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Abstract— This paper addresses the problem of low-rank
distance matrix completion. This problem amounts to recover
the missing entries of a distance matrix when the dimension of
the data embedding space is possibly unknown but small com-
pared to the number of considered data points. The focus is on
high-dimensional problems. We recast the considered problem
into an optimization problem over the set of low-rank positive
semidefinite matrices and propose two efficient algorithms for
low-rank distance matrix completion. In addition, we propose
a strategy to determine the dimension of the embedding space.
The resulting algorithms scale to high-dimensional problems
and monotonically converge to a global solution of the problem.
Finally, numerical experiments illustrate the good performance
of the proposed algorithms on benchmarks.

I. INTRODUCTION

Completing the missing entries of a matrix under low-rank
constraint is a fundamental and recurrent problem in many
modern engineering applications (see [1] and references
therein). Recently, the problem has gained much popularity
thanks to collaborative filtering applications and the Netflix
challenge [2].

This paper focuses on an important variant of the prob-
lem, that is, completing the missing entries of a Euclidean
distance matrix (EDM) under low-rank constraint. Typical
applications include data visualization [3], dimensionality re-
duction in behavioral sciences and economics [4], molecular
conformation problems [5], [6], just to name a few.

A Euclidean distance matrixD ∈ R
n×n contains the

(squared) pairwise distances betweenn data pointsyi ∈ R
r,

i = 1, ..., n. This matrix is symmetric and has a zero
diagonal. Its entries are non-negative and satisfy the triangle
inequality. These properties are readily verified by examining
the entries of the distance matrix,

Dij = ‖yi − yj‖
2
2.

The setEDM(n) of n-by-n Euclidean distance matrices
forms a convex cone which has a well-studied geometry (see
[7], [8], and references therein). One property of a Euclidean
distance matrix it is that, it is rank deficient. The rank ofD

is upper bounded byr+2 (and the rank is genericallyr+2),
which in many problems is very small compared ton, the
number of data points.

Given a set of pairwise distances or dissimilarities between
data points, the goal of low-rank distance matrix completion
algorithms is to recover a full Euclidean distance matrix from
a restrictive set of given distances. Inference on the unknown
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entries is possible thanks to the low-rank property which
models the redundancy between the available data.

A closely related problem is multidimensional scaling
(MDS) for which all pairwise distances are available up
front. A solution to this problem is the classical multidimen-
sional scaling algorithm (CMDS), which relies on singular
value decomposition to find a globally optimum embedding
of fixed-rank. The CMDS algorithm minimizes the total
quadratic error on scalar products between data points. Other
algorithms have focused on variant cost functions, see the
paper [9] for a survey in this area.

In contrast to the classical multidimensional scaling for-
mulation, the problem of Euclidean distance matrix com-
pletion involves missing distances. The problem can be
considered as a variant of multidimensional scaling problem
with binary weights [9], [10]. The low-rank distance matrix
completion problem is known to be NP-hard in general [11],
[12], but convex relaxations have been proposed to render
the problem tractable [13], [14]. Typical convex relaxations
cast the EDM completion problem into a convex optimization
problem on the set of positive semidefinite matrix, resulting
in semidefinite programming techniques [15]. This convex
formulation is nevertheless a large-scale problem whenn is
large.

Imposing the rank constraint in the problem formulation
is an appealing way of reducing the size of the search space.
However, it results in a non-convex optimization problem.
Although convergence results are only local, the approach
performs well in practice [16]. Both first-oder [17], [18] and
second order [6], [19], [10], [20] optimization methods have
been considered and heuristics for finding a good low-rank
initialization have been proposed [20].

A difficulty encountered by second order optimization
algorithms is the intrinsic invariance properties of the data
representation due to rotations. This issue may indeed pre-
vent second order optimization algorithms to converge [21].
Several authors have resolved this issue at the extra cost
of normalizing the data representation [10] or adding a
penalization term to the objective function [19]. In this paper,
the invariance to rotations is lifted in the problem formulation
and is free of additional computational cost (see Section III).
A survey of low-rank distance matrix completion algorithms
can be found in the recent papers [22], [20].

Although, the problem is not new and is well-studied, a
practical limitation of most of existing algorithms is thatthey
do not scale to high-dimensional problems. Moreover, the
problem of choosing a priori an appropriate dimension for
the data embedding is still an open research question.

