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From Rubik’s to cryptography
A tour of computational challenges in the field

Christophe Petit
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Mary Stuart, Queen of Scots

I Born on Dec 8th, 1542

I Queen of Scots on Dec 14th

I 1558 : marries François II of
France, who dies in 1560

I 1565 : marries Lord Darnley, who
is murdered in 1567

I 1567 : marries James Hepburn

I 1567 : forced to abdicate, she
flies to England
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The Babington Plot

I Mary is made captive by her
cousin Queen Elisabeth

I Contacted by Babington to
conspire against Queen Elisabeth

I They encipher their
correspondence to keep it secret

I Conspiracy suspected but Queen
Elisabeth needs proofs
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A good cipher or the Death

I Principal secretary Walsingham,
also chief of intelligence services,
puts Thomas Phelippes on duty
to break Mary’s code

I Mary’s life now relies on the
strength of her cipher. . .
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Outline

Elliptic curve cryptography

Hash functions and the Rubik’s cube

Side-channel attacks
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Cryptography

I Cryptos = secret, hidden ; graphein = writing
I Securing communication in the presence of adversaries

I Confidentiality
I Data integrity
I Authentication
I Non-repudiation

I Building blocks : encryption, MACs, signature, . . .

I Many applications today : ATM cards, computer
passwords, electronic commerce, electronic voting,. . .
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Cryptography Wall of Fame

I Julius Caesar

I Abu al-Kindi

I Blaise de Vigenère

I Charles Babagge

I Auguste Kerckhoffs (ULG !)

I Claude Shannon

I Alan Turing

I Whitfield Diffie and Martin Hellman

I Ronald Rivest, Adi Shamir and Leonard Adleman

I Neal Koblitz and Victor Miller

I . . .
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How to “prove” security ?

I In cryptography, proofs are never absolute

I Typical theorem :
If Computational problem A is hard,
then Attack B against protocol C is hard as well

I Pro : can focus on studying Problem A

I Contra : only considers Attack B

I Contra : only meaningful if Problem A is hard

I Good news : some computational problems seem hard
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Popular cryptographic “hard problems”

I Integer factorization (IFP)
Given n = pq where p and q are two large primes,
find p and q

I Discrete logarithm (DLP)
Given a large prime p, given g , h < p,
find k such that h = g k mod p

I Elliptic curve discrete logarithm (ECDLP)
Similar as DLP but multiplicative group of a finite field
replaced by group of points of an elliptic curve (see below)
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Additional cryptographic assumptions

I AES is a “good pseudorandom permutation”

I SHA-2 is a “good hash function” (see below)

I Lattice problems, coding theory problems,
solving polynomial systems of equations

I Many variants of previous problems

I . . .



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 11

Additional cryptographic assumptions

I AES is a “good pseudorandom permutation”

I SHA-2 is a “good hash function” (see below)

I Lattice problems, coding theory problems,
solving polynomial systems of equations

I Many variants of previous problems

I . . .



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 11

Additional cryptographic assumptions

I AES is a “good pseudorandom permutation”

I SHA-2 is a “good hash function” (see below)

I Lattice problems, coding theory problems,
solving polynomial systems of equations

I Many variants of previous problems

I . . .



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 11

Additional cryptographic assumptions

I AES is a “good pseudorandom permutation”

I SHA-2 is a “good hash function” (see below)

I Lattice problems, coding theory problems,
solving polynomial systems of equations

I Many variants of previous problems

I . . .



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 12

Strength of the assumptions

I Some are stronger than
others

I Depends on the size of
parameters

I Evaluated based on
I Best algorithms
I Computing power
I Fame of the problem

I See www.keylength.com

www.keylength.com
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Protocol example : Diffie-Hellman key exchange

I Mary and Babington exchange messages that can be seen
by Elisabeth. They want to share a secret key KMB

I They agree on a prime number p and on g < p

I Mary sends hm := gm mod p for random m
I Babington sends hb := gb mod p for random b

I Mary computes KMB := hm
b mod p

I Babington computes KBM := hb
m mod p

I We have KMB = gbm mod p = gmb mod p = KBM

I Recovering m from gm mod p (or b from gb mod p) is
the discrete logarithm problem
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Symmetric key vs. Public key

I In symmetric key cryptography,
single secret key shared between sender and receiver

I In public key cryptography, one key is public, but
only one person knows corresponding secret key

I Everybody can encrypt, only one can decrypt
I Only one can sign, everybody can check the signature

I Key management harder for symmetric keys

I Symmetric key algorithms often more efficient

I Public key algorithms rely on “simpler and nicer”
complexity assumptions
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General advices to Mary Stuart

I Don’t build your own algorithm !

