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These slides are based on the following book:

D. Forsyth and J. Ponce. Computer vision: a modern approach.
Prentice Hall Professional Technical Reference, 2002.

and on the course “Shape Matching & Correspondence” by Maks
Ovsjanikov (Standford University).
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Model Fitting and Shape Matching

Finding instances of the given model/template in the set of points.
Aligning instances of the known shape/curve with the reference image.
These tasks often involve to search for the best warping of the
model/shape during the finding/aligning processes.

Fitting a parametric model

Matching a nonparametric model
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Fitting a parametric (geometric) Model

Fitting a parametric model

Fitting (a parametric or geometric
model to a set of points) usually
refers to finding the values of the
model parameters giving rise to the
best(?) alignment of the
corresponding instances of the model
with (a part of) the reference set of
points.
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Matching a nonparametric model

Matching a nonparametric model

Matching (a nonparametric model to
a set of point) usually refers to
finding the best correspondence
between the points of the
model/template/shape and the
reference image/set of points. This
often implies to search for the
transformation (or warping) of the
model that will give rise to the best
correspondence
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Fitting Linear Regression

Linear Regression

From n datapoints {(xi, yi)}i∈[1,n], ...
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Fitting Linear Regression

Linear Regression

... find the line y = α+ βx that “best” fits the data {(xi, yi)}i∈[1,n]

y = 0.7644x + 0.07 
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Fitting Linear Regression

Linear Regression

From n datapoints {(xi, yi)}i∈[1,n], find the line y = α+ βx that “best”
fits the data.

What is the best line? ... The answer is part of the problem definition!

Typically, the best line is the one that minimizes the sum-of-square error

min
α, β

Q(α, β), where Q(α, β) =

n∑
i=1

ε̂ 2i =

n∑
i=1

(yi − α− βxi)2

It can be shown that the line that minimizes Q is given by

β̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
α̂ = ȳ − β̂x̄ with

{x̄ = 1
n

∑n
i=1 xi

ȳ = 1
n

∑n
i=1 yi
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Fitting Linear Regression

Linear Regression

This solution minimizes the sum of the vertical distance between the data
points and the line y = α+ βx; it is a geometrical approach!

y = 0.7644x + 0.07 
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Fitting Linear Regression

Linear Regression

Statistically speaking, we can describe the data as a contaminated version
of the output of an instance of the model y = g(x; Θ) = α+ βx.
We consider a particular model g(x; Θ̃) such that the data are

yi = g(xi; Θ̃) + εi = (α̃+ β̃xi) + εi i = 1, ..., n

The errors εi are i.i.d. and normally distributed random variables with zero
mean and, often, common variance σ2i . Then, the joint pdf is:

f(y1, ..., yn) =
1

(2πσ2)n/2
exp[− 1

2σ2

n∑
i=1

(yi − g(xi; Θ̃))2]

whose Log-likelihood function is

logL(Θ̃, σ) = − log(2πσ2)n/2 − 1

2σ2

n∑
i=1

(yi − g(xi; Θ̃))2
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Fitting Linear Regression

Linear Regression

In the statistical framework, we would like to maximize the probability (or
the Log-likelihood) of the observed data.
So, we will have to minimize the same sum of square and we will obtain
expressions which are identical to the solution of the geometric approach.

Then α̂ and β̂ can also be viewed as statistical estimators of the true value
α and β of the model y = α+ βx.
If x is a control variable which is known perfectly (without error of any
kind), it may be proved that the estimators α̂ and β̂ are:

I Normally distributed

I Unbiased E(α̂) = α and E(β̂) = β

I Strongly consistent α̂→ α and β̂ → β when n→∞ (with probability
1).
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Fitting Linear Regression

Linear Regression

Two Model Fitting Paradigms

I Geometrical: Finding the model that passes approximately near (as
close as possible) the observed (noisy) data points.

I Statistical: Finding the model that passes exactly through the true
(but unknown) points that would have been observed in the absence
of noise

For linear models, both approaches lead to the same results.
It is not necessarily the case for other models.
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Fitting Linear Regression

Statistical Regression in Computer Vision

Problem Statement - Errors-In-Variables (EIV)

In computer vision, x and y are BOTH contaminated by noise!

