient descent approach should
algorithm gives us a local minimizeY ; of the nonconvex

problem (7). Let us consider the following initial conditio be.pre_fequr.ef] for vhgry Iarge proble_ms Whﬁre the_ obse.rvat|0n
for the problem of ranky + 1, noise is high. In this setting, one is usually not interested

a solution of high-accuracy, since it generally compromise

Y, = [Y;|()nxl], the generalization performance.
that is, Y, with an additional zero column appended. Since VI. NUMERICAL EXPERIMENTS
Y is local minimizer for rankp, we have thatY, is a In this section, we evaluate the performance of the pro-

critical point for the problem of rank+1. As Y is not the posed algorithms on benchmarks. A MATLAB implementa-
sought solution to (2), this means th¥, is a saddle point tion is available from the first author’s webpage.
for the problem of rankp + 1. Therefore, by virtue of the

second order KKT optimality conditions, there must exists ﬁ‘ A visual eample
descent directior¥, € R™*? such that This example is adapted from [22]. Consider= 121 data

1 points arranged in &-dimensional helix structure defined by
~Tr(Z" Dgrad f(Yo)[Z]) < 0.
g (2" Derad f(Yo)[2]) < (2,9, 2) = (4cos(3t), 4sin(3t),2t), 0<t< 2.

To escape from the saddle point, we can thus exploit the afier computing the distance matrix of between these
following descent direction points, we randomly remov&% of the distances uniformly

Z = [0"*P|v] and at random to generate a dissimilarity mafidx From
’ 15% of distances the goal is to reconstruct the helix structure.

wherev is the eigenvector associated to the smallest alg&Ve run the algorithms with the rank incremental strategy dis
braic eigenvalue of cussed in Section (IV-C). Both algorithms recover corsectl

Sy = VXf(Y;Y;T), (15) 2http:/Avww.montefiore.ulg.ac.be/ ~mishra



the helix structure (Figure 1). We only display the resudts f

VIl. CONCLUSION

gradient descent as it coincides with the results of the-trus |, this paper two efficient numerical optimization algo-
region algorithm. The algorithms stop when the relative ofithms have been presented for the distance matrix comple-

absolute variation of the cost function drops belodv°.

o Gradient descent
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Fig. 1. The proposed algorithms correctly recover the 30xhsttucture

form 15% of the complete set of pairwise distances.

tion problem. In particular, the algorithms do not requing a
prior notion about the embedding and can potentially handle
very large data sets. The proposed algorithms stem from a
geometric view of the problem formulation. This interpreta
tion as a manifold-based optimization problem considgrabl
reduced the computational burden. At the same we were
able to devise a superlinearly converging scheme namely,
the trust-region algorithm in addition to the linearly cenv
gent gradient descent algorithm. The numerical experiment
that have been performed, are very encouraging on various
parameters.
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B. Trust-region versus gradient descent

To compare the two versions of the algorithm, we generate
a random distance matrix (1]

D* = k(Y Y*T), 16
K( ) (16) 2

where Y* € R%%0%3 has entries distributed according to [3]
gaussian distribution with zero mean and unit standard
deviation. The fraction of unknown distances is fixed atg
85%. We run the algorithms without knowing the embedding
dimension. The stopping criterion is the same as for thd®
previous experiment. The objective function is plottediasfa

the number of iterations (Figures 2(a) and 2(b)). Both algo{6]
rithms recover the correct configuration and dimensiopalit
The total number of iterations to reach convergencéss (7]
for the trust-region and53 for the gradient descent. Observe
the monotonic convergence of both algorithms to the sough[f;]
solution.

C. Saling test

We now evaluate our algorithms on larger random da
sets. We vary the problem size from 1000 to 10000. For
eachn, we generate a random distance matrix according to
(16) with Y* € R™**. We sample).1 fraction of the total [11]
amount of distances and the algorithms are run by fixing
the embedding dimensiop,= 4. Results are averaged over[12]
10 runs. The test has been performed on a single core Intel
L5420 2.5 GHz with 5GB of RAM.

The time taken and number of iterations required to readhs3]
convergence is reported at Figure 3(a) and 3(b) respegtivel
For instance, forn = 10000 the number of known distances
is about5 millions (10% of 50 million total entries). The [14]
gradient descent algorithm takes ab®® iterations and 31
minutes, while the trust region algorithm solves the proble [15]
in 30 iterations andl8 minutes.

El
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REFERENCES

E. J. Candes and B. Recht, “Exact matrix completion viavex
optimization,” Foundations of Computational Mathematics, vol. 9,
no. 6, pp. 717-772, Dec. 2009.

“The Netflix prize.” [Online]. Available: http://www.stflixprize.com/
A. Morrison, G. Ross, and M. Chalmers, “Fast multidimensl
scaling through sampling, springs and interpolatioivformation
Visualization, vol. 2, no. 1, pp. 68-77, 2003.

I. Borg and P. J. GroenermModern multidimensional scaling : theory
and applications, ser. Springer series in Statistics. Springer, 1997.

] J. More and Z. Wu, “Distance geometry optimization forofgin

structures,”Journal of Global Optimization, vol. 15, no. 3, pp. 219—
234, Oct. 1999.

W. Glunt, T. Hayden, and M. Rayden, “Molecular confirnoais from
distance matricesJournal of Computational Chemistry, vol. 14, pp.
114-120, 1993.

J. Dattorro,Convex optimization & Euclidean distance geometry. PO
Box 12, Palo Alto, CA 94302: Meboo Publishing USA, 2005.