I AES, SHA-2, RSA, (EC)DSA well-studied

I Combine the power of symmetric and public key crypto
I Key management easier with public key
I Secret key algorithms more efficient
I Use long term public keys to derive session secret keys

I Beware of authentication issues !
I Textbook Diffie-Hellman can be broken with a simple

man-in-the-middle attack
I Use certificates to authenticate public keys



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 15

General advices to Mary Stuart

I Don’t build your own algorithm !

I AES, SHA-2, RSA, (EC)DSA well-studied

I Combine the power of symmetric and public key crypto
I Key management easier with public key
I Secret key algorithms more efficient
I Use long term public keys to derive session secret keys

I Beware of authentication issues !
I Textbook Diffie-Hellman can be broken with a simple

man-in-the-middle attack
I Use certificates to authenticate public keys



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 15

General advices to Mary Stuart

I Don’t build your own algorithm !

I AES, SHA-2, RSA, (EC)DSA well-studied

I Combine the power of symmetric and public key crypto
I Key management easier with public key
I Secret key algorithms more efficient
I Use long term public keys to derive session secret keys

I Beware of authentication issues !
I Textbook Diffie-Hellman can be broken with a simple

man-in-the-middle attack
I Use certificates to authenticate public keys



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 16

Elliptic curve cryptograpy

I Diffie-Hellman (and many other protocols) first described
for the group F∗p

I 1985 : Koblitz and Miller independently proposed to use
the group of points of an elliptic curve instead
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Elliptic curves

I Points (x , y) satisfying an equation y 2 = x3 + Ax + B
Can be defined over any field K

I Form an Abelian group

I Elliptic curve discrete logarithm problem
Given P and Q = [k]P , find k
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ECDLP vs DLP or Factoring

I ECDLP much harder than DLP or factoring
I We have much better algorithms for DLP and factoring

than for ECDLP
I 1300-bit RSA or DL ≈ 160-bit ECDLP

I Group addition is now rather efficient

I Elliptic curves offer additional features

I 2000 : 15 curves recommended by NIST in FIPS 186-2

I 2009 : NSA advocates use of ECC
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A theoretical breakthrough

I 30-year old subexponential algorithms for DLP and
factoring, now ≈ exp

(
c(log |G |)1/3(log log |G |)2/3

)

I Except for special curves, ECDLP remained exponential
Best attacks were generic attacks in ≈ exp ((log |G |)/2)

I 2012 : binary curves ECDLP subexponential
[FPPR12,PQ12]

I Complexity ≈ exp
(
c ′(log |G |)2/3(log |G |)

)
I 10/15 NIST curves are binary curves
I Beats Pollard rho for “large” parameters
I Index calculus algorithm
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A generic DLP algorithm : Pollard’s rho

I Let P and Q = [k]P in a group G . We want to find k

I Define a “pseudorandom” function f such
that f (R) is either [2]R , (R + S) or (R + T )

I Start from P0 := O and iterate f

I Store Pi = [ai ]P + [bi ]Q

I When a collision Pm = Pn is found,

Deduce Q =
[
am−an
bm−bn

]
P

I Time complexity ≈ |G |1/2 ⇒ today we need |G | > 2160
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Index calculus

I General method to solve discrete logarithm problems

1. Define a factor basis F ⊂ G
2. Relation search : find about |F| relations

aiP + biQ =
∑
Pj∈F

eijPj

3. Do linear algebra modulo |G | on the relations to get

aP + bQ = 0

I Success depends on the group

I Can be adapted for factoring
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Example : a naive index calculus for F∗p

I DLP : given g , h ∈ F∗p, find k such that h = g k

I Factor basis made of small “primes”

FB := {primes pi ≤ B}
I Relation search

I Choose random a, b ∈ {1, . . . , p − 1}
I Compute r := gahb mod p
I If all factors of r are ≤ B, store a relation

[a]g + [b]h =
∑

pi∈FB
[ei ]pi

I Linear algebra modulo p − 1 on the relations

I For B ≈ exp((log p)1/2), subexponential complexity
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Index calculus in practice

I Relation search is distributed
I Can use FPGAs, graphic cards, playstations, cloud

computing. . .
I RSA-768 factorization : 2000 computer cores years

I Linear algebra is not trivial
I Memory may be larger constraint than time
I Preprocessing, block algorithms, sparse algorithms,. . .
I RSA-768 factorization : 252.735.215 square matrix with