I Two variables x̃ and ỹ are assumed to be linked by an exact
relationship ỹ = g(x̃; Θ).

I We observe a perturbed value of these variables

xi = x̃i + δi yi = ỹi + εi i = 1, ..., n

where δi and εi are 2n random variables i.i.d. with zero means.

I We assume that all the δi have a common variance σx, all the εi have
a common variance σy and they are normally distributed

δi ∼ N(0, σx) εi ∼ N(0, σy)

I We assume, for isotropy reasons, that σx = σy
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Fitting Linear Regression

EIV in Computer Vision

The geometric solution to an EIV problem would be to minimize the
”Total Least-Square” error representing the sum of the true distance
between the data points and the model.
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Fitting Linear Regression

EIV in Computer Vision

The sum of the geometric distances between the data points and a line
y = α+ βx is

ETLS(α, β) =
1

1 + β2

n∑
i=1

(yi − α− βxi)2

This expression will be minimum when

β̂ =
syy − sxx +

√
(syy − sxx)2 + 4s2xy

2sxy
α̂ = ȳ − β̂x̄

where

sxx =

n∑
i=1

(xi − x̄)2 sxy =

n∑
i=1

(yi − ȳ)2 sxy =

n∑
i=1

(xi − x̄)(yi − ȳ)
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Fitting Linear Regression

EIV in Computer Vision

This geometric solution is invariant under orthogonal transformation
(translation, rotation) and isotropic scaling and is then independent of the
coordinate frame and of the scale of the axis.

This solution is also the Maximum Likelihood solution of the
corresponding statistical problem (when σx = σy).

Unfortunately, in the case of EIV, the estimators α̂ and β̂

I ARE NOT normally distributed.

I HAVE NO finite moments E(α̂)→∞ and E(β̂)→∞
I HAVE NO finite mean squared errors E((α̂− α)2)→∞ and

E((β̂ − β)2)→∞
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Fitting Linear Regression

EIV in Computer Vision

Nevertheless, in practice, the previous estimators behave badly only for
very high level of noise (large σ) or when n→∞.

These situations (almost) never happen in Computer Vision applications,
where we are interested in the limit case σ → 0 (with n more or less
constant).

Then, such parametric model fitting works well whenever:

I The level of noise is moderate

I The number of data points is large enough

I There are almost no outliers in the data

I The data comes from only one underlying model
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Fitting Linear Regression

Sensitivity to noise and outliers

Least-squares linear regression is extremely sensitive to noise
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Fitting The Hough Transform

The Hough Transform

Principle: make each datapoint vote for all the model instances that could
pass through it, and select the instance that collects the most votes.

A line can be written as the set of
points (x, y) that satisfy

x cos θ + y sin θ − r = 0

where (r, θ) are the parameters of
the line.
All the lines passing through (x0, y0)
are in the locus

r = x0 cos θ + y0 sin θ
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Fitting The Hough Transform

The Hough Transform

Principle: make each datapoint vote for all the model instances that could
pass through it, and select the instance that collects the most votes.

We’re only interested in 0 ≤ θ < 2π
and 0 ≤ r < R.

We can discretize this space, yielding
a 2D grid.

Each datapoint votes for a cell of the
grid (increasing the cell’s value by 1).
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Fitting The Hough Transform

Problems with the Hough Transform

Quantization Errors

An appropriate grid size is difficult to pick:

I Too coarse, and each cell will represent quite different lines.

I Too fine, and the data noise will prevent the line points from voting
for the same cell, resulting in no cell with a large vote count.

→ Choose the grid carefully
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Fitting The Hough Transform

Problems with the Hough Transform

Difficulties with Noise
The Hough Transform is designed to be more robust to outliers and noise
than the geometric fitting, but;

I “Phantom” lines can appear in large sets of randomly distributed
datapoints.

I When multiple instances of the model are present, any instance is
considered as noise for all the others.