In this paper, the focus is on efficient algorithms that



scale to high-dimensional problems. Following a number
of previous contributions in the literature, we recast the
problem into an optimization problem over the set of low-
rank (fixed-rank) positive semidefinite matrices. We adopt
the geometric framework of optimization over Riemannian
matrix manifolds [23] and exploit recent results on low-
rank optimization for positive semidefinite matrices [24].In
particular, an efficient strategy for estimating the dimension
of the embedding space is proposed. The resulting algorithms
have linear complexity in the problem size and in the number
of available distances. Using the strategy for estimating
the optimal embedding dimension, the proposed algorithms
converge monotonically to the global (low-rank) solution of
the problem.

The paper is organized as follow. Section II presents the
problem of interest and its different formulations. Section III
describes the chosen optimization framework and introduces
the main geometrical objects required by our algorithms.
Section IV is devoted to the design of efficient algorithms
for low-rank distance matrix completion. Finally, SectionVI
presents some numerical simulations.

II. LOW-RANK DISTANCE MATRIX COMPLETION

Given a set of dissimilarities̃Dij ≥ 0 betweenn data
points, distance matrix completion algorithms solve

min
D∈EDM(n)

‖H⊙ (D− D̃)‖2F , (1)

whereH is a symmetric matrix with binary entries and the
operator⊙ denotes elementwise multiplication. IfD is the
set of given entries(i, j) in D̃ such thati < j, then

Hij = Hji =

{
1 if (i, j) ∈ D,

0 otherwise.

The number of elements in the setD is denoted byd.
Although, d is at most equal ton(n − 1)/2, in most
applications, it is of orderO(nr), where r is the optimal
embedding dimension. Dissimilarities potentially differfrom
distances in that they are not required to satisfy triangle
inequality. For instance, this takes into account the fact that
observation noise could makẽD different from a valid EDM.

A convenient alternative formulation of (1) is to cast this
problem into an optimization problem on the set of positive
semidefinite matrices [13]. The reformulation is given by

min
X�0

‖H⊙ (κ(X)− D̃)‖2F , (2)

whereκ is a mapping from the set of positive semidefinite
matrices to the set of Euclidean distance matrices

κ(X) = Diag(X)1T + 1Diag(X)T − 2X.

The functionDiag(·) extracts the diagonal of its argument,
and1 denotes a vector with all entries equal to one.

A practical advantage of (2) compared to (1) is that the
rank of X identifies with the dimension of the embedding
space. When no restriction is imposed on the rank ofX,
problem (2) is convex and thus presents a global solution.

In this paper, we consider the case where the global
solutionX⋆ of (2) is low-rank that is,

rank(X⋆) = r ≪ n. (3)

Following [24], we solve a sequence of nonconvex problems
of increasing dimension until the actual value of the rankr
is reached. Each nonconvex problem consists in solving the
following rank-constrained optimization problem

min
X�0

‖H⊙ (κ(X) − D̃)‖2F , s.t. rank(X) = p. (4)

By screening values fromp = 1 to p = r, the results
presented in [24] guarantee a monotonic convergence to a
solution of the original problem (2). The proposed strategy
for finding the actual rankr is detailed in Section IV-C.

Problem (4) is solved efficiently by exploiting a low-rank
parametrization of the search space. The proposed approach
hinges on the fact that any rank-p positive semidefinite matrix
admits a factorization

X = YYT ,

whereY ∈ R
n×p
∗ = {Y ∈ R

n×p : det(YTY) 6= 0}.
To exploit this factorization, we adopt the geometric

framework of optimization on Riemannian manifolds [23].
Basic concepts and notations are introduced in the next
section. See the book [23] for further details on optimization
on matrix manifolds and for a state-of-the-art in this area.

III. MANIFOLD-BASED OPTIMIZATION

An intrinsic property of the factorizationX = YYT is
that it is invariant with respect to the transformation

Y 7→ YQ,

whereQ ∈ O(p) = {Q ∈ R
p×p : QTQ = QQT = I}.

This invariance property renders the minima of a cost
functionf(YYT ) not isolated. This issue is not harmful for
first order-methods such as gradient descent algorithms but
greatly affects the convergence properties of second-order
methods [23], [21].