14.7 non-zero entries per row on average

I Main costs include power and building costs. . .
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My personal advice to Mary Stuart

I Elliptic curves are smaller, faster, cuter

I BUT there is a new attack on binary curves
I Practical impact still unclear

I Could remain theoretical
I Improvements might break current parameters
I Could be extended to prime field elliptic curves

I Avoid binary curves for at least five years

I Beware that algorithm improvements are more likely to
come for ECDLP than DLP or factoring
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Outline

Elliptic curve cryptography

Hash functions and the Rubik’s cube

Side-channel attacks
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Cryptographic hash functions

I “Compressing” functions

H : {0, 1}∗ → {0, 1}n

I Main security properties
I Collision resistance :

hard to find m,m′ such that H(m) = H(m′)
I Preimage resistance :

given h, hard to find m such that H(m) = h
I Second preimage resistance :

given m, hard to find m′ such that H(m′) = h

I Often used as “pseudo-random functions”
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Applications

I Message authentication
codes

I Digital signatures

I Password storage

I Pseudorandom number
generation

I Entropy extraction

I Key derivation
techniques

I ...

I ...



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 28

Popular hash algorithms

I MD5, SHA-1, RIPEMD-128, GOST, SHA-2, SHA-3

I MD5 is dead !
I 1996 : first weaknesses, shift to SHA-1 recommended
I 2004 : first actual collisions
I 2005 : Nostradamus attack
I 2008 : fake root CA certificates
I 2012 : still widely used

I 2005 : Security of SHA-1 questionned

I 2012 : SHA-3 selected after public competition

I All of them have “block cipher-like strucure”



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 28

Popular hash algorithms

I MD5, SHA-1, RIPEMD-128, GOST, SHA-2, SHA-3
I MD5 is dead !

I 1996 : first weaknesses, shift to SHA-1 recommended
I 2004 : first actual collisions
I 2005 : Nostradamus attack
I 2008 : fake root CA certificates
I 2012 : still widely used

I 2005 : Security of SHA-1 questionned

I 2012 : SHA-3 selected after public competition

I All of them have “block cipher-like strucure”



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 28

Popular hash algorithms

I MD5, SHA-1, RIPEMD-128, GOST, SHA-2, SHA-3
I MD5 is dead !

I 1996 : first weaknesses, shift to SHA-1 recommended
I 2004 : first actual collisions
I 2005 : Nostradamus attack
I 2008 : fake root CA certificates
I 2012 : still widely used

I 2005 : Security of SHA-1 questionned

I 2012 : SHA-3 selected after public competition

I All of them have “block cipher-like strucure”



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 28

Popular hash algorithms

I MD5, SHA-1, RIPEMD-128, GOST, SHA-2, SHA-3
I MD5 is dead !

I 1996 : first weaknesses, shift to SHA-1 recommended
I 2004 : first actual collisions
I 2005 : Nostradamus attack
I 2008 : fake root CA certificates
I 2012 : still widely used

I 2005 : Security of SHA-1 questionned

I 2012 : SHA-3 selected after public competition

I All of them have “block cipher-like strucure”



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 28

Popular hash algorithms

I MD5, SHA-1, RIPEMD-128, GOST, SHA-2, SHA-3
I MD5 is dead !

I 1996 : first weaknesses, shift to SHA-1 recommended
I 2004 : first actual collisions
I 2005 : Nostradamus attack
I 2008 : fake root CA certificates
I 2012 : still widely used

I 2005 : Security of SHA-1 questionned

I 2012 : SHA-3 selected after public competition

I All of them have “block cipher-like strucure”



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 29

Hash functions from Cayley graphs

I Goal : relate main security properties of a hash function
to “simple” hard problems from group/graph theory

I Parameters G a group, and S = {s0, ..., sk−1} ⊂ G

I Write m = m1m2...mN with mi ∈ {0, ..., k − 1}
Define

H(m) := sm1sm2 ...smN

I Efficiency can be good, depending on G and S

I Parallelism : H(m||m′) = H(m)H(m′)
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Cayley graph perspective

I Hash computation ∼ walk in the Cayley graph

I Example : G = (Z/8Z,+), S = {1, 2}

0 1

2

3

45
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0

I Preimage algorithm ∼ path-finding algorithm
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Example : Tillich-Zémor [TZ94]

G = SL(2,F2n), S = {A0 = ( X 1
1 0 ) ,A1 = ( X X+1

1 1 )}
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A hard ( ?) problem

I Factorization problem in finite groups :
Given G , g ∈ G and S = {s0, ..., sk−1} ⊂ G ,
find a short product

∏
smi

= g

I Corresponds to finding preimages

I Similar problems for collision, second preimage

I Has this problem been sufficiently studied ?