A. Y. Alfakih, “On the uniqueness of Euclidean distanceatnx
completions: the case of points in general positidrifiear Algebra
Applications, vol. 397, pp. 265-277, 2005.

J. D. Leeuw, “Multidimensional scaling,” Department Statistics,
UCLA, Tech. Rep., 2001. [Online]. Available: http://préys.stat.
ucla.edu/274/274.pdf

A. Kearsley, R. Tapia, and M. Trosset, “The solution bé tmetric
stress and sstress problems in multidimensional scalinfydwton’s
method,” Computational Satistics, vol. 13, no. 3, pp. 369-396, 1998.
M. Laurent, “A connection between positive semideéniénd Eu-
clidean distance matrix completion problem&jnear Algebra and
its Applications, vol. 273, pp. 9-22, 1998.

H.-X. Huang, Z.-A. Liang, and P. M. Pardalos, “Some prujes
for the Euclidean distance matrix and positive semidefimitatrix
completion problems,Journal of Global Optimization, vol. 25, pp.
3-21, January 2003.

A. Alfakih, A. Khandani, and H. Wolkowicz, “Solving Elidean
distance matrix completion problems via semidefinite progning,”
Computational Optimization and Applications, vol. 12, no. 1-3, pp.
13-30, Jan. 1999.

L. Cayton and S. Dasgupta, “Robust Euclidean embeddingPro-
ceedings of the 23rd international conference on Machine learning,
2006.

S. Boyd and L. Vandenbergh&onvex optimization.
University Press, March 2004.

Cambridge



2 Rank 3

Rank
50 50 2 3
—Gradient descent — Trust—region

40
[ c
.© anl O
3 30 L g
= =
@ ol @
S 3

101 10F

0 L L L 0 L L \ J
0 100 200 300 400 500 0 50 100 150 200
Number of iterations Number of iterations
(@ (b)
Fig. 2. Convergence plots of the algorithms.
40 T T T 200— T T T
—»—Gradient descent Il Gradient descent

35| —©—Trust-region ] Il Trust-region

30t " 150+ b
2 5
g 251 E
p g
f“E 20r “E 100

[}

£ 15/ £
F z

10r 50

5,

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Problem size

@

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
Problem size

(b)

Fig. 3. Analysis of the proposed algorithms on randomly geteel datasets.

[16] M. W. Trosset, “Distance matrix completion by numeticptimiza-
tion,” Comput. Optim. Appl., vol. 17, pp. 11-22, October 2000.

J. Kruskal, “Multidimensional scaling by optimizingogdness of fit
to a nonmetric hypothesisPsychometrika, vol. 29, no. 1, pp. 1-27,
March 1964.

A. Buja and D. F. Swayne, ‘Interactive data visualieati
with multidimensional scaling,” Department of StatisticStanford
University, Tech. Rep., March 2004. [Online]. Availablettph
[www-stat.stanford.edu¥@imstibs/sta306b/buja. pdf

P. Tarazaga and M. W. Trosset, “An optimization problemsubsets of
the symmetric positive-semidefinite matricedgtirnal of Optimization
Theory and Applications, vol. 79, pp. 513-524, 1993.

H. Fang and D. P. Oleary, “Euclidean distance matrix plation
problems,” June 2010.

P. A. Absil, M. Ishteva, L. De Lathauwer, and S. Van HUfféA
geometric Newton method for Oja’s vector fieltheural Computation,
vol. 21, no. 5, pp. 1415-1433, May 2009.

D. I. Chu, H. C. Brown, and M. T. Chu, “On least squares li€igan
distance matrix approximation and completion,” Departmer
Mathematics, North Carolina State University, Tech. Re}003.
[Online]. Available: http://www4.ncsu.edumtchu/Research/Papers/
distance03.pdf

P.-A. Absil, R. Mahony, and R. Sepulchr®ptimization Algorithms
on Matrix Manifolds. Princeton University Press, 2008.

[24] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre, Wk@nk

[17] [25]

(18]
[26]

[19] [27]

[20] [28]

[21] [29]

[22] [30]

(23]

optimization on the cone of positive semidefinite matricedAM

Journal on Optimization, vol. 20, no. 5, pp. 2327-2351, 2010.

B. Vandereycken, P.-A. Absil, and S. Vandewalle, “Emitbed geom-
etry of the set of symmetric positive semidefinite matricédixed

rank,” in Proceedings of the IEEE 15th Workshop on Statistical Sgnal

Processing, 2009, pp. 389-392.

S. Bonnabel and R. Sepulchre, “Riemannian metric anaimgtric
mean for positive semidefinite matrices of fixed rarff® AM J. Matrix

Anal. Appl., vol. 31, pp. 1055-1070, August 2009.

G. Meyer, S. Bonnabel, and R. Sepulchre, “Regressioffixaal-rank
positive semidefinite matrices: a riemannian approadbyirnal of

Machine Learning Research, vol. 12 (Feb), 2010.

J. Nocedal and S. J. Wrightyumerical Optimization, 2nd ed. New
York: Springer, 2006.

P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-riegn methods on
riemannian manifolds,’Foundations of Computational Mathematics,

vol. 7, no. 3, pp. 303-330, 2007.

S. Burer and R. Monteiro, “A nonlinear programming aitfam for

solving semidefinite programs via low-rank factorizatioklathemat-

ical Programming, vol. 95, no. 2, pp. 329-357, Feb. 2003.