To circumvent this issue, we reformulate the problem of
interest as an optimization problem on the quotient manifold

M , S+(p, n) ≃ R
n×p
∗ /O(p), (5)

which represents the set of equivalence classes

[Y] = {YQ : Q ∈ O(p)}. (6)

The setS+(p, n) is the set of rank-p symmetric positive
semidefinite matrices of sizen, that is,

S+(p, n) = {X ∈ R
n×n : X = XT � 0, rank(X) = p}.

This set has a rich Riemannian manifold geometry which
can be exploited for algorithmic purposes [25], [26], [27].

Problem (4) is now reformulated as an unconstrained
optimization problem over the set of equivalence classes (6),

min
[Y]∈M

f([Y]), (7)



for the cost function

f([Y]) = ‖H⊙ (κ(YYT )− D̃)‖2F . (8)

To develop optimization algorithms on the quotient man-
ifold, the space (5) is endowed with the Riemannian metric

gY(ξY, ηY) = Tr(ξ T
Y
ηY), ξY, ηY ∈ TYM,

which is inherited from the natural metric ofRn×p. With
this metric, the tangent spaceTYM at a given pointY is
decomposed into the sum of two complementary spaces,

TYM = VYM⊕HYM.

The vertical spaceVYM contains the set of directions that
are tangent to the set of equivalence classes (6), that is,

VYM = {YΩ : ΩT = −Ω ∈ R
p×p}.

The horizontal spaceHYM contains the directions̄ξY that
are orthogonal to the set of equivalence classes,

HYM = {ξ̄Y ∈ R
n×p : ξ̄ T

Y
Y = YT ξ̄Y}.

With such a construction, the directions of interest can be
restricted to horizontal directions̄ξY. Indeed, displacements
along vertical directions leave the cost function unchanged.

The projection of a directionZ ∈ R
n×p onto the horizontal

space is given byΠHY
(Z) = Z−YΩ, whereΩ ∈ R

p×p is
skew-symmetric and satisfies the Sylvester equation

ΩYTY +YTYΩ = YTZ− ZTY.

Overall, projecting a directionZ ∈ R
n×p onto the horizontal

space requiresO(np2 + np + p3) operations (computing
matricesYTY, YTZ, andYΩ requiresO(np2) operations,
solving the Sylvester equation is performed inO(p3) opera-
tions and the projection requiresO(np) operations).

To update our search variable, we require a local mapping
from tangent space to the manifold. Such a mapping is called
a retraction. For the manifold of interest, a retraction is
provided by the simple and efficient formula

RY(ξ̄Y) = Y + ξ̄Y. (9)

which gives a full-rank matrix for generic direction̄ξY.

IV. ALGORITHMS

In this section, we exploit the concepts presented in the
previous section to develop both a gradient descent algorithm
and a trust-region algorithm to solve (7).

A. Gradient descent algorithm

The gradient of a smooth cost functionf : M → R is the
unique tangent vectorgradf(Y) ∈ TYM that satisfies

gY(ξY, gradf(Y)) = Df(Y)[ξY ], ∀ξY ∈ TYM. (10)

The quantityDf(Y)[ξY] is the directional derivative off
in the directionξY, that is,

Df(Y)[ξY ] = lim
t→0

f(Y + tξY)− f(Y)

t
.

Applying formula (10) to the cost (8) gives us the gradient

gradf(Y) = 2κ∗(H⊙ (κ(YYT )− D̃))Y, (11)

whereκ∗(A) is the adjoint operator ofκ defined by

κ∗(A) = 2(Diag(A1)−A).

Combining the gradient (11) with the retraction (9) gives us
the gradient descent algorithm

Yt+1 = Yt − 2stκ
∗(H⊙ (κ(YtY

T
t )− D̃))Yt, (12)

wherest > 0 is the gradient step size. We selectst using
the Armijo criterion [28], that is, a step sizesA that satisfies

f(Yt − sA gradf(Yt)) ≤ f(Yt)− c sA‖gradf(Yt)‖
2
F ,

wherec ∈ (0, 1) is a constant (we choose the valuec = 0.5).
The asymptotic computational cost of an iteration (12) is

O(dp+ np), whered is the number of known entries of̃D.
The memory requirement isO(dp+np). The computationally
most demanding step is the computation of the gradient,
which requiresO(dp) operations. This low computational
complexity and memory requirement allows us to handle
potentially large data sets. A drawback is however that the
gradient descent algorithm only guarantees a linear conver-
gence rate. We can achieve a superlinear convergence rate by
means of a Riemannian trust-region algorithm which exploits
second-order information.