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 32

A hard ( ?) problem

I Factorization problem in finite groups :
Given G , g ∈ G and S = {s0, ..., sk−1} ⊂ G ,
find a short product

∏
smi

= g

I Corresponds to finding preimages

I Similar problems for collision, second preimage

I Has this problem been sufficiently studied ?



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 32

A hard ( ?) problem

I Factorization problem in finite groups :
Given G , g ∈ G and S = {s0, ..., sk−1} ⊂ G ,
find a short product

∏
smi

= g

I Corresponds to finding preimages

I Similar problems for collision, second preimage

I Has this problem been sufficiently studied ?



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 33

Popular example : the Rubik’s cube

I Rubik’s cube ∼ subgroup of all permutations of the
corners, the central edge elements and their orientations

I Generated by the faces’ rotations

I Neutral element ∼ Rubik’s cube when solved

I Solution = combination of the elementary permutations
leading to the neutral element
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Is Rubik hard enough ?
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Is Rubik hard enough ?

Not really, but generalizations might be
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Related problems

I Babai’s conjecture [BS92]

I There is a constant c such that, for any non-Abelian
finite simple group G , for all generator sets S, the
diameter of the Cayley graph arising from G and S is
smaller than (log |G |)c .

I Partial proofs by Helfgott, Tao, Bourgain,. . .

I Factoring problem ∼ constructive proof of the conjecture

I Expander graphs
I Cayley graphs tend to be good expanders
I Expanders have a lot of applications [HLW06]
I Traveling in those graphs will be useful, too
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Is the problem hard enough ?

I LPS hash function [CGL07]

I Collision and preimage attacks [TZ08,PLQ08]

I Tillich-Zémor hash function [TZ94]

I Collision and preimage attacks [GIMS11,PQ10]

I Other particular parameters broken

I General parameters : work in progress
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Some advices to Mary Stuart

I Use MACs or signatures to authenticate the messages

I Don’t use MD5 !

I Too risky to use hash functions from Cayley graphs
I Working on generalizations of the Rubik’s cube will be a

funny and useful way to spend your time in prison
I Expander graphs and their applications
I Babai’s conjecture
I Cryptographic applications
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Outline

Elliptic curve cryptography

Hash functions and the Rubik’s cube

Side-channel attacks
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An example of side-channel attack

I Choose a random bit b ∈ {0, 1}. Keep it perfectly secret.

I Let x := b × 123456789. Keep this number secret.

I Let y := x2. Keep this number secret.
When you’re done, raise a hand.

I Let z := 0× y . Return z .

I From z only, I know nothing about b

I From computing time, I can guess b with a good
probability.



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 39

An example of side-channel attack

I Choose a random bit b ∈ {0, 1}. Keep it perfectly secret.

I Let x := b × 123456789. Keep this number secret.

I Let y := x2. Keep this number secret.
When you’re done, raise a hand.

I Let z := 0× y . Return z .

I From z only, I know nothing about b

I From computing time, I can guess b with a good
probability.



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 39

An example of side-channel attack

I Choose a random bit b ∈ {0, 1}. Keep it perfectly secret.

I Let x := b × 123456789. Keep this number secret.

I Let y := x2. Keep this number secret.
When you’re done, raise a hand.

I Let z := 0× y . Return z .

I From z only, I know nothing about b

I From computing time, I can guess b with a good
probability.



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 39

An example of side-channel attack

I Choose a random bit b ∈ {0, 1}. Keep it perfectly secret.

I Let x := b × 123456789. Keep this number secret.

I Let y := x2. Keep this number secret.
When you’re done, raise a hand.

I Let z := 0× y . Return z .

I From z only, I know nothing about b

I From computing time, I can guess b with a good
probability.



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 39

An example of side-channel attack

I Choose a random bit b ∈ {0, 1}. Keep it perfectly secret.

I Let x := b × 123456789. Keep this number secret.

I Let y := x2. Keep this number secret.
When you’re done, raise a hand.

I Let z := 0× y . Return z .

I From z only, I know nothing about b

I From computing time, I can guess b with a good
probability.