→ Attempt to remove outliers before fitting
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Fitting The Hough Transform

Problems with the Hough Transform

Intractable when models have large number of parameters (> 3)

For instance;

I Line fitting: 2 parameters (r, θ)

I Circle fitting: 3 parameters (xc, yc, r)

I Ellipse fitting: 5 parameters (xc, yc, θ, a, b)

I Homography estimation: 8 parameters

→ Reduce the problem in successive steps of lower dimensionality and/or
reduce the initial number of hypothesis to test
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Fitting RANSAC

The RANSAC (Random Sample Consensus) Algorithm

RANSAC is a stochastic algorithm for fitting a model to a dataset that
contains outliers, i.e., points that cannot be explained by a model instance.

Repeat until k iterations or until we found a good fit:

I Find a small subset of points, and fit the model to that subset

I Compute how many points can be explained by the fitted model

If we know that 50% of points are outliers, and we fit the model to random
pairs of points, 25% of these pairs will yield a satisfactory model instance.
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Fitting RANSAC

RANSAC: How many points are necessary?
Method 1

At each iteration, we draw n points at random, where n is the minimum
number of points required to fit the model.

I For lines, n = 2. For circles, n = 3.

We assume that we can get an estimate of the fraction w of inliers within
the set of datapoints.
If k is the number of iterations needed to finally obtain a set of n samples
that are all inliers, and E[k] is its estimated value. We have

E[k] = 1Pr(one good sample in 1 draw) + 2Pr(one good sample in 2 draws) + ...

= wn + 2(1− wn)wn + 3(1− wn)2wn + ...

= w−n

To increase our confidence in getting at least one good draw, we add a
few standard deviations to w−n

SD(k) =

√
1− wn
wn
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Fitting RANSAC

RANSAC: How many points are necessary?
Method 2

At each iteration, we draw at random n samples from the data set;

Pr(all inliers) = wn ⇒ Pr(at least one outlier) = 1− wn

Let us denote by z the probability of having at least one outlier in each of
the k iterations. z is the probability of failure of the random drawing
process

Pr(at least one outlier in the k draw) = z = (1− wn)k

Then, we set z to how much we are willing to risk failing to fit our model

k =
log(z)

log(1− wn)
.

I Typical values for z are in the range [0.01, 0.05], but the choice of z is
application-dependent.

I Again, we add a few standard deviations to the estimate of k.
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Fitting RANSAC

RANSAC: Who is an inlier?

RANSAC Algorithm

Repeat until k iterations or until we found a good fit:

I Find a small subset of points, and fit the model to that subset

I Compute how many points can be explained by the fitted model

We need to define a criterion for deciding which points explain a given
model instance.

Typically: a point is explained by a model instance if it lies within a
distance d from the model instance.
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Fitting RANSAC

RANSAC: How many inliers do we need?

RANSAC Algorithm

Repeat until k iterations or until we found a good fit:

I Find a small subset of points, and fit the model to that subset

I Compute how many points can be explained by the fitted model

What is a “good fit”?
Rule of thumb: stop when a model fits to as many points as the number
of inliers we expect in the dataset. Denoting the number of points in the
dataset by N , stop when the number of inliers is larger than t = wN .
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Fitting RANSAC

RANSAC Algorithm

Determine n, t, d and k
Repeat, until there is a good fit or k iterations have occurred:

Draw a sample of n points from the data uniformly and at random
Fit to that set of n points
For each data point outside the sample:

Test the distance from the point to the line against d
If the distance from the point to the line is less than d:

the point is an inlier
If there are t or more points inliers

Found a good fit! Refit the line using all these points, and terminate
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Fitting RANSAC

RANSAC: Multiple Instances

RANSAC is designed to fit a model to a dataset that contains one
instance of the model.

Variants of RANSAC that explicitly address the problem of finding
multiple instances exist.
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Shape Matching

Shape Matching

Nonparametric model represented by

I Image (grey level, colour, depth)

I Set of 3D points

I Global shape descriptors vector

I Vector of local feature points
with their descriptors.

Applications:

I Robotics: grasping, object
recognition.

I Medicine: Matching MRI scans.

I Manufacturing: quality control.