B. Trust-region algorithm

Trust-region algorithms sequentially solve the problem

min
ξ̄∈HYM

f(Y) + gY(ξ̄, grad f(Y)) +
1

2
gY(ξ̄,Hess f(Y)[ξ̄]),

s.t. gY(ξ̄, ξ̄) ≤ δ2,

which amounts to minimize a quadratic model of the cost
function on a trust-region radius of sizeδ. Once a search
direction ξ̄ is identified, the search variable is updated as

Yt+1 = RYt
(ξ̄). (13)

The trust-region radiusδ vary according to the quality of
the iterate. When a good solution is found within the trust-
region, then the trust-region is expanded. Conversely, if the
iterate is poor then the region is contracted.

More technical details on trust-region algorithms on Rie-
mannian manifolds can be found in [29], [23]. In this paper,
we adapt the generic implementation of the toolbox GenRTR
to our problem of interest.1

Trust-region algorithms require the computation of the
Riemannian HessianHess f(Y)[η̄] in a given directionη̄.
It is obtained as

Hess f(Y)[η̄] , ∇η̄ grad f(Y)

where∇η̄ gradf(Y) is the Riemannian connection of the
gradient vector field in the direction̄η. Riemannian con-
nections generalize the notion of directional derivative of a

1The software can be downloaded from
http://www.math.fsu.edu/ ˜ cbaker/GenRTR/



vector field to Riemannian manifolds. Given a vector fieldζ
on M that assigns to each pointY ∈ M a tangent vector
ζY ∈ TYM, the directional derivative ofζ at Y ∈ M in a
direction η̄ ∈ HYM is given by

∇η̄ ζY = ΠHY

(
lim
t→0

ζY+tη̄ − ζY
t

)
. (14)

Applying this formula to the vector fieldgradf(Y) gives us

Hess f(Y)[η̄] = 2ΠHY
(κ∗(H⊙ (κ(Yη̄ T + η̄YT )))Y

+ κ∗(H⊙ (κ(YYT )− D̃))η̄).

The numerical cost of an iteration of the trust-region
algorithm isO(dp+np+np2+p3). The memory requirement
is also O(dp + np). The computational bottleneck is the
computation of the Hessian. Still, the complexity is linear
in both the number of available distance and in the problem
size. With a proper parameter tuning, the proposed trust-
region algorithm enjoys a superlinear convergence rate.

C. Strategy for estimating the optimal embedding dimension

The following section is an adaptation of the material
presented in [24] to the problem of interest. To identify the
(unknown) rankr of the global solution to (2), we solve a se-
quence of nonconvex problems (7) of increasing dimension.
The approximation rankp is progressively incremented from
p = 1 to p = r. Using a warm restart strategy for moving
from one value ofp to the next, we are able to propose a
descent algorithm that converges monotonically to a global
solution of the original problem (4).

This strategy efficiently exploits the previous iterationsof
the algorithm as opposed to earlier heuristic methods that
use random restart for each value of the rank [30].

For a given rankp < r, the trust-region or gradient descent
algorithm gives us a local minimizerY⋆

p of the nonconvex
problem (7). Let us consider the following initial condition
for the problem of rankp+ 1,

Y0 = [Y⋆
p|0

n×1],

that is,Y⋆
p with an additional zero column appended. Since

Y⋆
p is local minimizer for rankp, we have thatY0 is a

critical point for the problem of rankp+1. As Y⋆
p is not the

sought solution to (2), this means thatY0 is a saddle point
for the problem of rankp + 1. Therefore, by virtue of the
second order KKT optimality conditions, there must exists a
descent directionZ ∈ R

n×p such that

1

2
Tr(ZTDgradf(Y0)[Z]) ≤ 0.

To escape from the saddle point, we can thus exploit the
following descent direction

Z = [0n×p|v],

wherev is the eigenvector associated to the smallest alge-
braic eigenvalue of

SY = ∇Xf(Y⋆
pY

⋆T
p ), (15)

and where∇Xf(YYT ) is the Euclidean gradient of the
convex cost functionf(X) evaluated atYYT . As we have

gradf(Y0) = ∇Xf(Y0Y
T
0 )Y0,

the proposed direction satisfies

1

2
Tr(ZTDgrad f(Y0)[Z]) = vTSY v ≤ 0.

The descent direction is exploited by performing a single
line-search step using the Armijo rule. The resulting iterate
is then used as the initial condition for the optimization
algorithm that will solve the problem of rankp+ 1.