UCL Crypto Group
Microelectronics Laboratory Ch.Petit - ULG - Nov 2012 40

CMOS inverter dynamic consumption

P = CLV 2
DDP0→1f
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If you can’t get through it, go around it

I In most crypto algorithms, recovering the private key from
the messages would require solving a very hard problem

I Side-channel attacks : use computing side information
I Timing, computing power, electromagnetic variations,

keyboard noise,. . .

I Fault attacks : induce faults during computation,
deduce relevant information from the result

I Alter memory
I Skip some instructions
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Square and Multiply algorithm (SM)

I In RSA, need to compute gd mod n where d is secret

I Modular exponentiations use SM algorithm
1. Let d = d0 + d12 + d222 + ... + dN2`

2. Let h := 1
3. For i := `, . . . , 0 do
4. h← h2 mod n
5. If di = 1 then
6. h← hg mod n
7. end if
8. end for

I Always square, but multiply only when the bit is 1
I What is the power consumption ?
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A power attack against SM
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Correlation power attack

I Divide and conquer : succesively recover key bytes

I Leakage model
I Hamming distance

I Hamming weight

I Correlation attack
I Make a guess on a key byte
I Deduce Hamming weight (variations) of the registers
I Correlate with the power trace(s)
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Variations

I Signal preprocessing to reduce noise

I Dimensionality reduction to select points on the traces

I If another device available, build leakage templates
to improve the leakage model

I Other statistics or machine learning tools to identify
the right key candidate

I Brute-force to eliminate last wrong key candidates
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Countermeasures

I Physical countermeasures
I Physical and chemical shields
I Noise addition
I Dual-rail logic styles
I . . .

I Algorithmic countermeasures
I Dummy operations
I Noise addition
I Masking
I Shuffling
I . . .
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Fresh rekeying

I Because of noise, side-channel attacks typically require
many traces from the same key

I Idea : build new algorithms/protocols for which the
key is frequently updated [PSPMY08,MPRRS11,. . . ]

I If possible, build them from standard algorithms
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A general advice to Mary Stuart

I Beware that even a secure algorithm can become
unsecure if badly implemented

I Include appropriate side-channel counter-measures in your
favorite crypto computing machine
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Outline

Elliptic curve cryptography

Hash functions and the Rubik’s cube

Side-channel attacks
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“Cipher of Death”

I Mary Stuart didn’t use good crypto
I Her code was broken by Thomas Phelippes

I Walsingham sent her a fake message asking
confirmation of her commitment ; she answered

I Mary sentenced to death and executed on Feb 8th, 1587
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Conclusion

I We all need a good cryptographer
I More than military and government usage today
I Private communications, ATMs, e-banking, e-voting,. . .

I Challenges for the good ( ?) guy
I Make algorithms fast, tiny and secure
I New crypto applications

I Challenges for the bad ( ?) guy
I New algorithms for hard problems (ECDLP,. . . ...)
I Perform huge cryptanalysis tasks
I New side-channel attacks
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Credits

I The first chapter of Simon Singh’s Code Book clearly
inspired the introduction of this talk.
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RSA encryption algorithm

I Key generation
I Private key is a couple of primes (p, q).
I Public key is (n, e) where n = pq.

I Encryption
I Given a message m, compute c := me mod n

I Decryption :
I Knowing (p, q), compute d such that

ed = 1 mod (p − 1)(q − 1)
I Compute cd mod n = med mod n = m mod n

I Everybody can encrypt, but private key needed to decrypt
I Computing (p, q) from the public key is the

integer factorization problem
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Advanced Encryption Standard (AES)

I Algorithm Rijndael (Vincent Rijmen and Joan Daemen)

I Selected in 2001 after public competition

I Replaced previous standards DES and 3-DES

I Key size of 128, 192, or
256 bits

I Block size 128 bits

I 10, 12, or 14 rounds

I Assumption : AES good pseudo-random permutation
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Example : a naive index calculus for F∗p

I DLP : given g , h ∈ F∗p, find k such that h = g k

I Factor basis made of small “primes”

FB := {primes pi ≤ B}

I Relation search
I Choose random a, b ∈ {1, . . . , p − 1}
I Compute r := gahb mod p
I If all factors of r are ≤ B, store a relation

[a]g + [b]h =
∑

pi∈FB
[ei ]pi

I Linear algebra modulo p − 1 on the relations

I For B ≈ exp((log p)1/2), subexponential complexity
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A very high-level look at SHA-1

I Most hash functions
have a similar structure

I Security : various
heuristic arguments
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