Finding the best of shapesFinding the best of shapes
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Shape Matching Template Matching
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Shape Matching Template Matching

Template matching (Global, Rigid)

Finding the image transform or warping that would be needed to fit or
align a model (a source image for instance) on another one.
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Shape Matching Template Matching

Naive solution I

We consider:

I the image I with LI lines and KI columns, represented by the matrix I = (Ilk)
where l ∈ [0, LI [, k ∈ [0,KI [,

I the template T with LT lines and KT columns, represented by the matrix
T = (Tij) where i ∈ [0, LT [, j ∈ [0,KT [.
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Shape Matching Template Matching

Naive solution II

We define all the admissible (sub-)windows W (l,k) completely included within the
image I and of the same size as the template T by the following sub-matrices W (l,k):

W
(l,k)
ij =

{
Il+i,k+j for i ∈ [0, LT − 1] , j ∈ [0,KT − 1]

0 otherwise

where l ∈ [0, LI − LT ] and k ∈ [0,KI −KT ] are the indices, in the image I, of the
upper left pixel of W (l,k).
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Shape Matching Template Matching

Naive solution III

Compute the Euclidean distance

dist
(
T ,W (l,k)

)
=

LT−1∑
i=0

KT−1∑
j=0

[
Tij −W

(l,k)
ij

]2
(1)

then create the distance map D, represented by the matrix D:

D⌊
KT
2

⌋
+k,

⌊
LT
2

⌋
+l

=

{
dist

(
T ,W (l,k)

)
for l ∈ [0, LI − LT ] , k ∈ [0,KI −KT ]

0 otherwise
(2)

and find the location of the minimum in these map.

Template T Observed image I Distance map D
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Shape Matching Template Matching

Block diagram

We may generalize a little bit our solution:
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Shape Matching Template Matching

Method Taxonomy

Local vs. Global
refinement (ICP) alignment (search)

Rigid vs. Deformable
rotation, translation deformation

Pair vs. Collection
two shapes multiple shapes

Fit to Same Shape vs. Fit to Sub/supershape
without outliers with outliers

To date, [Local AND Rigid AND Pair AND Same Shape] is solved. All
other combinations are actively researched.
Here, we are interested in [Local/Global AND Rigid AND Pair AND
Sub/super Shape].
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Shape Matching Iterative Closest Point (ICP)

Plan

Fitting
Linear Regression
The Hough Transform
RANSAC

Shape Matching
Template Matching
Iterative Closest Point (ICP)
Global Matching

44 / 58



Shape Matching Iterative Closest Point (ICP)

Iterative Closest Point (ICP)
Local, Rigid, Pair, Same Shape

ICP: registration of two 3D point clouds (i.e., finding the 3D
transformation that maps the first point cloud to the second one).

Function ICP(M , S): (M : model, S: scene)

(R, t) =← Initialize-Registration(S, M) (for instance, RANSAC)
E′ ← +∞ (E′: matching score of (R, t))
repeat

E ← E′

Transform all points of S with (R, t):
S′ ← Transform(S, R, t)
For each point of S′, compute the closest point in M :
P ← Return-Pairs-Closest-Points(S′, M)
Estimate the transfo mapping the points of S′ onto their matches in M :
(R, t, E′)← Compute-ML-Transformation(S, M , P , R, t)

until |E′ − E| < τ
return (R, t)
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Shape Matching Iterative Closest Point (ICP)

ICP: Local Convergence Only

ICP always converges to a local minimum of E.

There is no guarantee that ICP will converge to the global optimum.

A reasonable estimate of the transformation must be provided via
Initialize-Registration():

I trying different transformations at random

I Using the moments of the scene and model

I Using RANSAC
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Shape Matching Iterative Closest Point (ICP)

ICP: Finding the Closest-Point Pairs
Return-Pairs-Closest-Points()

At most in O(|S||M |).