The procedure stops at the latest whenp = n. However,
in the setting of interest, problem (2) presents a low-rank
solution withr ≪ n. We thus, expect the algorithm to stop
much before reachingp = n.

For the proposed strategy it is important to reach a local
minimum of the cost function as long asp < r. Although
in theory convergence to saddle points cannot be excluded
for gradient descent algorithms, the issue is not harmful
in practice as saddle point are generally unstable from a
numerical point of view.

V. DISCUSSION

We propose both a gradient descent and a trust-region
algorithm for solving the fixed-rank Euclidean distance ma-
trix completion problem. The numerical cost per iteration
for the gradient descent algorithm isO(dp + np) versus
O(dp+np+np2+p3) for the trust region algorithm. Although
the gradient descent algorithm has a smaller computational
cost per iteration, the number of iterations required to reach
convergence is higher than for the trust-region algorithm.

We thus recommend the trust-region algorithm when a
high optimization accuracy is required or when the obser-
vation noise is small. The gradient descent approach should
be preferred for very large problems where the observation
noise is high. In this setting, one is usually not interestedin
a solution of high-accuracy, since it generally compromises
the generalization performance.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed algorithms on benchmarks. A MATLAB implementa-
tion is available from the first author’s webpage.2

A. A visual example

This example is adapted from [22]. Considern = 121 data
points arranged in a3-dimensional helix structure defined by

(x, y, z) = (4 cos(3t), 4 sin(3t), 2t), 0 ≤ t ≤ 2π.

After computing the distance matrix of between these
points, we randomly remove85% of the distances uniformly
and at random to generate a dissimilarity matrixD̃. From
15% of distances the goal is to reconstruct the helix structure.
We run the algorithms with the rank incremental strategy dis-
cussed in Section (IV-C). Both algorithms recover correctly

2http://www.montefiore.ulg.ac.be/ ˜ mishra



the helix structure (Figure 1). We only display the results for
gradient descent as it coincides with the results of the trust-
region algorithm. The algorithms stop when the relative or
absolute variation of the cost function drops below10−5.
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Fig. 1. The proposed algorithms correctly recover the 3D helix structure
form 15% of the complete set of pairwise distances.

B. Trust-region versus gradient descent

To compare the two versions of the algorithm, we generate
a random distance matrix

D⋆ = κ(Y⋆Y⋆T ), (16)

where Y⋆ ∈ R
500×3 has entries distributed according to

gaussian distribution with zero mean and unit standard
deviation. The fraction of unknown distances is fixed at
85%. We run the algorithms without knowing the embedding
dimension. The stopping criterion is the same as for the
previous experiment. The objective function is plotted against
the number of iterations (Figures 2(a) and 2(b)). Both algo-
rithms recover the correct configuration and dimensionality.
The total number of iterations to reach convergence is156
for the trust-region and453 for the gradient descent. Observe
the monotonic convergence of both algorithms to the sought
solution.

C. Scaling test

We now evaluate our algorithms on larger random data
sets. We vary the problem sizen from 1000 to 10000. For
eachn, we generate a random distance matrix according to
(16) with Y⋆ ∈ R

n×4. We sample0.1 fraction of the total
amount of distances and the algorithms are run by fixing
the embedding dimension,p = 4. Results are averaged over
10 runs. The test has been performed on a single core Intel
L5420 2.5 GHz with 5GB of RAM.

The time taken and number of iterations required to reach
convergence is reported at Figure 3(a) and 3(b) respectively.
For instance, forn = 10000 the number of known distances
is about5 millions (10% of 50 million total entries). The
gradient descent algorithm takes about120 iterations and 31
minutes, while the trust region algorithm solves the problem
in 30 iterations and18 minutes.

VII. CONCLUSION

In this paper two efficient numerical optimization algo-
rithms have been presented for the distance matrix comple-
tion problem. In particular, the algorithms do not require any
prior notion about the embedding and can potentially handle
very large data sets. The proposed algorithms stem from a
geometric view of the problem formulation. This interpreta-
tion as a manifold-based optimization problem considerably
reduced the computational burden. At the same we were
able to devise a superlinearly converging scheme namely,
the trust-region algorithm in addition to the linearly conver-
gent gradient descent algorithm. The numerical experiments
that have been performed, are very encouraging on various
parameters.
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