Using a kd-tree, this function is in O(|S| log |M |). S and M must be large
for the cost of the kd-tree to be amortized.
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Shape Matching Iterative Closest Point (ICP)

Estimating the Rigid Transformation
Compute-ML-Transformation()

Let us denote P by
{

(xS
′

i , x
M
i )

}
i∈[1,n]

where n = |S|, and let us write

xSi the counterpart of xS
′

i in S.
We seek (R, t) that minimize

E =

n∑
i=1

|xMi −RxSi − t|2

Let us note that the value of t that minimizes E must verify

0 =
∂E

∂t
= −2

n∑
i=1

(xMi −RxSi − t)

Using the quaternion representation of R, the error can be rewritten as

E =
◦
qB ◦q−1

Minimizing E under the constraint |q|2 = 1 is a linear least-squares
problem whose solution is the eigenvector of B associated with the
smallest eigenvalue of this matrix. 48 / 58



Shape Matching Iterative Closest Point (ICP)

ICP Variants

ICP Variants:

I Sub/super Shape: applicable to data with outliers

I Pair weighting

I Other distance metrics
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Shape Matching Global Matching
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Shape Matching Global Matching

Global Matching

Approaches:

I Exhaustive search

I Normalization

I Random Sampling

I Invariance
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Shape Matching Global Matching

Exhaustive Search
Global, Rigid, Pair, Sub/supershape

I Sample the space of 3D transformations

I Apply ICP to with samples as initial transformations

I Select best-matching result

Efficient if we can strongly constrain the space of possible transformations.

Insufficient for most robotics problems.
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Shape Matching Global Matching

Normalization
Global, Rigid, Pair, Sameshape

Algorithm:

I Apply PCA to both point clouds to find R (may be several
candidates)

I Compute t from the centers of gravity of both point clouds

I Apply ICP
the rinci al directions of the shape.p

ition sometimes try to all permutations of x yo y

Properties:

I Works well for noise-free non-isotropic shapes.

I Not applicable to partial views, or scenes with outliers.
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Shape Matching Global Matching

RANSAC
Global, Rigid, Pair, Sub/supershape

I Select 3 pairs of points

{(xi, x′i) :xi ∈ model,

x′i ∈ scene}i∈{1,2,3}

I Estimate (R, t) (either
ICP, or linear
least-squares)

I Compute error
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Shape Matching Global Matching
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Shape Matching Global Matching

RANSAC
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Shape Matching Global Matching

RANSAC
Global, Rigid, Pair, Sub/supershape

I Select 3 pairs of points

{(xi, x′i) :xi ∈ model,

x′i ∈ scene}i∈{1,2,3}

I Estimate (R, t) (either
ICP, or linear
least-squares)

I Compute error
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Shape Matching Global Matching

RANSAC: Going Further

For each triple of points from the model, there are O(n3) triples in the
scene.

By picking quadruples instead of triples, and choosing these quadruples
carefully, the same problem becomes O(n2)

S1 S2

a c

bd

e

a0

c0
b0

d0 e0

4–points Congruent Sets for Robust Surface Registration, Aiger et al., SIGGRAPH 2008
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Shape Matching Global Matching

Invariance

Try to characterize the shape using properties that are invariant under the
desired set of transformations.

I (Optional: identify salient points on the object’s surface)

I Compute a descriptor at each (salient) point.

For instance, color is invariant to rigid body transformations

Color is not always an option (varies with lighting, not always available, or
we may want to match together objects of similar shapes but different
colors).
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Shape Matching Global Matching

Invariance:
Global, Rigid, Pair, Sub/supershape

1. Find points of interest (optional, may use all available points instead)

2. Compute a transormation-invariant shape descriptor at each of the
points selected above

3. Match points using their similarity in the shape descriptor space

4. Trigger ICP

Partially Overlapping Scans
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Shape Matching Global Matching

Invariance:
Global, Rigid, Pair, Sub/supershape

1. Find points of interest (optional, may use all available points instead)

2. Compute a transormation-invariant shape descriptor at each of the
points selected above

3. Match points using their similarity in the shape descriptor space

4. Trigger ICP
3. Compute the aligning transformation

Aligned ScansPartially Overlapping Scans
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Shape Matching Global Matching

RBM-invariant Descriptor: Spin Images

At each point x:
I Compute the surface normal at x (PCA), and the tangential plane.
I Project all other points (or a local neighborhood) into a reference

frame centered on x, and with Z aligned with the normal
I Transform to a cylindrical coordinate system
I Discard the angular coordinate, keeping only the distances to the

tangential plane and the distance to the normal vector

images of large support for three oriented points on the surface of a rubber duck model.

Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes Johnson et al, PAMI 99
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